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Abstract
This paper presents the q-analogue of Toda lattice system of difference equations by
discussing the q-discretization in three aspects: differential-q-difference,
q-difference-q-difference and q-differential-q-difference Toda equation. The paper
develops three-q-soliton solutions, which are expressed in the form of a polynomial in
power functions, for the differential-q-difference and q-difference-q-difference Toda
equations by Hirota direct method. Furthermore, it introduces q-Hirota D-operator
and presents the q-differential-q-difference version of Toda equation. Finally, the
paper presents its solitary wave like a solution in terms of q-exponential function and
explains the nonexistence of further solutions in terms of q-exponentials by the virtue
of Hirota perturbation.
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1 Introduction
In the literature, to find exact solutions of nonlinear partial differential equations, a vast
variety of methods have been proposed such as the inverse scattering transform [], Bäck-
lund transformation [],Hirota directmethod and several dressingmethods. Among these
methods, Hirota direct method, introduced in the pioneering article [], is one of themost
effective and fastest methods for constructing not only multi-soliton solutions but also
some special solutions of integrable nonlinear evolution equations. The method has been
shown to be applicable to a wide class of equations including nonlinear differential, non-
linear differential-difference and nonlinear difference equations [–]. The first step of the
method is to utilize a dependent variable transformation to convert the nonlinear partial
differential or difference equation into a quadratic form, the so-called bilinear form, in the
new dependent variables. The fundamental idea behind the method is to write the bilin-
ear form as a polynomial of Hirota-D operator (derivative). This compact form is called a
Hirota bilinear form. It should be noted that it is not possible to give an algorithm to write
every nonlinear partial differential or difference equation in aHirota bilinear form. Besides
some equations may not have Hirota bilinear forms but trilinear or multilinear forms [].
It is conjectured that all completely integrable nonlinear partial differential or difference
equations can be written in a Hirota bilinear form. On the other hand, for an equation ad-
mitting a Hirota bilinear form does not guarantee the existence of N-soliton solutions of
any order. The equations admitting a Hirota bilinear form and having -soliton solutions
are said to beHirota integrable. Such equations togetherwith Painlevé approach arewidely
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believed to be integrable. Therefore, Hirota direct method builds a bridge between hav-
ing multi-soliton solutions and the theory of integrability, in the sense that the so-called
Hirota condition (three-soliton solution condition) is a milestone for investigating the in-
tegrability of an equation [–]. The rest of themethod is to use a perturbation expansion
(also known as Hirota perturbation) in a Hirota bilinear form, collect the coefficients of
perturbation parameter and analyze the conditions for multi-soliton solutions.
The new dependent variables (the so-called τ -functions) are essential in the literature.

They are expressed as polynomials in exponential functions in Hirota perturbation while
in Sato theory they are written in terms of Wronski or Casorati determinants providing
solutions to equations in bilinear forms [, ].
In [], a general framework of integrable discrete systems on R is introduced by the

virtue of discrete one-parameter group of diffeomorphisms. These diffeomorphisms are
expressed by infinitesimal generators χ (x)∂x, where in particular, χ =  corresponds to
Toda lattice while χ = x subtends to q-deformed Toda lattice. It is concluded that all
discrete systems determined by different vector fields χ (x)∂x are not globally equivalent,
moreover q-difference systems on R

– are not isomorphic to lattice systems on R.
Inspired by this fact, the purpose of this paper is to present the q-analogue of Toda lat-

tice system of difference equations and discuss the applicability of Hirota direct method
for constructing multi-soliton solutions. There are several ways to q-discretize a given
continuous equation. By q-discretization we mean q-difference equations determined by
q-difference operator and additionally q-differential equations constructed by q-derivative
operator. Therefore, we present q-discretization in three aspects: differential-q-difference,
q-difference-q-difference and q-differential-q-difference Toda equation. We show that
Hirota direct method allows to produce three-soliton solutions for the differential-q-
difference and q-difference-q-difference Toda equations.We emphasize that the solutions
not only possess soliton behaviors but have additional power counterparts for q-discrete
variables. We call such soliton solutions as q-soliton solutions. Therefore, unlike the Toda
equation [] or discrete-time Toda equation [], the differential-q-difference and q-
difference-q-difference Toda equations have soliton solutions in the form of a polynomial
in power functions. On the other hand, we conclude that Hirota direct method fails to de-
rive multi-soliton solutions of the q-differential-q difference Toda equation. Furthermore,
it is not possible to obtain multi-soliton solutions for any q-differential-q-difference or
q-differential-difference type of equations by means of Hirota perturbation.
In Section , we introduce the q-analogue of the exponential identity in order to over-

come the obstacles in front of deriving aHirota bilinear form for q-discrete equations. This
exponential identity arises in terms of forward and backward shift not on the level of addi-
tive sense but multiplicative sense. In Section , we propose the differential-q-difference
Toda equation. Since Hirota condition (three-soliton solution condition) is an indicator
for integrability, we present three-q-soliton solutions of the differential-q-difference Toda
equation. In Section , reversing the procedure, we introduce a proper Hirota bilinear
form from which we construct q-difference-q-difference Toda equation and its three-q-
soliton solutions. In the last section, we introduce and develop the notion of q-Hirota
D-operator. We present the q-differential-q-difference version of Toda equation and con-
struct its Hirota bilinear form in terms of q-Hirota D-operator. We present its solitary
wave like a solution in terms of q-exponential function and explain the nonexistence of
further q-exponential type solutions by Hirota perturbation.

http://www.advancesindifferenceequations.com/content/2012/1/121


Silindir Advances in Difference Equations 2012, 2012:121 Page 3 of 22
http://www.advancesindifferenceequations.com/content/2012/1/121

2 Basic notions
In order to obtain the solutions of nonlinear partial differential or difference equations

F[u] = F(u,ux,ut , . . .) = , ()

Hirota direct method allows to write such equations in a form where the new dependent
variables appear bilinearly by using suitable bilinearizing transformations

u = T
[
f (x, t, . . .)

]
. ()

This form is called bilinear form of F[u].We should remark that some integrable equations
can only be transformed to a single bilinear form while some of them can be written as a
combination of bilinear forms. On the other hand, for some equations it is not possible to
find a proper transformation. The next step towards Hirota direct method, is introducing
the so-called Hirota D-operator which is a binary differential operator exhibiting a new
calculus.

Definition . Let S be a space of differentiable functions f : Cn → C. The Hirota D-
operator D : S × S → S is defined as

[
Dm

x Dm
t · · · ]{f · g} = [

(∂x – ∂x′ )m (∂t – ∂t′ )m · · · ]f (x, t, . . .)g(x′, t′, . . .
)|x′=x,t′=t,..., ()

where x, t, . . . are independent variables andmi ∈ Z+, ∀i≥ .

The core of the method is to construct the so-called Hirota bilinear form, which is a
compact form of the bilinear form of F[u], expressed in terms of a polynomial of Hirota-D
operator. The last step towards the method is the application of the Hirota perturbation.
We plug the finite perturbation expansion of the dependent variables f (x, t, . . .) into a Hi-
rota bilinear form.We examine the coefficients of the perturbation parameter and analyze
the conditions for multi-soliton solutions.We finish this section by summing up the prop-
erties of the Hirota D-operator () [].

Proposition . Let P(D) be an arbitrary polynomial in D acting on two differentiable
functions f (x, t, . . .) and g(x, t, . . .), then the following equations hold:

(i) P(D){f · g} = P(–D){gf }, ()

(ii) P(D){f · } = P(∂)f ;P(D){ · f } = P(–∂)f , ()

where ∂ is the usual differential operator.

3 q-exponential identity
It is possible to introduce Hirota D-operator by the virtue of the exponential identity

exp(hDx)f (x)g(x) = f (x + h)g(x – h), ()

where h is a parameter and f , g are continuously differentiable functions to all orders in x.
In this section, our aim is to introduce the q-analogue of the exponential identity (). For
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this purpose, we first explain its construction by using the notions presented in []. Let
σ :R →R and ρ :R →R be the forward and backward jump operators, respectively. Here,
inm ∈ Z

+ forward steps, x ∈R is mapped to σm(x), where σm is them-times composition
of σ , and in m backward steps x is mapped to ρm(x). If there exist inverse maps σ – and
ρ–, such that σ (x) = ρ–(x) and ρ(x) = σ –(x) for all x ∈ R, then bijective σ defines a dis-
crete one-parameter group of bijections on R: Z � m → {σm : R → R}, where σ ≡ idR.
Since infinite-dimensional systems of smooth dynamical fields are under consideration,
it is better to introduce one-parameter group of diffeomorphisms instead of bijections.
Consider the continuous one-parameter group of diffeomorphisms R � t 	→ σt . By Taylor
expansion of σt around t = ,

σt(x) = x + t · dσt(x)
dt

∣∣∣∣
t=

+O
(
t

)
,

it is clear that one-parameter group of diffeomorphism is generated by a vector field (the
so-called infinitesimal generator), denoted byX (x)∂x, i.e., σt(x) = x+ t ·X (x)+O(t), where
X (x) is smooth on R except at most finite number of points. The computation of one-
parameter group generated by a vector field is often referred as exponentiation of the
vector field, therefore we have

σh(x) = ehχ (x)∂xx ⇔ ehχ (x)∂xu(x) = u
(
ehχ (x)∂xx

)
= u

(
σh(x)

)
, ()

where u(x) is a smooth function and h >  is some deformation parameter. If we consider
the vector fields of the form χ (x)∂x = x–n∂x on R, for n = , we have

σh(x) = ehx∂xx = ehx = qx, q ≡ eh ⇔ ehx∂xu(x) = u(qx), ()

which corresponds to the q-difference type of discussions. For n = , we deal with the case
of lattice type

σh(x) = eh∂xx = x + h ⇔ eh∂xu(x) = u(x + h).

All discrete systems defined by different vector fields χ (x)∂x are not globally equivalent.
However, it is possible to find a local transformation relating these vector fields. If we
consider χ (x) = x–n where n (n �= ) is odd, and χ ′(x′) = , there exists a bijection x′ = 

nx
n

on R – {}. Therefore all discrete systems generated by χ (x)∂x = x–n∂x (n is odd), can
be reduced to the original lattice Toda-type systems with x �= . However, if we consider
χ (x) = x (q-discrete case) and χ ′(x′) = , we have x = ex′ which is not a bijection provided
that x /∈R

+(see [] for more precise details).
As a result, q-difference systems on R

–, determined by q-shift operators Eq := ehx∂x are
not isomorphic to lattice systems onR.Motivated by this in-equivalence, in order to exam-
ine how soliton solutions of q-difference systems differ from soliton solutions of discrete
systems, we introduce the following q-exponential identity. Such q-exponential identity
shed light to construct Hirota bilinear forms of q-discrete equations under consideration.

http://www.advancesindifferenceequations.com/content/2012/1/121
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Theorem. For arbitrary continuously differentiable functions f (x), g(x), the q-exponen-
tial identity

ehxDx f (x)g(x) = f (qx)g
(
x
q

)
= Eqf (x)E–

q g(x), x ∈R, ()

holds where we have the usual relation between two quantum parameters h and q as q = eh.
Here Eq and E–

q are q-forward and backward jump operators, respectively acting as

Eqf (x) = f (qx), E–
q f (x) = f

(
x
q

)
. ()

Proof First, we note that for the left hand side of the identity (), we are not able to expand
the exponential operator since Dx is not an associative bilinear operation. Besides, for the
right hand side, the Taylor series expansions are not valid either because of the fact that we
seek for forward and backward shifting not on the level of additive sense butmultiplicative
sense. Therefore, the only way to prove the identity is tomake use of the change of variable
xDx =Dx′ which implies x = ex′ by integration with respect to x. Here integration constant
is ignored since it would be embeddedwhile the operatorDx acts in aHirota bilinear form.
Then

ehxDx f (x)g(x) = ehDx′ f
(
ex

′)
g
(
ex

′). ()

Using () for the right hand side of (), we end up with

ehxDx f (x)g(x) = f
(
ex

′+h)g(ex′–h) = f
(
ex

′
eh

)
g
(
ex

′
e–h

)
= f (qx)g

(
x
q

)
= Eqf (x)E–

q g(x). �

We finish this section by defining the following difference operator.

Definition . We define the central q-difference operator �
x operating on an arbitrary

function f (x), x ∈ R, as

�
xf (x) = f (qx) + f

(
x
q

)
– f (x), q �= . ()

Note that throughout the forthcoming framework, we may suppose q > . One can
rewrite (), by using the q-forward and backward jump operators () as

�
xf (x) =

(
Eq + E–

q – 
)
f (x).

4 The differential-q-difference Toda equation
Toda equation [] which describes the motions of anharmonic one-dimensional lattice is
given by

m
dyn
dt

= a
[
exp(–brn) – exp(–brn+)

]
,

rn = yn – yn–, ()

http://www.advancesindifferenceequations.com/content/2012/1/121
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where a, b andm are real constants. Introducing the force of the nth spring in the lattice

Vn = a
[
exp(–brn) – 

]
, ()

as a rapidly decaying function, the equation () turns out to be

d

dt
log( +Vn) = Vn+ +Vn– – Vn. ()

In this section, our aim is to establish the three-soliton solutions of the differential-q-
difference Toda equation proposed as follows:

d

dt
log

(
 +V (x, t)

)
= �

xV (x, t) = V (qx, t) +V
(
x
q
, t

)
– V (x, t). ()

Let us introduce the dependent variable transformation as

V (x, t) =
d

dt
log f (x, t). ()

If we integrate () twice with respect to time variable t, make use of the transformation
() in () and impose the condition that V is a rapidly decaying function, we evolve the
bilinear form for f (x, t)

V (x, t) =
ftt f – f t

f 
=
f (qx, t)f ( xq , t)

f 
– . ()

One can derive a Hirota bilinear form, namely the bilinear form in terms of Hirota D-
operator, as

[
Dt

 –
(
exp(hxDx) + exp(–hxDx) – 

)]{
f (x, t) · f (x, t)} = , ()

what follows from () by multiplying with f (x, t), where we utilize the q-exponential
identity (). In order to obtain three-soliton solutions, we make use of finite perturbation
expansion around a formal perturbation parameter ε, as

f (x, t) =  + εf ()(x, t) + εf ()(x, t) + · · · . ()

Substituting in ()

P(D)
{
f (x, t) · f (x, t)} = , ()

we have

P(D)
{
f (x, t) · f (x, t)}

= P(D)
[{ · } + ε

{
 · f () + f () · }

+ ε
{
 · f () + f () ·  + f () · f ()} + ε

{
 · f () + f () ·  + f () · f () + f ()f ()

}
+ ε

{
 · f () + f () ·  + f () · f () + f ()f () + f () · f ()} + · · · ]. ()

http://www.advancesindifferenceequations.com/content/2012/1/121
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Here P(D) is given by (). We collect the coefficients of εi, ∀i ≥ . The coefficient of the
first term ε vanishes trivially, while from the coefficient of ε, we have

P(D)
{
 · f () + f () · } = P(∂)f () = 

[
∂
t –

(
exp(hx∂x) + exp(–hx∂x) – 

)]
f () = , ()

which is a direct result of the property () of D operator, since P(D) is of even order. We
need to seek for a solution for the equation ().

Remark . The general tendency for soliton solutions is being of exponential type; how-
ever, such an exponential function f () does not satisfy the equation (). Because of the
nature of the q-numbers, the solution of the equation () should have a power function
for the q-discrete space variable counterpart. Therefore, one may choose the starting so-
lution of () as

f ()(x, t) = xα exp(βt + η), ()

where α,η are arbitrary constants. Indeed, such an inevitable choice is a direct conse-
quence of change of variable ∂y = x∂x.

Hereafter, throughout the rest of the discussions, we give the following definition.

Definition . A solution possessing usual soliton behaviors and having power counter-
parts for q-discrete variables is called a q-soliton solution.

If we substitute () in (), we derive the relation among the parameters

β = qα + q–α – , ()

which is said to be dispersion relation. The coefficient of ε, resulting from (), yields as

P(D)
{
 · f () + f () ·  + f () · f ()} = P(∂)f () + P(D)

{
f () · f ()},

which implies explicitly

[
D

t –
(
exp(hxDx) + exp(–hxDx) – 

)]{
f ()(t) · f ()(x, t)} ()

= –
[
∂
t –

(
exp(hx∂x) + exp(–hx∂x) – 

)]
f ()(x, t). ()

We note that since f () given in () satisfies the form (), we are allowed to assume all
higher order terms to be taken zero, i.e., f (j) = , j ≥ . Thus, hereafter as a generalization of
this fact, one can assume in deriving i-q-soliton solution, f (j) =  for all j ≥ i + . Without
loss of generality, we may set ε = ; and therefore, we construct one-q-soliton solution
using () by the virtue of () and () as

V (x, t) =
βxα exp(βt + η)

( + xα exp(βt + η))
. ()

http://www.advancesindifferenceequations.com/content/2012/1/121
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For the two-q-soliton solutions, we choose the starting solution of () as

f () = xα exp(βt + η) + xα exp(βt + η), ()

where αi, ηi are arbitrary constants ∀i = , . Similarly, collecting the coefficients of εi,
∀i ≥ , the coefficient of ε vanishes trivially and from the coefficient of ε, we obtain the
related dispersion relation

β
i = qαi + q–αi – , ∀i = , . ()

Here we remark that the use of vector notation

p ± p = (β ± β,α ± α,η ± η), ()

leads to rewrite dispersion relation () as P(pi) = , for all i = , . Subsequently, the co-
efficient of ε implies

–P(∂)f () =
[
(β – β) –

(
qα–α + qα–α – 

)]
xα+α exp

(
(β + β)t + (η + η)

)
. ()

Thus, f () is of the form

f () = A(, )xα+α exp
(
(β + β)t + (η + η)

)
. ()

Plugging such f () into (), one can obtain the interaction term which determines the
change of position resulting from the interaction of two-q-solitons as

A(, ) = –
(β – β) – (qα–α + qα–α – )
(β + β) – (qα+α + q–α–α – )

= –
P(p – p)
P(p + p)

. ()

Since f () = , by the use of the dispersion relation () the coefficient of ε vanishes triv-
ially, so do the rest of εj, ∀j > . Thus, the solution describing a head collision of two-q-
solitons (see Figure ) is expressed as

f (x, t) =  + xα exp(βt + η) + xα exp(βt + η)

+A(, )xα+α exp
(
(β + β)t + (η + η)

)
. ()

One can derive the three-q-soliton solution, by choosing the starting solution of () as

f () =
∑
i=

xαi exp(βit + ηi), ()

where αi, ηi are arbitrary constants ∀i = , , . Similar to the previous arguments, the co-
efficient of ε vanishes trivially. From the coefficient of ε, we have the corresponding
dispersion relation

β
i = qαi + q–αi – , ∀i = , , , ()

http://www.advancesindifferenceequations.com/content/2012/1/121
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Figure 1 Two-q-soliton solution of differential-q-difference Toda equation.We set q = 1.25, α1 = –5, α2 = 6. The dispersion relation (30) implies β1 = –1.1745 and β2 = –1.4411.
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while from the coefficient of ε, we obtain

–P(∂)f () =
()∑
i<j

[
(βi – βj) –

(
qαi–αj + qαj–αi – 

)]
xαi+αj exp

(
(βi + βj)t + (ηi + ηj)

)
, ()

where the summation is over all possible pairs of three elements such that i < j. The equa-
tion () implies the explicit form of f ()

f () =
()∑
i<j

A(i, j)xαi+αj exp
(
(βi + βj)t + (ηi + ηj)

)
, ()

where the interaction terms among three-q-soliton solutions are

A(i, j) = –
P(pi – pj)
P(pi + pj)

= –
(βi – βj) – (qαi–αj + qαj–αi – )
(βi + βj) – (qαi+αj + q–αi–αj – )

, i < j, i, j = , , . ()

Once we have f () and f (), using the coefficient of ε

P(D)
{
 · f () + f () ·  + f ()f () + f ()f ()

}
= ,

which is equivalent to

–P(∂)f () =
(
A(, )γ +A(, )γ +A(, )γ

)
× xα+α+α exp

(
(β + β + β)t + (η + η + η)

)
, ()

where

γ = (β – β – β) –
(
qα–α–α + q–(α–α–α) – 

)
= P(p – p – p),

γ = (β – β – β) –
(
qα–α–α + q–(α–α–α) – 

)
= P(p – p – p),

γ = (β – β – β) –
(
qα–α–α + q–(α–α–α) – 

)
= P(p – p – p),

we can deduce that f () is of the form

f () = A(, , )xα+α+α exp
(
(β + β + β)t + (η + η + η)

)
. ()

Substituting such f () in (), A(, , ) yields as

A(, , )

= –
A(, )P(p – p – p) +A(, )P(p – p – p) +A(, )P(p – p – p)

P(p + p + p)
. ()

On the other hand, if we consider the coefficient of ε, knowing the fact that f () = , the
perturbation equation () implies that

P(D)
{
f () · f ()} + P(D)

{
f () · f ()} = .

http://www.advancesindifferenceequations.com/content/2012/1/121
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To be more precise, we have

xα+α+α exp
(
(β + β + β)t + (η + η + η)

)
× [

A(, , )P(p + p) +A(, )A(, )P(p – p)
]

+ xα+α+α exp
(
(β + β + β)t + (η + η + η)

)
× [

A(, , )P(p + p) +A(, )A(, )P(p – p)
]

+ xα+α+α exp
(
(β + β + β)t + (η + η + η)

)
× [

A(, , )P(p + p) +A(, )A(, )P(p – p)
]
= .

The above expression is satisfied provided that

A(, , ) = A(, )A(, )A(, ). ()

Since both expressions () and () for A(, , ) should be equivalent, this equivalence
gives rise to the fact that P(D) given by () is not arbitrary but should satisfy Hirota con-
dition (three-soliton solution condition) []

P(p + p + p)P(p – p)P(p – p)P(p – p)

+ P(p – p – p)P(p + p)P(p + p)P(p – p)

+ P(p – p – p)P(p + p)P(p + p)P(p – p)

+ P(p – p – p)P(p + p)P(p + p)P(p – p) = ,

which can be written as

∑
σi=±

P

( ∑
i=

σipi

) ()∏
i<j

P(σipi – σjpj) = , i, j = , , . ()

Here themultiplication is over all possible pairs of three elements such that i < j. Therefore,
since the parameters are restricted by the dispersion relations, the existence of a three-
soliton solution is a constraint on P given by (). Finally, the coefficients of εj for all j ≥ 
vanish and the solution describing a head collision of three-q-solitons (see Figure ) is
expressed as

f (x, t) =  +
∑
i=

xαi exp(βit + ηi) +
()∑
i<j

A(i, j)xαi+αj exp
(
(βi + βj)t + (ηi + ηj)

)

+A(, )A(, )A(, )xα+α+α exp
(
(β + β + β)t + (η + η + η)

)
. ()

Remark . If x ∈ qZ, namely x = qn, n ∈ Z, the differential-q-difference Toda equation
() can be rewritten as

d

dt
log

(
 +V (x, t)

)
= V

(
qn+, t

)
+V

(
qn–, t

)
– V (x, t), ()

http://www.advancesindifferenceequations.com/content/2012/1/121
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Figure 2 Three-q-soliton solution of differential-q-difference Toda equation.We choose q = 1.25, α1 = –5, α2 = 6. Three soliton solution condition (45) implies the parameter α3 = –7.9141. Using the
dispersion relation (37), we have β1 = –1.1745, β2 = –1.4411 and β3 = 2.0045.
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whose one-q-soliton solution turns out to be

V (x, t) =
βqnα exp(βt + η)

( + qnα exp(βt + η))
. ()

Subsequently, one can rewrite solutions describing two-q-solitons () and three-q-
solitons ().

5 The q-difference-q-difference Toda equation
In this section, we first answer the question of how to q-discretize the continuous time,
in the light of q-difference operator (). In order to propose the q-difference-q-difference
Toda equation, we reverse the procedure and introduce a proper Hirota bilinear form

[
h–

(
exp

(
hτDτ

)
+ exp

(
–hτDτ

)
– 

)
–

(
exp

(
h′yDy

)
+ exp

(
–h′yDy

)
– 

)]
× {

f (τ , y) · f (τ , y)} = , ()

which is a generalization of (). Indeed, setting τ = exp(ht)

h–
(
exp

(
hτDτ

)
+ exp

(
–hτDτ

)
– 

)
= h–

(
exp(hDt) + exp(–hDt) – 

)
, ()

one can verify that the expression () tends to D
t as h → . Thus Hirota bilinear form

() reduces to (), from which we establish the q-difference-q-difference analogue of
Toda equation. For convenience, we interchange h by h in () and rewrite the Hirota
bilinear form denoted by P(D) as

P(D)
{
f (τ , y) · f (τ , y)}

=
[
h–

(
exp(hτDτ ) + exp(–hτDτ ) – 

)
–

(
exp

(
h′yDy

)
+ exp

(
–h′yDy

)
– 

)]
× {

f (τ , y) · f (τ , y)} = . ()

By the virtue of the q-exponential identity (), we may set

exp(hτDτ )f (τ , y)f (τ , y) = f (qτ , y)f
(

τ

q
, y

)
, ()

exp
(
h′yDy

)
f (τ , y)f (τ , y) = f

(
τ ,q′y

)
f
(

τ ,
y
q′

)
, ()

equipped with eh = q and eh′ = q′ respectively. Here we remark that nonuniform step sizes
q and q′ for the variables τ and y are different. Thus, Hirota bilinear form () turns out
to be

h–
[
f (qτ , y)f

(
τ

q
, y

)
– f (τ , y)

]
–

(
f

(
τ ,q′y

)
f
(

τ ,
y
q′

)
– f (τ , y)

)
= . ()

We divide () by f (τ , y) and introduce the dependent variable transformation as

V (τ , y) := h–
[ f (qτ , y)f ( τ

q , y)
f (τ , y)

– 
]
=
f (τ ,q′y)f (τ , y

q′ )
f (τ , y)

– . ()

http://www.advancesindifferenceequations.com/content/2012/1/121
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In order to construct the q-difference-q-difference analogue of Toda equation, we consider

log
(
 +V (τ , y)

)
= log f

(
τ ,q′y

)
+ log f

(
τ ,

y
q′

)
–  log f (τ , y),

from which one can encounter

�
τ log

(
 +V (τ , y)

)
= �

y
(
�

τ log f (τ , y)
)
. ()

On the other hand, if we consider

log
(
 + hV (τ , y)

)
= log f (qτ , y) + log f

(
τ

q
, y

)
–  log f (τ , y) = �

τ log f (τ , y). ()

The equations () and () give rise to the desired q-difference-q-difference Toda equa-
tion

�
τ log

(
 +V (τ , y)

)
= �

y log
(
 + hV (τ , y)

)
. ()

For the rest of the discussion, to construct the three-q-soliton solutions of the equation
(), we utilize alike tools. Inserting the finite perturbation expansion () in Hirota bilin-
ear form () and collecting the coefficients of εi, ∀i ≥ , the first coefficient is identically
zero while the power of ε implies that

P(D)
{
 · f () + f () · }

= P(∂)f ()

= 
[
h–

(
exp(hτ∂τ ) + exp(–hτ∂τ ) – 

)
–

(
exp

(
h′y∂y

)
+ exp

(
–h′y∂y

)
– 

)]
f () = . ()

Both space and time variables being q-discrete, by the Remark ., it is possible to choose
the starting solution of () as of the power form in both variables

f ()(τ , y) = ηταyβ , ()

where η, α are nonzero arbitrary constants and the related dispersion relation among the
parameters is as follows:

h–
(
qα + q–α – 

)
=

(
q′)β +

(
q′)–β – . ()

Since all higher order perturbation parameters εi, i ≥  vanish by the assumption for i-
soliton solution, f (j) =  for all j ≥ i + , we derive one-q-soliton solution using (), ()
and () as

V (τ , y) =
ηταyβ [(q′)β + (q′)–β – ]

( + ηταyβ )
. ()

If we choose the starting solution of () as

f ()(τ , y) = ητ
αyβ + ητ

αyβ , ()

http://www.advancesindifferenceequations.com/content/2012/1/121
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where ηi, αi are arbitrary nonzero constants for all i = , , the coefficient of ε leads to the
dispersion relation

h–
(
qαi + q–αi – 

)
=

(
q′)βi +

(
q′)–βi – , ∀i = , , ()

and the solution describing collisions of two-q-solitons is determined as

f (τ , y) =  +
∑
i=

ηiτ
αi yβi +A(, )ηητα+αyβ+β , ()

what follows from the coefficient of ε allowing the form of f () as

f ()(τ , y) = A(, )ηητα+αyβ+β , ()

where the phase shift A(, ) among two-q-soliton solutions is expressed

A(, ) = –
h–(qα–α + qα–α – ) – ((q′)β–β + (q′)β–β – )
h–(qα+α + q–α–α – ) – ((q′)β+β + (q′)–β–β – )

= –
P(p – p)
P(p + p)

, ()

by means of vector notation p ± p = (α ± α,β ± β,η ± η). Here the coefficient of
εj vanishes for all j > , by the assumption f () =  and the dispersion relation () (see
Figure ).
For the three-q-soliton solution, choosing the starting solution of () as

f ()(τ , y) =
∑
i=

ηiτ
αi yβi , ()

where ηi, αi are arbitrary nonzero constants for all i = , , , one can derive a similar dis-
persion relation from the coefficient of ε

h–
(
qαi + q–αi – 

)
=

(
q′)βi +

(
q′)–βi – , ∀i = , , , ()

and the form of f ()

f ()(τ , y) =
()∑
i<j

A(i, j)ηiηjταi+αj yβi+βj , ()

which results from the coefficient of ε. Here the interaction terms among the three-q-
soliton solutions are

A(i, j) = –
h–(qαi–αj + q–(αi–αj) – ) – ((q′)βi–βj + (q′)–(βi–βj) – )
h–(qαi+αj + q–(αi+αj) – ) – ((q′)βi+βj + (q′)–(βi+βj) – )

= –
P(pi – pj)
P(pi + pj)

, ()

for i < j and i, j = , , . The coefficient of ε leads to f () of the form

f ()(τ , y) = A(, , )ηηητα+α+αyβ+β+β , ()

http://www.advancesindifferenceequations.com/content/2012/1/121
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Figure 3 Two-q-soliton solution of q-difference-q-difference Toda equation.We choose q = 1.1052 (with h = 0.1), q′ = 2, α1 = –5, α2 = 6. Using dispersion relation (64), we have β1 = –2.1114 and
β2 = –2.4669.
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where

A(, , )

= –
A(, )P(p – p – p) +A(, )P(p – p – p) +A(, )P(p – p – p)

P(p + p + p)
. ()

If the coefficient of ε is taken into account, since f () = , one can obtain another expres-
sion for A(, , )

A(, , ) = A(, )A(, )A(, ), ()

which should be equivalent to the form expressed in () provided that the inevitable
Hirota condition () is satisfied. Finally, the solution describing the three-q-solitons (see
Figure ) is expressed in the form of a polynomial in power functions

f (x, t) =  +
∑
i=

ηiτ
αi yβi +

()∑
i<j

A(i, j)ηiηjταi+αj yβi+βj

+A(, )A(, )A(, )ηηητα+α+αyβ+β+β . ()

Remark . The q-difference-q-difference Toda equation () can be proposed in the
form of

( +V (qτ , y))( +V ( τ
q , y))

( +V (τ , y))
=
( + hV (τ ,q′y))( + hV (τ , y

q′ ))
( + hV (τ , y))

. ()

Here we remark that this form also exhibits the same dependent variable transformation
(). If

τ = qn, y =
(
q′)m, n,m ∈ Z, ()

it is possible to rewrite ()

( +V (qn+, (q′)m))( +V (qn–, (q′)m))
( +V (qn, (q′)m))

=
( + hV (qn, (q′)m+))( + hV (qn, (q′)m–))

( + hV (qn, (q′)m))
, ()

whose solutions describing q-solitons (), (), () can be written by means of ().

Remark . We present the graphs for differential-q-difference Toda equation and q-
difference-q-difference Toda equation demonstrating two and three-q-soliton solutions
respectively. We observe the solitonic behavior of the waves. Furthermore, being ex-
pressed as polynomials in power functions, we observe that the wave lengths of q-solitons
increase as |x| increases.
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Figure 4 Three-q-soliton solution of q-difference-q-difference Toda equation.We choose q = 1.1052 (with h = 0.1), q′ = 2, α1 = –5, α2 = 6. Using dispersion relation (69), we find β1 = –2.1114,
β2 = –2.4669. Three soliton condition (45) provides α3 = –7.9141 and (69) implies β3 = 3.0839.
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6 q-Hirota D-operator
In this section, we deal with a naturally arising question of q-differential version of Toda
equation. In [], the q-discrete version of two-dimensional Toda lattice equation, which
is in a bilinear form reducing to two-dimensional Toda lattice equation as q,q → , is
presented. The (τ functions) solutions are expressed in terms of Wronski determinant.
Here, we present another q-discretized version of Toda equation in one dimension, the
q-differential-q-difference Toda equation, and discuss the applicability of Hirota pertur-
bation to produce its multi-soliton solutions. For that purpose, we first introduce the q-
analogue of Hirota D-operator.

Definition . We define q-Hirota D-operator as

Dm
q,x{f · g} := (∂q,x – ∂q,x′ )mf (x)g

(
x′)|x′=x, ()

where f (x), g(x) are arbitrary q-differentiable functions andm ∈ Z+.

Here ∂q,x is the q-derivative [] acting as

∂q,xf (x) =
f (qx) – f (x)
(q – )x

.

We note that since ∂q,x → ∂x as q → , q-Hirota D-operator Dq,x → Dx in the limit q → .
We present the properties of q-Hirota D-operator.

Proposition . Let P(Dq) be a polynomial in Dq,x, then

(i) P(Dq){f · g} = P(–Dq){g · f }, ()

(ii) P(Dq){f · } = P(∂q,x)f ; P(Dq){ · f } = P(–∂q,x)f , ()

where f , g are q-differentiable functions.

Proof For simplicity, consider the monomial P(Dq) =Dm
q,x. By definition (),

P(–Dq){g · f } = (–Dq,x)mg(x)f (x) = (–)m
m∑
k=

(–)k
(
m
k

)
∂m–k
q,x g(x)∂k

q,xf (x)

= (–)mf (x)∂m
q,xg(x) + (–)m–m∂q,xf (x)∂m–

q,x g(x) + · · · + g(x)∂m
q,xf (x)

= P(Dq){f · g},

where
(m
k
)
is a classical binomial coefficient and ∂ i

q,x is the ith q-derivative. As a conse-
quence, setting g(x) = , the property () results. �

We now propose the following equation:

f (x, t)∂
q,tf (x, t) –

(
∂q,t f (x, t)

) – [
f (qx, t)f

(
x
q
, t

)
– f (x, t)

]
= , ()

http://www.advancesindifferenceequations.com/content/2012/1/121
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which admits the Hirota bilinear form

P(D)
{
f (x, t) · f (x, t)} = [

D
q,t –

(
exp(hxDx) + exp(–hxDx) – 

)]{
f (x, t) · f (x, t)} = . ()

Here we emphasize that Hirota bilinear form () reduces to the form () in the limit
q → . Thus, we may suppose () as a q-differential-q-difference version of Toda equa-
tion. If we utilize the perturbation expansion () in () equipped with P(D), stated in
(), and Proposition ., we encounter from the coefficient of ε

P(D)
{
 · f () + f () · } = P(∂)f () = 

[
∂
q,t –

(
exp(hx∂x) + exp(–hx∂x) – 

)]
f () = . ()

One can determine that

f ()(x, t) = ηxαeβt
q , ()

is a solution of the equation (), provided that

β = qα + q–α – .

Hence we face the same dispersion relation given in (). Here η, α are nonzero arbitrary
constants and etq is Jackson’s q-exponential function [],

etq =
∞∑
n=

tn

[n]!
,

where [n] =  + q + q + · · · + qn–, [n]! = [n] · [n – ] · · · [], for all n ≥  and []! = . From
the coefficient of ε, we have

P(D)
{
 · f () + f () ·  + f () · f ()} = P(∂)f () + P(D)

{
f () · f ()}, ()

which yields

[
D

q,t –
(
exp(hxDx) + exp(–hxDx) – 

)]{
f ()(x, t) · f ()(x, t)} ()

= –
[
∂
q,t –

(
exp(hx∂x) + exp(–hx∂x) – 

)]
f ()(x, t). ()

Clearly f (), given in (), satisfies the equation () and thus we may assume f () = ;
as a consequence, we may assume for all higher order terms f (j) = , j ≥ . Indeed, we can
choose a solution of () only of the form (), which is discussed in the following remark.

Remark . If we choose the starting solution of () as

f ()(x, t) = ηxαeβt
q + ηxαeβt

q , ()

from the coefficient of ε, we obtain a relation for parameters

β
i = qαi + q–αi – , i = , ,

http://www.advancesindifferenceequations.com/content/2012/1/121
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where ηi, αi are nonzero arbitrary constants. From the coefficient of ε, we have similarly
() which implies

P(∂)f () = –ηη
[
(β – β) –

(
qα–α + qα–α – 

)]
xα+αeβt

q eβt
q . ()

Note that there are two possible cases for f (). If it is of the form f () = A(, )xα+αeβt+βt
q ,

then we need the additive property of q-exponentials []

ezqe
w
q = ez+wq , ()

which holds only if z, w are q-commuting variables, i.e., wz = qzw. In this case, this condi-
tion turns out to be ββt = qββt, which implies immediately either β =  (α = ) or
β =  (α = ). In other words, one of the summands declines in ().
If f () is of the form A(, )xα+αeβt

q eβt
q , then because of the product rule ∂q(a(t)b(t)) =

a(t)∂qb(t)+b(qt)∂qa(t) for q-derivative, the interaction termA(, ) is not independent of t.

To be more precise, although the equation () can be put into Hirota bilinear form
(), in both cases Hirota perturbation fails to produce further solutions. Moreover, it
is straightforward to conclude that for any q-differential-q-difference or q-differential-
difference type of equation even if the equation has aHirota bilinear form, it is not possible
to derive multisoliton solutions by the use of Hirota Direct method.
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