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Abstract
We give some explicit stability bounds for discrete-time systems subjected to
time-varying and nonlinear perturbations. The obtained results are extensions of
some well-known results in (Hinrichsen and Son in Int. J. Robust Nonlinear
Control 8:1169-1188, 1998; Shafai et al. in IEEE Trans. Autom. Control 42:265-270, 1997)
to nonlinear time-varying perturbations. Two examples are given to illustrate the
obtained results. Finally, we present an Aizerman-type conjecture for discrete-time
systems and show that this conjecture is valid for positive systems.
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1 Introduction and preliminaries
Discrete-time equations have numerous applications in science and engineering. They
are used as models for a variety of phenomena in the life sciences, population biology,
computing sciences, economics, etc.; see, e.g., [, , ].
Motivated bymany applications in control engineering, problems of stability and robust

stability of dynamical systems have attracted much attention from researchers for a long
time, see, e.g., [, , , –, –] and references therein. In this paper, we investigate
exponential stability of discrete-time systems subjected to nonlinear time-varying pertur-
bations. Some explicit stability bounds for discrete-time systems subjected to nonlinear
time-varying perturbations are given. Furthermore, we present an Aizerman-type conjec-
ture for discrete-time systems and show that it is valid for positive systems. Two examples
are given to illustrate the obtained results.
Let R be the set of all real numbers and let N be the set of all natural numbers. Set Z+ :=

N ∪ {}. For given N ∈ N, let us denote N := {, , . . . ,N}. Let n, l, q be positive integers.
Inequalities between real matrices or vectors will be understood componentwise, i.e., for
two real l × q-matrices A = (aij) and B = (bij), the inequality A ≥ B means aij ≥ bij for
i = , . . . , l; j = , . . . ,q. In particular, if aij > bij for i = , . . . , l; j = , . . . ,q, then we write A �
B instead of A ≥ B. The set of all nonnegative l × q-matrices is denoted by R

l×q
+ . If x =

(x,x, . . . ,xn) ∈Rn and P = (pij) ∈Rl×q we define |x| = (|xi|) and |P| = (|pij|). It is easy to see
that |CD| ≤ |C||D|. For any matrix A ∈R

n×n the spectral radius of A is denoted by ρ(A) =
max{|λ| : λ ∈ σ (A)}, where σ (A) := {z ∈ C : det(zIn – A) = } is the set of all eigenvalues
of A. A norm ‖ · ‖ on R

n is said to be monotonic if |x| ≤ |y| implies ‖x‖ ≤ ‖y‖ for all
x, y ∈ R

n. Every p-norm on R
n (‖x‖p = (|x|p + |x|p + · · · + |xn|p)


p ,  ≤ p < ∞ and ‖x‖∞ =
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maxi=,,...,n |xi|), is monotonic. Throughout this paper, the norm ‖M‖ of amatrixM ∈R
l×q

is always understood as the operator norm defined by ‖M‖ =max‖y‖= ‖My‖whereRq and
R

l are provided with some monotonic vector norms. Then, the operator norm ‖ · ‖ has
the following monotonicity property (see, e.g., [])

P ∈R
l×q,Q ∈R

l×q
+ , |P| ≤ Q ⇒ ‖P‖ ≤ ∥∥|P|∥∥ ≤ ‖Q‖. ()

The next theorem summarizes some basic properties of nonnegative matrices which
will be used in what follows.

Theorem . ([, ]) Let A ∈ R
p×p be a nonnegative matrix. Then the following state-

ments hold.
(i) (Perron-Frobenius Theorem) ρ(A) is an eigenvalue of A and there exists a

nonnegative eigenvector x ∈Rp, x 
=  such that Ax = ρ(A)x.
(ii) Given α ∈R+, there exists a nonzero vector x≥  such that Ax ≥ αx if and only if

ρ(A)≥ α.
(iii) (tIn –A)– exists and is nonnegative if and only if t > ρ(A).
(iv) Given B ∈R

p×p
+ , C ∈R

p×p. Then

|C| ≤ B =⇒ ρ(A +C) ≤ ρ(A + B).

2 Stability of discrete-time systems under nonlinear time-varying
perturbations

Consider a nonlinear discrete-time system of the form

x(k + ) = f
(
k,x(k)

)
, k ≥ k, ()

where f : Z+ ×Rn → Rn is a given function such that f (k, ) = , for all k ∈ Z+ (i.e., ξ = 
is an equilibrium of the system ()).
It is clear that for given k ∈ Z+ and x ∈ R

n, () has a unique solution, denoted by
x(·,k,x), satisfying the initial condition

x(k) = x. ()

Definition . The zero solution of () is said to be exponentially stable if there exist
M ≥  and β ∈ [, ) such that

∀k,k ∈ Z+,k ≥ k;∀x ∈ R
n :

∥∥x(k,k,x)∥∥ ≤ Mβk–k‖x‖. ()

We first give a simple sufficient condition for exponential stability of () which is used
in what follows.

Proposition . Suppose there exists A ∈R
n×n
+ such that

∣∣f (k,x)∣∣ ≤ A|x|, ∀k ∈ Z+,∀x ∈R
n. ()

If ρ(A) <  then the zero solution of () is exponentially stable.
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Proof Let x(k) := x(·,k,x), k ≥ k, be the solution of ()-(). It follows from () and ()
that

∣∣x(k + )
∣∣ = ∣∣f (k,x(k))∣∣ ≤ A

∣∣x(k)∣∣, ∀k ≥ k.

This gives

∣∣x(k + )
∣∣ ≤ A

∣∣x(k)∣∣ ≤ A∣∣x(k – )
∣∣ ≤ · · · ≤ Ak–k+

∣∣x(k)∣∣ = Ak–k+|x|, ∀k ≥ k.

Without loss of generality, let ‖ · ‖ = ‖ · ‖p (≤ p ≤ ∞). Hence,

∥∥x(k + )
∥∥ ≤ ∥∥Ak–k+

∥∥‖x‖, ∀k ≥ k. ()

Since ρ(A) < , there existM ≥ , β ∈ [, ) such that

∥∥Ak∥∥ ≤Mβk , ∀k ∈ Z+, ()

see, e.g., []. By () and (),

∥∥x(k,k,x)∥∥ ≤ Mβk–k‖x‖, ∀k ≥ k.

This completes the proof. �

Remark . In particular, if for each k ∈ Z+, f (k, ·) is continuously differentiable on R
n

and there exists A ∈ Rn×n
+ such that

∣∣J(k,x)∣∣ ≤ A, ∀k ∈ Z+,∀x ∈R
n, ()

then () holds.Here J(k,x) := ( dfidxj
(k,x)) ∈R

n×n, k ∈ Z+, x ∈ R
n, denotes the Jacobianmatrix

of f (k, ·) at x. Indeed, we have f (k,x) = f (k,x) – f (k, ) = (
∫ 
 J(k, tx)dt)x, by the mean value

theorem, see, e.g., []. Therefore, () yields,

∣∣f (k,x)∣∣ = ∣∣∣∣
(∫ 


J(k, tx)dt

)
x
∣∣∣∣

≤
(∫ 



∣∣J(k, tx)∣∣dt)|x| ≤ A|x|, ∀k ∈ Z+,∀x ∈R
n.

Suppose all hypotheses of Proposition . hold. Thus, the zero solution of () is expo-
nentially stable. Consider a perturbed system of the form

x(k + ) = f
(
k,x(k)

)
+

N∑
i=

Di
(
k,x(k)

)
Pi

(
k,Ei

(
k,x(k)

))
, k ∈ Z+, ()

where N is a given positive integer and Di : Z+ ×R
n → R

n×li , Ei : Z+ ×R
n → R

qi (i ∈ N )
are given and Pi : Z+ ×R

qi →R
li (i ∈N ) are uncertainties. Furthermore, we assume that
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(H) Pi(k, ) = , ∀k ∈ Z+ and Ei(k, ) = , ∀k ∈ Z+ for each i ∈N ;
(H) there exist Di ∈R

n×li
+ , Ei ∈ R

qi×n
+ and Pi ∈R

li×qi
+ (i ∈N ) such that

∣∣Di(k,x)
∣∣ ≤ Di, ∀k ∈ Z+,∀x ∈R

n ()

and

∣∣Ei(k,x)∣∣ ≤ Ei|x|, ∀k ∈ Z+,∀x ∈R
n;∣∣Pi(k, y)

∣∣ ≤ Pi|y|, ∀k ∈ Z+,∀y ∈R
qi . ()

The main problem here is to find a positive number γ such that the zero solution of an
arbitrary perturbed system of the form () remains exponentially stable whenever the size
of perturbations is less than γ .

Remark . In particular, if

Di(k,x) :=Di(k) ∈R
n×li ;

Ei(k,x) := Ei(k)x, Ei(k) ∈R
qi×n,x ∈R

n,

and

Pi(k, y) := Pi(k)y, Pi(k) ∈R
li×qi , y ∈R

qi ,

then the perturbation
∑N

i=Di(k,x(k))Pi(k,Ei(k,x(k))) becomes
∑N

i=Di(k)Pi(k)Ei(k)x(k).
The problem of robust stability of linear infinite dimensional time-varying system

x(k + ) = A(k)x(k), k ∈ Z+, ()

under the time-varying multi-perturbations

A(k) ↪→ A(k) +
N∑
i=

Di(k)Pi(k)Ei(k), ()

has been analyzed in [] and an abstract stability bound is given in terms of input-output
operators.

We are now in the position to prove the main result of this paper.

Theorem . Assume that all hypotheses of Proposition . hold and A ∈ Rn×n
+ satisfies

(). If (H)-(H) hold and

N∑
i=

‖Pi‖ < 
maxi,j∈N ‖Ei(In –A)–Dj‖ , ()

then the zero solution of () remains exponentially stable.
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Proof Since () and ()-(), it follows that

∣∣∣∣∣f (k,x) +
N∑
i=

Di(k,x)Pi
(
k,Ei(k,x)

)∣∣∣∣∣
≤ ∣∣f (k,x)∣∣ + N∑

i=

∣∣Di(k,x)Pi
(
k,Ei(k,x)

)∣∣
()≤ A|x| +

N∑
i=

∣∣Di(k,x)
∣∣∣∣Pi

(
k,Ei(k,x)

)∣∣
()–()≤ A|x| +

( N∑
i=

DiPiEi

)
|x| =

(
A +

N∑
i=

DiPiEi

)
|x|.

We show that ρ(A +
∑N

i=DiPiEi) <  and then the zero solution of () is exponentially
stable by Proposition ..
Since A and Di, Ei, Pi (i ∈ N ) are nonnegative, so is A +

∑N
i=DiPiEi. Assume on the

contrary that ρ := ρ(A +
∑N

i=DiPiEi) ≥ . By the Perron-Frobenius Theorem (Theo-
rem .(i)), there exists x ∈ R

n
+, x 
=  such that

(
A +

N∑
i=

DiPiEi

)
x = ρx.

Let Q(t) := tIn –A, t ∈R. Since ρ(A) < , Q(ρ) is invertible. It follows that

Q(ρ)–
N∑
i=

DiPiEix = x. ()

Let i be an index such that ‖Eix‖ = maxi∈N ‖Eix‖. Then () implies that ‖Eix‖ > .
Multiply both sides of () from the left by Ei , to get

N∑
i=

EiQ(ρ)–DiPiEix = Eix.

Taking norms, we get

N∑
i=

∥∥EiQ(ρ)–Di
∥∥‖Pi‖‖Eix‖ ≥ ‖Eix‖.

This implies

max
i,j∈N

∥∥EiQ(ρ)–Dj
∥∥( N∑

i=

‖Pi‖
)

‖Eix‖ ≥ ‖Eix‖,

or equivalently,

max
i,j∈N

∥∥EiQ(ρ)–Dj
∥∥ N∑

i=

‖Pi‖ ≥ . ()

http://www.advancesindifferenceequations.com/content/2012/1/120
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On the other hand, the resolvent identity gives

Q()– –Q(ρ)– = (ρ – )Q()–Q(ρ)–. ()

Since A ∈ R
n×n
+ and ρ(A) <  ≤ ρ, Theorem .(iii) yields Q()– ≥  and Q(ρ)– ≥ .

Then () implies Q()– ≥ Q(ρ)– ≥ . Hence, EiQ()–Dj ≥ EiQ(ρ)–Dj ≥ , for any
i, j ∈N . By (), ‖EiQ()–Dj‖ ≥ ‖EiQ(ρ)–Dj‖, for any i, j ∈ N . It follows from () that

N∑
i=

‖Pi‖ ≥ 
maxi,j∈N ‖EiQ()–Dj‖ .

However, this conflicts with (). This completes the proof. �

In particular, suppose () satisfies

∣∣A(k)∣∣ ≤ A, ∀k ∈ Z+, ()

for some A ∈R
n×n
+ . Consider a perturbed system of the form

x(k + ) = A(k)x(k) +
N∑
i=

Di
(
k,x(k)

)
Pi

(
k,Ei

(
k,x(k)

))
, k ∈ Z+, ()

where Di, Pi and Ei (i ∈ N ) are as above.
The following is immediate from Theorem ..

Corollary . Suppose () and (H)-(H) hold and ρ(A) < . If () holds then the zero
solution of () is exponentially stable.

Corollary . Let A ∈ R
n×n
+ and ρ(A) < . Suppose Di(·) : Z+ → R

n×li , Ei(·) : Z+ → R
qi×n

(i ∈ N), are given and Pi(·) : Z+ → R
li×qi (i ∈ N) are unknown. If there exist Di ∈ R

n×li ,
Ei ∈Rqi×n and Pi ∈Rli×qi (i ∈N) such that

∣∣Di(k)
∣∣ ≤ Di;

∣∣Ei(k)
∣∣ ≤ Ei;

∣∣Pi(k)
∣∣ ≤ Pi, ∀k ∈ Z+,

and () holds then the zero solution of the perturbed system

x(k + ) =

(
A +

N∑
i=

Di(k)Pi(k)Ei(k)

)
x(k), ∀k ∈ Z+, ()

is exponentially stable.

Remark . If A ∈R
n×n
+ , then the system

x(k + ) = Ax(k), k ∈ Z+, ()

is positive. That is, for any initial state x ∈R
n
+, the corresponding trajectory of the system

x(k,x), k ∈ Z+, remains inR
n
+ for all k ∈ Z+. Positive dynamical systems play an important

http://www.advancesindifferenceequations.com/content/2012/1/120
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role in the modeling of dynamical phenomena whose variables are restricted to be non-
negative. They are often encountered in applications, for example, networks of reservoirs,
industrial processes involving chemical reactors, heat exchangers, distillation columns,
storage systems, hierarchical systems, compartmental systems used for modeling trans-
port and accumulation phenomena of substances, see, e.g., [, , ].
In particular, the problem of robust stability of the positive linear discrete-time system

() under the time-invariant structured perturbations

A ↪→ A +DPE,

has been studied in [, ]. More precisely, it has been shown in [, ] that if () is
exponentially stable and positive andD, E are given nonnegativematrices then a perturbed
system of the form

x(k + ) = (A +DPE)x(k), k ∈ Z+,

remains exponentially stable whenever

‖P‖ < 
‖E(In –A)–D‖ .

Furthermore, the problem of robust stability of the positive system () under the time-
invariant multi-perturbations

A ↪→ A +
N∑
i=

DiPiEi,

has been analyzed in [] by techniques of μ-analysis.
Although there are many works devoted to the study of robust stability of discrete-time

systems, to the best of our knowledge, the problemof robust stability of the positive system
() under the time-varying multi-perturbations

A ↪→ A +
N∑
i=

Di(k)Pi(k)Ei(k),

has not been studied yet, and a result like Corollary . cannot be found in the literature.

We illustrate the obtained results by a couple of examples.

Example . Consider the nonlinear time-varying equation

x(k + ) =


e–kx(k) + sin

(
k

k + 
x(k)

)
, k ∈ Z+. ()

Clearly, () is of the form () with f (k,x) := 
e

–kx + sin( k
k+x). Since

∣∣f (k,x)∣∣ = ∣∣∣∣ e–kx + sin

(
k

k + 
x
)∣∣∣∣ ≤ 


|x| +

∣∣∣∣ k
k + 

x
∣∣∣∣ ≤ 


|x|, ∀k ∈ Z+,∀x ∈ R,

the zero solution of () is exponentially stable, by Proposition ..

http://www.advancesindifferenceequations.com/content/2012/1/120
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Consider a perturbed equation given by

x(k + ) =
(


e–k + ae–k

–
)
x(k) + sin

(
k

k + 
x(k)

)
+ arctan

(
bx(k)

)
, k ∈ Z+, ()

where a,b ∈R are parameters.
Note that |ae–k–x| ≤ e–|a||x| and | arctan(bx)| ≤ |b||x|, for all k ∈ Z+, x ∈ R. By Theo-

rem ., the zero solution of () is exponentially stable if e–|a| + |b| < 
 .

Example . Consider a linear discrete-time equation in R
 defined by

x(k + ) = Ax(k), k ∈ Z+, ()

where

A :=

(












)
.

Clearly, () is positive and exponentially stable. Consider a perturbed system given by

x(k + ) =
(
A +D(k)P(k)E(k) +D(k)P(k)E(k)

)
x(k), k ∈ Z+, ()

where

D(k) :=

(
– sink



)
, k ∈ Z+, D(k) :=

(



cos k+

)
, k ∈ Z+,

E(k) :=

(
–e–k 
 – k

k+

)
, k ∈ Z+, E(k) :=

(
k

+k 
 – 

k+

)
, k ∈ Z+,

and P(k) := (a(k),b(k)) ∈R
×; P(k) := (c(k),d(k)) ∈R

×, k ∈ Z+ are unknown perturba-
tions.
Note that for any k ∈ Z+, we have

∣∣D(k)
∣∣ ≤ D :=

(



)
;

∣∣D(k)
∣∣ ≤ D :=

(



)
;

∣∣E(k)
∣∣ ≤ E :=

(
 
 

)
;

∣∣E(k)
∣∣ ≤ E :=

(
 
 

)
;

and

E(I –A)–D =

(
 
 

)(
 
 

)(



)
=

(



)
;

E(I –A)–D =

(
 
 

)(
 
 

)(



)
=

(



)
;

E(I –A)–D =

(
 
 

)(
 
 

)(



)
=

(



)
;
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E(I –A)–D =

(
 
 

)(
 
 

)(



)
=

(



)
.

Let R be endowed with -norm. By Corollary ., () is exponentially stable provided

√(
sup
k∈Z+

∣∣a(k)∣∣)
+

(
sup
k∈Z+

∣∣b(k)∣∣)
+

√(
sup
k∈Z+

∣∣c(k)∣∣)
+

(
sup
k∈Z+

∣∣d(k)∣∣)
<



√


.

3 Aizerman-type problem
As an application, we now deal with anAizerman-type problem for discrete-time systems.

Aizerman-type conjecture for discrete-time systems (ATC-DTS) Let A ∈ Rn×n, D ∈
R

n×l , E ∈ R
q×n be given. For any γ >  the linear systems

x(k + ) = (A +DPE)x(k), P ∈R
l×q,‖P‖ < γ , ()

are asymptotically stable if and only if the origin is globally asymptotically stable for all
nonlinear systems

x(k + ) = Ax(k) +DN
(
k,Ex(k)

)
, ()

whereN : Z+ ×R
q →R

l ,N (k, ) = , ∀k ∈ Z+, satisfies

∣∣N (k, y)
∣∣ ≤ P|y|, ∀k ∈ Z+,∀y ∈R

q and P ∈R
l×q,‖P‖ < γ . ()

In particular, whenN :R →R, y �→N (y), is a scalar function andD,ET ∈R
n, the above

conjecture is exactly a discrete-time version of the original Aizerman conjecture which
was formulated first for ordinary differential systems, see []. It is well known that in gen-
eral, the Aizerman classical conjecture does not hold, see, e.g., []. So a natural question
arising here is that under what conditions of A, D, E andN does the ATC-DTS hold?

Theorem . If A ∈R
n×n
+ and D ∈R

n×l
+ , E ∈R

q×n
+ then the ATC-DTS holds.

In other words, the ATC-DTS holds for positive systems.

Proof Suppose () is asymptotically stable for any P ∈ R
l×q, ‖P‖ < γ , for some γ > .

In particular, the unperturbed system () is asymptotically stable. It follows from Corol-
lary . that () is asymptotically stable for any P ∈ R

l×q, ‖P‖ < 
‖E(In–A)–D‖ (see also Re-

mark .). Furthermore, there exists P ∈ R
l×q
+ , ‖P‖ = 

‖E(In–A)–D‖ such that () is not
asymptotically stable for P := P, see, e.g., [, ]. It remains to show that the zero so-
lution of () is globally asymptotically stable for any nonlinearity N satisfying () with
γ := 

‖E(In–A)–D‖ . LetN satisfy () with γ := 
‖E(In–A)–D‖ . Since P ∈R

l×q, ‖P‖ < 
‖E(In–A)–D‖ ,

the zero solution of () is globally asymptotically stable, by Corollary ..
Conversely, assume that the zero solution of () is globally asymptotically stable for

any nonlinearity N satisfying () for some γ > . Then the unperturbed system () is
asymptotically stable. As mentioned above, () is asymptotically stable for any P ∈R

l×q,
‖P‖ < 

‖E(In–A)–D‖ . So we assume that γ ≥ 
‖E(In–A)–D‖ . Note that () is not asymptotically

stable for some P ∈ R
l×q
+ , ‖P‖ = 

‖E(In–A)–D‖ . This means that the zero solution of ()

http://www.advancesindifferenceequations.com/content/2012/1/120


Ngoc and Hieu Advances in Difference Equations 2012, 2012:120 Page 10 of 10
http://www.advancesindifferenceequations.com/content/2012/1/120

is not globally asymptotically stable for N defined by N (k, y) := Py, k ∈ Z+, y ∈ R
q. This

completes the proof. �

Remark . In general, the question ‘Under what conditions of A, D, E and N does the
ATC-DTS hold?’ is still open.
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