RESEARCH Open Access

Functional equations in paranormed spaces

Choonkil Park¹ and Dong Yun Shin^{2*}

*Correspondence: dyshin@uos.ac.kr ²Department of Mathematics, University of Seoul, Seoul, 130-743, Korea

Full list of author information is available at the end of the article

Abstract

In this paper, we prove the Hyers-Ulam stability of various functional equations in paranormed spaces.

MSC: Primary 35A17; 39B52; 39B72

Keywords: Hyers-Ulam stability; paranormed space; functional equation

1 Introduction and preliminaries

The concept of statistical convergence for sequences of real numbers was introduced by Fast [1] and Steinhaus [2] independently, and since then several generalizations and applications of this notion have been investigated by various authors (see [3–7]). This notion was defined in normed spaces by Kolk [8].

We recall some basic facts concerning Fréchet spaces.

Definition 1.1 ([9]) Let *X* be a vector space. A paranorm $P: X \to [0, \infty)$ is a function on *X* such that

- (1) P(0) = 0;
- (2) P(-x) = P(x);
- (3) $P(x + y) \le P(x) + P(y)$ (triangle inequality);
- (4) If $\{t_n\}$ is a sequence of scalars with $t_n \to t$ and $\{x_n\} \subset X$ with $P(x_n x) \to 0$, then $P(t_n x_n tx) \to 0$ (continuity of multiplication).

The pair (X, P) is called a *paranormed space* if P is a *paranorm* on X.

The paranorm is called *total* if, in addition, we have

(5) P(x) = 0 implies x = 0.

A Fréchet space is a total and complete paranormed space.

The stability problem of functional equations originated from a question of Ulam [10] concerning the stability of group homomorphisms. Hyers [11] gave a first affirmative partial answer to the question of Ulam for Banach spaces. Hyers' Theorem was generalized by Aoki [12] for additive mappings and by Th. M. Rassias [13] for linear mappings by considering an unbounded Cauchy difference. A generalization of the Th. M. Rassias' theorem was obtained by Găvruta [14] by replacing the unbounded Cauchy difference by a general control function in the spirit of Th. M. Rassias' approach.

In 1990 during the 27th International Symposium on Functional Equations, Th. M. Rassias [15] asked the question whether such a theorem can also be proved for $p \ge 1$. In 1991 Gajda [16], following the same approach as in Th. M. Rassias [13], gave an affirmative solution to this question for p > 1. It was shown by Gajda [16], as well as by Th. M. Rassias

and Šemrl [17] that one cannot prove a Th. M. Rassias' type theorem when p = 1 (cf. the books of P. Czerwik [18], D. H. Hyers, G. Isac and Th. M. Rassias [19]).

In 1982 J. M. Rassias [20] followed the innovative approach of the Th. M. Rassias' theorem [13] in which he replaced the factor $||x||^p + ||y||^p$ by $||x||^p \cdot ||y||^q$ for $p, q \in \mathbb{R}$ with $p+q \neq 1$. Găvruta [14] provided a further generalization of Th. M. Rassias' theorem.

The functional equation

$$f(x + y) + f(x - y) = 2f(x) + 2f(y)$$

is called a *quadratic functional equation*. In particular, every solution of the quadratic functional equation is said to be a *quadratic mapping*. A Hyers-Ulam stability problem for the quadratic functional equation was proved by Skof [21] for mappings $f: X \to Y$, where X is a normed space and Y is a Banach space. Cholewa [22] noticed that the theorem of Skof is still true if the relevant domain X is replaced by an Abelian group. Czerwik [23] proved the Hyers-Ulam stability of the quadratic functional equation. The stability problems of several functional equations have been extensively investigated by a number of authors and there are many interesting results concerning this problem (see [24–33]).

In [34], Jun and Kim considered the following cubic functional equation

$$f(2x+y) + f(2x-y) = 2f(x+y) + 2f(x-y) + 12f(x). \tag{1.1}$$

It is easy to show that the function $f(x) = x^3$ satisfies the functional equation (1.1), which is called a *cubic functional equation* and every solution of the cubic functional equation is said to be a *cubic mapping*.

In [35], Lee et al. considered the following quartic functional equation

$$f(2x+y) + f(2x-y) = 4f(x+y) + 4f(x-y) + 24f(x) - 6f(y).$$
(1.2)

It is easy to show that the function $f(x) = x^4$ satisfies the functional equation (1.2), which is called a *quartic functional equation*, and every solution of the quartic functional equation is said to be a *quartic mapping*.

Throughout this paper, assume that (X, P) is a Fréchet space and that $(Y, \| \cdot \|)$ is a Banach space.

In this paper, we prove the Hyers-Ulam stability of the Cauchy additive functional equation, the quadratic functional equation, the cubic functional equation (1.1) and the quartic functional equation (1.2) in paranormed spaces.

2 Hyers-Ulam stability of the Cauchy additive functional equation

In this section, we prove the Hyers-Ulam stability of the Cauchy additive functional equation in paranormed spaces.

Note that $P(2x) \leq 2P(x)$ for all $x \in Y$.

Theorem 2.1 Let r, θ be positive real numbers with r > 1, and let $f : Y \to X$ be an odd mapping such that

$$P(f(x+y) - f(x) - f(y)) \le \theta(\|x\|^r + \|y\|^r)$$
(2.1)

for all $x, y \in Y$. Then there exists a unique Cauchy additive mapping $A: Y \to X$ such that

$$P(f(x) - A(x)) \le \frac{2\theta}{2^r - 2} ||x||^r$$
 (2.2)

for all $x \in Y$.

Proof Letting y = x in (2.1), we get

$$P(f(2x) - 2f(x)) \le 2\theta ||x||^r$$

for all $x \in Y$. So

$$P\left(f(x) - 2f\left(\frac{x}{2}\right)\right) \le \frac{2}{2^r}\theta \|x\|^r$$

for all $x \in Y$. Hence

$$P\left(2^{l} f\left(\frac{x}{2^{l}}\right) - 2^{m} f\left(\frac{x}{2^{m}}\right)\right) \leq \sum_{j=l}^{m-1} P\left(2^{j} f\left(\frac{x}{2^{j}}\right) - 2^{j+1} f\left(\frac{x}{2^{j+1}}\right)\right)$$

$$\leq \frac{2}{2^{r}} \sum_{i=l}^{m-1} \frac{2^{j}}{2^{i} j} \theta \|x\|^{r}$$
(2.3)

for all nonnegative integers m and l with m > l and all $x \in Y$. It follows from (2.3) that the sequence $\{2^n f(\frac{x}{2^n})\}$ is a Cauchy sequence for all $x \in Y$. Since X is complete, the sequence $\{2^n f(\frac{x}{2^n})\}$ converges. So one can define the mapping $A: Y \to X$ by

$$A(x) := \lim_{n \to \infty} 2^n f\left(\frac{x}{2^n}\right)$$

for all $x \in Y$. Moreover, letting l = 0 and passing the limit $m \to \infty$ in (2.3), we get (2.2). It follows from (2.1) that

$$P(A(x+y) - A(x) - A(y)) = \lim_{n \to \infty} P\left(2^n \left(f\left(\frac{x+y}{2^n}\right) - f\left(\frac{x}{2^n}\right) - f\left(\frac{y}{2^n}\right)\right)\right)$$

$$\leq \lim_{n \to \infty} 2^n P\left(f\left(\frac{x+y}{2^n}\right) - f\left(\frac{x}{2^n}\right) - f\left(\frac{y}{2^n}\right)\right)$$

$$\leq \lim_{n \to \infty} \frac{2^n \theta}{2^{nr}} (\|x\|^r + \|y\|^r) = 0$$

for all $x, y \in Y$. Hence A(x + y) = A(x) + A(y) for all $x, y \in Y$ and so the mapping $A : Y \to X$ is Cauchy additive.

Now, let $T: Y \to X$ be another Cauchy additive mapping satisfying (2.2). Then we have

$$P(A(x) - T(x)) = P\left(2^{n}\left(A\left(\frac{x}{2^{n}}\right) - T\left(\frac{x}{2^{n}}\right)\right)\right)$$

$$\leq 2^{n}P\left(A\left(\frac{x}{2^{n}}\right) - T\left(\frac{x}{2^{n}}\right)\right)$$

$$\leq 2^{n} \left(P\left(A\left(\frac{x}{2^{n}}\right) - f\left(\frac{x}{2^{n}}\right) \right) + P\left(T\left(\frac{x}{2^{n}}\right) - f\left(\frac{x}{2^{n}}\right) \right) \right)$$

$$\leq \frac{4 \cdot 2^{n}}{(2^{r} - 2)2^{nr}} \theta \|x\|^{r},$$

which tends to zero as $n \to \infty$ for all $x \in Y$. So we can conclude that A(x) = T(x) for all $x \in Y$. This proves the uniqueness of A. Thus the mapping $A : Y \to X$ is a unique Cauchy additive mapping satisfying (2.2).

Theorem 2.2 Let r be a positive real number with r < 1, and let $f : X \to Y$ be an odd mapping such that

$$||f(x+y) - f(x) - f(y)|| \le P(x)^r + P(y)^r$$
 (2.4)

for all $x, y \in X$. Then there exists a unique Cauchy additive mapping $A: X \to Y$ such that

$$||f(x) - A(x)|| \le \frac{2}{2 - 2^r} P(x)^r$$
 (2.5)

for all $x \in X$.

Proof Letting y = x in (2.4), we get

$$||2f(x) - f(2x)|| \le 2P(x)^r$$

and so

$$\left\| f(x) - \frac{1}{2}f(2x) \right\| \le P(x)^r$$

for all $x \in X$. Hence

$$\left\| \frac{1}{2^{l}} f(2^{l} x) - \frac{1}{2^{m}} f(2^{m} x) \right\| \leq \sum_{j=l}^{m-1} \left\| \frac{1}{2^{j}} f(2^{j} x) - \frac{1}{2^{j+1}} f(2^{j+1} x) \right\|$$

$$\leq \sum_{j=l}^{m-1} \frac{2^{rj}}{2^{j}} P(x)^{r}$$
(2.6)

for all nonnegative integers m and l with m > l and all $x \in X$. It follows from (2.6) that the sequence $\{\frac{1}{2^n}f(2^nx)\}$ is a Cauchy sequence for all $x \in X$. Since Y is complete, the sequence $\{\frac{1}{2^n}f(2^nx)\}$ converges. So one can define the mapping $A: X \to Y$ by

$$A(x) := \lim_{n \to \infty} \frac{1}{2^n} f(2^n x)$$

for all $x \in X$. Moreover, letting l = 0 and passing the limit $m \to \infty$ in (2.6), we get (2.5). It follows from (2.4) that

$$||A(x+y) - A(x) - A(y)|| = \lim_{n \to \infty} \frac{1}{2^n} ||f(2^n(x+y)) - f(2^n x) - f(2^n y)||$$

$$\leq \lim_{n \to \infty} \frac{2^{nr}}{2^n} (P(x)^r + P(y)^r) = 0$$

for all $x, y \in X$. Thus A(x + y) = A(x) + A(y) for all $x, y \in X$ and so the mapping $A : X \to Y$ is Cauchy additive.

Now, let $T: X \to Y$ be another Cauchy additive mapping satisfying (2.5). Then we have

$$||A(x) - T(x)|| = \frac{1}{2^n} ||A(2^n x) - T(2^n x)||$$

$$\leq \frac{1}{2^n} (||A(2^n x) - f(2^n x)|| + ||T(2^n x) - f(2^n x)||)$$

$$\leq \frac{4 \cdot 2^{nr}}{(2 - 2^r)2^n} P(x)^r,$$

which tends to zero as $n \to \infty$ for all $x \in X$. So we can conclude that A(x) = T(x) for all $x \in X$. This proves the uniqueness of A. Thus the mapping $A : X \to Y$ is a unique Cauchy additive mapping satisfying (2.5).

3 Hyers-Ulam stability of the quadratic functional equation

In this section, we prove the Hyers-Ulam stability of the quadratic functional equation in paranormed spaces.

Note that $P(2x) \leq 2P(x)$ for all $x \in Y$.

Theorem 3.1 Let r, θ be positive real numbers with r > 2, and let $f : Y \to X$ be a mapping satisfying f(0) = 0 and

$$P(f(x+y) + f(x-y) - 2f(x) - 2f(y)) \le \theta(\|x\|^r + \|y\|^r)$$
(3.1)

for all $x, y \in Y$. Then there exists a unique quadratic mapping $Q_2: Y \to X$ such that

$$P(f(x) - Q_2(x)) \le \frac{2\theta}{2^r - 4} ||x||^r \tag{3.2}$$

for all $x \in Y$.

Proof Letting y = x in (3.1), we get

$$P(f(2x) - 4f(x)) \le 2\theta ||x||^r$$

for all $x \in Y$. So

$$P\left(f(x) - 4f\left(\frac{x}{2}\right)\right) \le \frac{2}{2^r}\theta \|x\|^r$$

for all $x \in Y$. Hence

$$P\left(4^{l} f\left(\frac{x}{2^{l}}\right) - 4^{m} f\left(\frac{x}{2^{m}}\right)\right) \leq \sum_{j=l}^{m-1} P\left(4^{j} f\left(\frac{x}{2^{j}}\right) - 4^{j+1} f\left(\frac{x}{2^{j+1}}\right)\right)$$

$$\leq \frac{2}{2^{r}} \sum_{j=l}^{m-1} \frac{4^{j}}{2^{rj}} \theta \|x\|^{r}$$
(3.3)

for all nonnegative integers m and l with m > l and all $x \in Y$. It follows from (3.3) that the sequence $\{4^n f(\frac{x}{2^n})\}$ is a Cauchy sequence for all $x \in Y$. Since X is complete, the sequence $\{4^n f(\frac{x}{2^n})\}$ converges. So one can define the mapping $Q_2: Y \to X$ by

$$Q_2(x) := \lim_{n \to \infty} 4^n f\left(\frac{x}{2^n}\right)$$

for all $x \in Y$. Moreover, letting l = 0 and passing the limit $m \to \infty$ in (3.3), we get (3.2). It follows from (3.1) that

$$P(Q_{2}(x+y) + Q_{2}(x-y) - 2Q_{2}(x) - 2Q_{2}(y))$$

$$= \lim_{n \to \infty} P\left(4^{n} \left(f\left(\frac{x+y}{2^{n}}\right) + f\left(\frac{x-y}{2^{n}}\right) - 2f\left(\frac{x}{2^{n}}\right) - 2f\left(\frac{y}{2^{n}}\right)\right)\right)$$

$$\leq \lim_{n \to \infty} 4^{n} P\left(f\left(\frac{x+y}{2^{n}}\right) + f\left(\frac{x-y}{2^{n}}\right) - 2f\left(\frac{x}{2^{n}}\right) - 2f\left(\frac{y}{2^{n}}\right)\right)$$

$$\leq \lim_{n \to \infty} \frac{4^{n} \theta}{2^{n} r} (\|x\|^{r} + \|y\|^{r}) = 0$$

for all $x, y \in Y$. Hence $Q_2(x + y) + Q_2(x - y) = 2Q_2(x) + 2Q_2(y)$ for all $x, y \in Y$ and so the mapping $Q_2 : Y \to X$ is quadratic.

Now, let $T: Y \to X$ be another quadratic mapping satisfying (3.2). Then we have

$$\begin{split} P\big(Q_2(x) - T(x)\big) &= P\bigg(4^n \bigg(Q_2\bigg(\frac{x}{2^n}\bigg) - T\bigg(\frac{x}{2^n}\bigg)\bigg)\bigg) \\ &\leq 4^n P\bigg(Q_2\bigg(\frac{x}{2^n}\bigg) - T\bigg(\frac{x}{2^n}\bigg)\bigg) \\ &\leq 4^n \bigg(P\bigg(Q_2\bigg(\frac{x}{2^n}\bigg) - f\bigg(\frac{x}{2^n}\bigg)\bigg) + P\bigg(T\bigg(\frac{x}{2^n}\bigg) - f\bigg(\frac{x}{2^n}\bigg)\bigg)\bigg) \\ &\leq \frac{4 \cdot 4^n}{(2r - 4)2^{nr}} \theta \|x\|^r, \end{split}$$

which tends to zero as $n \to \infty$ for all $x \in Y$. So we can conclude that $Q_2(x) = T(x)$ for all $x \in Y$. This proves the uniqueness of Q_2 . Thus the mapping $Q_2 : Y \to X$ is a unique quadratic mapping satisfying (3.2).

Theorem 3.2 Let r be a positive real number with r < 2, and let $f : X \to Y$ be a mapping satisfying f(0) = 0 and

$$||f(x+y) + f(x-y) - 2f(x) - 2f(y)|| \le P(x)^r + P(y)^r$$
(3.4)

for all $x, y \in X$. Then there exists a unique quadratic mapping $Q_2: X \to Y$ such that

$$||f(x) - Q_2(x)|| \le \frac{2}{4 - 2^r} P(x)^r$$
 (3.5)

for all $x \in X$.

Proof Letting y = x in (3.4), we get

$$||4f(x) - f(2x)|| < 2P(x)^r$$

and so

$$\left\| f(x) - \frac{1}{4}f(2x) \right\| \le \frac{1}{2}P(x)^r$$

for all $x \in X$. Hence

$$\left\| \frac{1}{4^{l}} f(2^{l} x) - \frac{1}{4^{m}} f(2^{m} x) \right\| \leq \sum_{j=l}^{m-1} \left\| \frac{1}{4^{j}} f(2^{j} x) - \frac{1}{4^{j+1}} f(2^{j+1} x) \right\|$$

$$\leq \frac{1}{2} \sum_{i=l}^{m-1} \frac{2^{rj}}{4^{j}} P(x)^{r}$$
(3.6)

for all nonnegative integers m and l with m > l and all $x \in X$. It follows from (3.6) that the sequence $\{\frac{1}{4^n}f(2^nx)\}$ is a Cauchy sequence for all $x \in X$. Since Y is complete, the sequence $\{\frac{1}{4^n}f(2^nx)\}$ converges. So one can define the mapping $Q_2: X \to Y$ by

$$Q_2(x) := \lim_{n \to \infty} \frac{1}{4^n} f(2^n x)$$

for all $x \in X$. Moreover, letting l = 0 and passing the limit $m \to \infty$ in (3.6), we get (3.5). It follows from (3.4) that

$$\begin{aligned} & \| Q_2(x+y) + Q_2(x-y) - 2Q_2(x) - 2Q_2(y) \| \\ &= \lim_{n \to \infty} \frac{1}{4^n} \| f(2^n(x+y)) + f(2^n(x-y)) - 2f(2^n x) - 2f(2^n y) \| \\ &\leq \lim_{n \to \infty} \frac{2^{nr}}{4^n} (P(x)^r + P(y)^r) = 0 \end{aligned}$$

for all $x, y \in X$. Thus $Q_2(x + y) + Q_2(x - y) = 2Q_2(x) + 2Q_2(y)$ for all $x, y \in X$ and so the mapping $Q_2 : X \to Y$ is quadratic.

Now, let $T: X \to Y$ be another quadratic mapping satisfying (3.5). Then we have

$$\begin{aligned} \|Q_{2}(x) - T(x)\| &= \frac{1}{4^{n}} \|Q_{2}(2^{n}x) - T(2^{n}x)\| \\ &\leq \frac{1}{4^{n}} (\|Q_{2}(2^{n}x) - f(2^{n}x)\| + \|T(2^{n}x) - f(2^{n}x)\|) \\ &\leq \frac{4 \cdot 2^{nr}}{(4 - 2^{r})4^{n}} P(x)^{r}, \end{aligned}$$

which tends to zero as $n \to \infty$ for all $x \in X$. So we can conclude that $Q_2(x) = T(x)$ for all $x \in X$. This proves the uniqueness of Q_2 . Thus the mapping $Q_2 : X \to Y$ is a unique quadratic mapping satisfying (3.5).

4 Hyers-Ulam stability of the cubic functional equation

In this section, we prove the Hyers-Ulam stability of the cubic functional equation in paranormed spaces.

Note that $P(2x) \le 2P(x)$ for all $x \in Y$.

Theorem 4.1 Let r, θ be positive real numbers with r > 3, and let $f : Y \to X$ be a mapping such that

$$P\left(\frac{1}{2}f(2x+y) + \frac{1}{2}f(2x-y) - f(x+y) - f(x-y) - 6f(x)\right) \le \theta\left(\|x\|^r + \|y\|^r\right)$$
(4.1)

for all $x, y \in Y$. Then there exists a unique cubic mapping $C: Y \to X$ such that

$$P(f(x) - C(x)) \le \frac{\theta}{2^r - 8} ||x||^r$$
 (4.2)

for all $x \in Y$.

Proof Letting y = 0 in (4.1), we get

$$P(f(2x) - 8f(x)) \le \theta ||x||^r$$

for all $x \in Y$. So

$$P\left(f(x) - 8f\left(\frac{x}{2}\right)\right) \le \frac{1}{2^r}\theta \|x\|^r$$

for all $x \in Y$. Hence

$$P\left(8^{l} f\left(\frac{x}{2^{l}}\right) - 8^{m} f\left(\frac{x}{2^{m}}\right)\right) \leq \sum_{j=l}^{m-1} P\left(8^{j} f\left(\frac{x}{2^{j}}\right) - 8^{j+1} f\left(\frac{x}{2^{j+1}}\right)\right)$$

$$\leq \frac{1}{2^{r}} \sum_{j=l}^{m-1} \frac{8^{j}}{2^{rj}} \theta \|x\|^{r}$$
(4.3)

for all nonnegative integers m and l with m > l and all $x \in Y$. It follows from (4.3) that the sequence $\{8^n f(\frac{x}{2^n})\}$ is a Cauchy sequence for all $x \in Y$. Since X is complete, the sequence $\{8^n f(\frac{x}{2^n})\}$ converges. So one can define the mapping $C: Y \to X$ by

$$C(x) := \lim_{n \to \infty} 8^n f\left(\frac{x}{2^n}\right)$$

for all $x \in Y$. Moreover, letting l = 0 and passing the limit $m \to \infty$ in (4.3), we get (4.2). It follows from (4.1) that

$$P\left(\frac{1}{2}C(2x+y) + \frac{1}{2}C(2x-y) - C(x+y) - C(x-y) - 6C(x)\right)$$

$$= \lim_{n \to \infty} P\left(8^{n}\left(\frac{1}{2}f\left(\frac{2x+y}{2^{n}}\right) + \frac{1}{2}f\left(\frac{2x-y}{2^{n}}\right) - f\left(\frac{x+y}{2^{n}}\right) - f\left(\frac{x-y}{2^{n}}\right) - 6f\left(\frac{x}{2^{n}}\right)\right)\right)$$

$$\leq \lim_{n \to \infty} 8^{n} P\left(\frac{1}{2} f\left(\frac{2x+y}{2^{n}}\right) + \frac{1}{2} f\left(\frac{2x-y}{2^{n}}\right) - f\left(\frac{x+y}{2^{n}}\right) - f\left(\frac{x-y}{2^{n}}\right) - 6f\left(\frac{x}{2^{n}}\right)\right)$$

$$\leq \lim_{n \to \infty} \frac{8^{n} \theta}{2^{nr}} \left(\left\|x\right\|^{r} + \left\|y\right\|^{r}\right) = 0$$

for all $x, y \in Y$. Hence

$$\frac{1}{2}C(2x+y) + \frac{1}{2}C(2x-y) = C(x+y) + C(x-y) + 6C(x)$$

for all $x, y \in Y$ and so the mapping $C: Y \to X$ is cubic.

Now, let $T: Y \to X$ be another cubic mapping satisfying (4.2). Then we have

$$\begin{split} P\big(C(x) - T(x)\big) &= P\bigg(8^n \bigg(C\bigg(\frac{x}{2^n}\bigg) - T\bigg(\frac{x}{2^n}\bigg)\bigg)\bigg) \\ &\leq 8^n P\bigg(C\bigg(\frac{x}{2^n}\bigg) - T\bigg(\frac{x}{2^n}\bigg)\bigg) \\ &\leq 8^n \bigg(P\bigg(C\bigg(\frac{x}{2^n}\bigg) - f\bigg(\frac{x}{2^n}\bigg)\bigg) + P\bigg(T\bigg(\frac{x}{2^n}\bigg) - f\bigg(\frac{x}{2^n}\bigg)\bigg)\bigg) \\ &\leq \frac{2 \cdot 8^n}{(2^r - 8)2^{nr}} \theta \|x\|^r, \end{split}$$

which tends to zero as $n \to \infty$ for all $x \in Y$. So we can conclude that C(x) = T(x) for all $x \in Y$. This proves the uniqueness of C. Thus the mapping $C: Y \to X$ is a unique cubic mapping satisfying (4.2).

Theorem 4.2 Let r be a positive real number with r < 3, and let $f : X \to Y$ be a mapping such that

$$\left\| \frac{1}{2} f(2x+y) + \frac{1}{2} f(2x-y) - f(x+y) - f(x-y) - 6f(x) \right\| \le P(x)^r + P(y)^r \tag{4.4}$$

for all $x, y \in X$. Then there exists a unique cubic mapping $C: X \to Y$ such that

$$||f(x) - C(x)|| \le \frac{1}{8 - 2^r} P(x)^r$$
 (4.5)

for all $x \in X$.

Proof Letting y = 0 in (4.4), we get

$$||8f(x) - f(2x)|| < P(x)^r$$

and so

$$\left\| f(x) - \frac{1}{8}f(2x) \right\| \le \frac{1}{8}P(x)^r$$

for all $x \in X$. Hence

$$\left\| \frac{1}{8^{l}} f(2^{l} x) - \frac{1}{8^{m}} f(2^{m} x) \right\| \leq \sum_{i=l}^{m-1} \left\| \frac{1}{8^{i}} f(2^{j} x) - \frac{1}{8^{j+1}} f(2^{j+1} x) \right\| \leq \frac{1}{8} \sum_{i=l}^{m-1} \frac{2^{rj}}{8^{j}} P(x)^{r}$$

$$(4.6)$$

for all nonnegative integers m and l with m > l and all $x \in X$. It follows from (4.6) that the sequence $\{\frac{1}{8^n}f(2^nx)\}$ is a Cauchy sequence for all $x \in X$. Since Y is complete, the sequence $\{\frac{1}{8^n}f(2^nx)\}$ converges. So one can define the mapping $C: X \to Y$ by

$$C(x) := \lim_{n \to \infty} \frac{1}{8^n} f(2^n x)$$

for all $x \in X$. Moreover, letting l = 0 and passing the limit $m \to \infty$ in (4.6), we get (4.5). It follows from (4.4) that

$$\left\| \frac{1}{2}C(2x+y) + \frac{1}{2}C(2x-y) - C(x+y) - C(x-y) - 6C(x) \right\|$$

$$= \lim_{n \to \infty} \frac{1}{8^n} \left\| \frac{1}{2}f(2^n(2x+y)) + \frac{1}{2}f(2^n(2x-y)) - f(2^n(x+y)) - f(2^n(x-y)) - 6f(2^nx) \right\|$$

$$\leq \lim_{n \to \infty} \frac{2^{nr}}{8^n} \left(P(x)^r + P(y)^r \right) = 0$$

for all $x, y \in X$. Thus

$$\frac{1}{2}C(2x+y) + \frac{1}{2}C(2x-y) = C(x+y) + C(x-y) + 6C(x)$$

for all $x, y \in X$ and so the mapping $C: X \to Y$ is cubic.

Now, let $T: X \to Y$ be another cubic mapping satisfying (4.5). Then we have

$$||C(x) - T(x)|| = \frac{1}{8^n} ||C(2^n x) - T(2^n x)||$$

$$\leq \frac{1}{8^n} (||C(2^n x) - f(2^n x)|| + ||T(2^n x) - f(2^n x)||)$$

$$\leq \frac{2 \cdot 2^{nr}}{(8 - 2^r)8^n} P(x)^r,$$

which tends to zero as $n \to \infty$ for all $x \in X$. So we can conclude that C(x) = T(x) for all $x \in X$. This proves the uniqueness of C. Thus the mapping $C: X \to Y$ is a unique cubic mapping satisfying (4.5).

5 Hyers-Ulam stability of the quartic functional equation

In this section, we prove the Hyers-Ulam stability of the quartic functional equation in paranormed spaces.

Note that $P(2x) \leq 2P(x)$ for all $x \in Y$.

Theorem 5.1 Let r, θ be positive real numbers with r > 4, and let $f : Y \to X$ be a mapping satisfying f(0) = 0 and

$$P\left(\frac{1}{2}f(2x+y) + \frac{1}{2}f(2x-y) - 2f(x+y) - 2f(x-y) - 12f(x) + 3f(y)\right)$$

$$\leq \theta(\|x\|^r + \|y\|^r)$$
(5.1)

for all $x, y \in Y$. Then there exists a unique quartic mapping $Q_4: Y \to X$ such that

$$P(f(x) - Q_4(x)) \le \frac{\theta}{2^r - 16} ||x||^r \tag{5.2}$$

for all $x \in Y$.

Proof Letting y = 0 in (4.1), we get

$$P(f(2x) - 16f(x)) \le \theta ||x||^r$$

for all $x \in Y$. So

$$P\left(f(x) - 16f\left(\frac{x}{2}\right)\right) \le \frac{1}{2^r}\theta \left\|x\right\|^r$$

for all $x \in Y$. Hence

$$P\left(16^{l}f\left(\frac{x}{2^{l}}\right) - 16^{m}f\left(\frac{x}{2^{m}}\right)\right)$$

$$\leq \sum_{j=l}^{m-1} P\left(16^{j}f\left(\frac{x}{2^{j}}\right) - 16^{j+1}f\left(\frac{x}{2^{j+1}}\right)\right)$$

$$\leq \frac{1}{2^{r}} \sum_{j=l}^{m-1} \frac{16^{j}}{2^{rj}} \theta \|x\|^{r}$$
(5.3)

for all nonnegative integers m and l with m > l and all $x \in Y$. It follows from (5.3) that the sequence $\{16^n f(\frac{x}{2^n})\}$ is a Cauchy sequence for all $x \in Y$. Since X is complete, the sequence $\{16^n f(\frac{x}{2^n})\}$ converges. So one can define the mapping $Q_4: Y \to X$ by

$$Q_4(x) := \lim_{n \to \infty} 16^n f\left(\frac{x}{2^n}\right)$$

for all $x \in Y$. Moreover, letting l = 0 and passing the limit $m \to \infty$ in (5.3), we get (5.2). It follows from (5.1) that

$$\begin{split} P\bigg(\frac{1}{2}Q_4(2x+y) + \frac{1}{2}Q_4(2x-y) - 2Q_4(x+y) - 2Q_4(x-y) - 12Q_4(x) + 3Q_4(y)\bigg) \\ &= \lim_{n \to \infty} P\bigg(16^n\bigg(\frac{1}{2}f\bigg(\frac{2x+y}{2^n}\bigg) + \frac{1}{2}f\bigg(\frac{2x-y}{2^n}\bigg) - 2f\bigg(\frac{x+y}{2^n}\bigg) \\ &- 2f\bigg(\frac{x-y}{2^n}\bigg) - 12f\bigg(\frac{x}{2^n}\bigg) + 3f\bigg(\frac{y}{2^n}\bigg)\bigg)\bigg) \bigg) \\ &\leq \lim_{n \to \infty} 16^n P\bigg(\frac{1}{2}f\bigg(\frac{2x+y}{2^n}\bigg) + \frac{1}{2}f\bigg(\frac{2x-y}{2^n}\bigg) - 2f\bigg(\frac{x+y}{2^n}\bigg) \\ &- 2f\bigg(\frac{x-y}{2^n}\bigg) - 12f\bigg(\frac{x}{2^n}\bigg) + 3f\bigg(\frac{y}{2^n}\bigg)\bigg) \bigg) \\ &\leq \lim_{n \to \infty} \frac{16^n \theta}{2^{nr}} \Big(\|x\|^r + \|y\|^r\Big) = 0 \end{split}$$

for all $x, y \in Y$. Hence

$$\frac{1}{2}Q_4(2x+y) + \frac{1}{2}Q_4(2x-y) = 2Q_4(x+y) + 2Q_4(x-y) + 12Q_4(x) - 3Q_4(y)$$

for all $x, y \in Y$ and so the mapping $Q_4 : Y \to X$ is quartic.

Now, let $T: Y \to X$ be another quartic mapping satisfying (5.2). Then we have

$$\begin{split} P\big(Q_4(x) - T(x)\big) &= P\bigg(16^n \bigg(Q_4\bigg(\frac{x}{2^n}\bigg) - T\bigg(\frac{x}{2^n}\bigg)\bigg)\bigg) \\ &\leq 16^n P\bigg(Q_4\bigg(\frac{x}{2^n}\bigg) - T\bigg(\frac{x}{2^n}\bigg)\bigg) \\ &\leq 16^n \bigg(P\bigg(Q_4\bigg(\frac{x}{2^n}\bigg) - f\bigg(\frac{x}{2^n}\bigg)\bigg) + P\bigg(T\bigg(\frac{x}{2^n}\bigg) - f\bigg(\frac{x}{2^n}\bigg)\bigg)\bigg) \\ &\leq \frac{2 \cdot 16^n}{(2^r - 16)2^{nr}} \theta \|x\|^r, \end{split}$$

which tends to zero as $n \to \infty$ for all $x \in Y$. So we can conclude that $Q_4(x) = T(x)$ for all $x \in Y$. This proves the uniqueness of Q_4 . Thus the mapping $Q_4 : Y \to X$ is a unique quartic mapping satisfying (5.2).

Theorem 5.2 Let r be a positive real number with r < 4, and let $f : X \to Y$ be a mapping satisfying f(0) = 0 and

$$\left\| \frac{1}{2} f(2x+y) + \frac{1}{2} f(2x-y) - 2f(x+y) - 2f(x-y) - 12f(x) + 3f(y) \right\|$$

$$\leq P(x)^r + P(y)^r$$
(5.4)

for all $x, y \in X$. Then there exists a unique quartic mapping $Q_4: X \to Y$ such that

$$||f(x) - Q_4(x)|| \le \frac{1}{16 - 2^r} P(x)^r$$
 (5.5)

for all $x \in X$.

Proof Letting y = 0 in (5.4), we get

$$||16f(x) - f(2x)|| \le P(x)^r$$

and so

$$\left\| f(x) - \frac{1}{16}f(2x) \right\| \le \frac{1}{16}P(x)^r$$

for all $x \in X$. Hence

$$\left\| \frac{1}{16^{l}} f(2^{l} x) - \frac{1}{16^{m}} f(2^{m} x) \right\| \leq \sum_{j=l}^{m-1} \left\| \frac{1}{16^{j}} f(2^{j} x) - \frac{1}{16^{j+1}} f(2^{j+1} x) \right\| \leq \frac{1}{16} \sum_{j=l}^{m-1} \frac{2^{rj}}{16^{j}} P(x)^{r} \quad (5.6)$$

for all nonnegative integers m and l with m > l and all $x \in X$. It follows from (5.6) that the sequence $\{\frac{1}{16^n}f(2^nx)\}$ is a Cauchy sequence for all $x \in X$. Since Y is complete, the sequence $\{\frac{1}{16^n}f(2^nx)\}$ converges. So one can define the mapping $Q_4: X \to Y$ by

$$Q_4(x) := \lim_{n \to \infty} \frac{1}{16^n} f(2^n x)$$

for all $x \in X$. Moreover, letting l = 0 and passing the limit $m \to \infty$ in (5.6), we get (5.5). It follows from (5.4) that

$$\left\| \frac{1}{2} Q_4(2x+y) + \frac{1}{2} Q_4(2x-y) - 2Q_4(x+y) - 2Q_4(x-y) - 12Q_4(x) + 3Q_4(y) \right\|$$

$$= \lim_{n \to \infty} \frac{1}{16^n} \left\| \frac{1}{2} f(2^n (2x+y)) + \frac{1}{2} f(2^n (2x-y)) - 2f(2^n (x+y)) - 2f(2^n (x+y)) - 2f(2^n (x+y)) - 12f(2^n x) + 3f(2^n y) \right\|$$

$$\leq \lim_{n \to \infty} \frac{2^{nr}}{16^n} \left(P(x)^r + P(y)^r \right) = 0$$

for all $x, y \in X$. Thus

$$\frac{1}{2}Q_4(2x+y) + \frac{1}{2}Q_4(2x-y) = 2Q_4(x+y) + 2Q_4(x-y) + 12Q_4(x) - 3Q_4(y)$$

for all $x, y \in X$ and so the mapping $Q_4 : X \to Y$ is quartic.

Now, let $T: X \to Y$ be another quartic mapping satisfying (5.5). Then we have

$$\begin{aligned} \|Q_4(x) - T(x)\| &= \frac{1}{16^n} \|Q_4(2^n x) - T(2^n x)\| \\ &\leq \frac{1}{16^n} (\|Q_4(2^n x) - f(2^n x)\| + \|T(2^n x) - f(2^n x)\|) \\ &\leq \frac{2 \cdot 2^{nr}}{(16 - 2^r)16^n} P(x)^r, \end{aligned}$$

which tends to zero as $n \to \infty$ for all $x \in X$. So we can conclude that $Q_4(x) = T(x)$ for all $x \in X$. This proves the uniqueness of Q_4 . Thus the mapping $Q_4 : X \to Y$ is a unique quartic mapping satisfying (5.5).

Competing interests

The authors declare that they have no competing interests.

Authors' contributions

All authors conceived of the study, participated in its design and coordination, drafted the manuscript, participated in the sequence alignment, and read and approved the final manuscript.

Author details

¹Research Institute for Natural Sciences, Hanyang University, Seoul, 133-791, Korea. ²Department of Mathematics, University of Seoul, 130-743, Korea.

Acknowledgements

C. Park was supported by Basic Science Research Program through the National Research Foundation of Korea funded by the Ministry of Education, Science and Technology (NRF-2012R1A1A2004299). D. Y. Shin was supported by Basic Science

Research Program through the National Research Foundation of Korea funded by the Ministry of Education, Science and Technology (NRF-2010-0021792).

Received: 27 May 2012 Accepted: 5 July 2012 Published: 23 July 2012

References

- 1. Fast, H: Sur la convergence statistique. Collog. Math. 2, 241-244 (1951)
- 2. Steinhaus, H: Sur la convergence ordinaire et la convergence asymptotique. Collog. Math. 2, 34-73 (1951)
- 3. Fridy, JA: On statistical convergence, Analysis 5, 301-313 (1985)
- 4. Karakus, S: Statistical convergence on probabilistic normed spaces. Math. Commun. 12, 11-23 (2007)
- 5. Mursaleen, M: λ-statistical convergence. Math. Slovaca **50**, 111-115 (2000)
- 6. Mursaleen, M, Mohiuddine, SA: On lacunary statistical convergence with respect to the intuitionistic fuzzy normed space. J. Comput. Appl. Math. 233, 142-149 (2009)
- 7. Šalát, T: On the statistically convergent sequences of real numbers. Math. Slovaca 30, 139-150 (1980)
- 8. Kolk, E: The statistical convergence in Banach spaces. Tartu ülik. Toim. 928, 41-52 (1991)
- 9. Wilansky, A: Modern Methods in Topological Vector Space. McGraw-Hill, New York (1978)
- 10. Ulam, SM: A Collection of the Mathematical Problems. Interscience, New York (1960)
- 11. Hyers, DH: On the stability of the linear functional equation, Proc. Natl. Acad. Sci. USA 27, 222-224 (1941)
- 12. Aoki, T: On the stability of the linear transformation in Banach spaces. J. Math. Soc. Jpn. **2**, 64-66 (1950)
- 13. Rassias, TM: On the stability of the linear mapping in Banach spaces. Proc. Am. Math. Soc. 72, 297-300 (1978)
- 14. Găvruta, P: A generalization of the Hyers-Ulam-Rassias stability of approximately additive mappings. J. Math. Anal. Appl. 184, 431-436 (1994)
- 15. Rassias, TM: Problem 16; 2. Report of the 27th international symposium on functional equations. Aegu. Math. 39, 292-293 (1990)
- 16. Gajda, Z: On stability of additive mappings. Int. J. Math. Math. Sci. 14, 431-434 (1991)
- 17. Rassias, TM, Šemrl, P: On the behaviour of mappings which do not satisfy Hyers-Ulam stability. Proc. Am. Math. Soc. **114**, 989-993 (1992)
- 18. Czerwik, P. Functional Equations and Inequalities in Several Variables, World Scientific, Singapore (2002)
- 19. Hyers, DH, Isac, G, Rassias, TM: Stability of Functional Equations in Several Variables. Birkhäuser, Basel (1998)
- 20. Rassias, JM: On approximation of approximately linear mappings by linear mappings. J. Funct. Anal. 46, 126-130
- 21. Skof. F: Proprietà locali e approssimazione di operatori, Rend. Semin, Mat. Fis. Milano 53, 113-129 (1983)
- 22. Cholewa, PW: Remarks on the stability of functional equations, Aegu, Math. 27, 76-86 (1984)
- 23. Czerwik, S: On the stability of the quadratic mapping in normed spaces. Abh. Math. Semin. Univ. Hamb. 62, 59-64
- 24. Aczel, J. Dhombres, J. Functional Equations in Several Variables. Cambridge University Press, Cambridge (1989)
- 25. Eshaghi Gordji, M, Savadkouhi, MB: Stability of a mixed type cubic-quartic functional equation in non-Archimedean spaces. Appl. Math. Lett. 23, 1198-1202 (2010)
- 26. Isac, G, Rassias, TM: On the Hyers-Ulam stability of ψ -additive mappings. J. Approx. Theory **72**, 131-137 (1993)
- 27. Jun, K, Lee, Y: A generalization of the Hyers-Ulam-Rassias stability of the pexiderized quadratic equations. J. Math. Anal. Appl. 297, 70-86 (2004)
- 28. Jung, S. Hyers-Ulam-Rassias Stability of Functional Equations in Mathematical Analysis. Hadronic Press, Palm Harbor (2001)
- 29. Park, C: Homomorphisms between Poisson JC*-algebras. Bull. Braz. Math. Soc. 36, 79-97 (2005)
- 30. Rassias, JM: Solution of a problem of Ulam. J. Approx. Theory 57, 268-273 (1989)
- 31. Rassias, TM: Functional Equations and Inequalities. Kluwer Academic, Dordrecht (2000)
- 32. Rassias, TM: On the stability of functional equations in Banach spaces. J. Math. Anal. Appl. 251, 264-284 (2000)
- 33. Rassias, TM: On the stability of functional equations and a problem of Ulam. Acta Appl. Math. 62, 23-130 (2000)
- Jun, K, Kim, H: The generalized Hyers-Ulam-Rassias stability of a cubic functional equation. J. Math. Anal. Appl. 274, 867-878 (2002)
- 35. Lee, S, Im, S, Hwang, I: Quartic functional equations. J. Math. Anal. Appl. 307, 387-394 (2005)

doi:10.1186/1687-1847-2012-123

Cite this article as: Park and Shin: Functional equations in paranormed spaces. Advances in Difference Equations 2012 2012:123

Submit your manuscript to a SpringerOpen® journal and benefit from:

- ► Convenient online submission
- ► Rigorous peer review
- ► Immediate publication on acceptance
- ► Open access: articles freely available online
- ► High visibility within the field
- ► Retaining the copyright to your article

Submit your next manuscript at ▶ springeropen.com