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Abstract
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1 Introduction
In this paper, we consider the existence of positive solutions for the following second-order
impulsive boundary value problem (IBVP for short)

⎧⎪⎪⎨
⎪⎪⎩
x′′(t) + a(t)x′(t) + b(t)x(t) + h(t)f (t,x(t)) = , t ∈ J ′,

–�x′|t=ti = Ii(x(ti)), i = , , . . . ,m,

x() = α[x], x() = β[x],

(.)

where J = [, ],  < t < t < · · · < tm < , J ′ = J \ {t, t, . . . , tm}, J = (, t], J = (t, t], . . . , Jm =
(tm, ), f ∈ C(J × R

+,R+), Ii ∈ C(R+,R+), i = , , . . . ,m, R+ = [,+∞). �x′|t=ti denotes the
jump of x′ at t = ti, i.e.,

�x′|t=ti = x′(t+i ) – x′(t–i )
,

where x′(t+i ) and x′(t–i ) represent the right-hand limit and the left-hand limit of x′ at ti,
respectively. α[x], β[x] are linear functionals on C(I) given by

α[x] =
∫ 


x(t)dA(t), β[x] =

∫ 


x(t)dB(t)

involving Stieltjes integrals with signed measures, that is, A, B are suitable functions of
bounded variation.
Impulsive differential equations describe processes with sudden changes in their state

at certain moments. The theory of impulse differential equations has been further devel-
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oped significantly in recent years and has played a very important role in modern applied
mathematical modeling of real world processes in physics, population dynamics, chemical
technology, biotechnology and economics. For details, see [–] and references therein.
Recently, Feng and Xie [] have dealt with the second order m-point boundary value

problem with impulse effects

⎧⎪⎪⎨
⎪⎪⎩
–x′′(t) = f (t,x(t)), t ∈ J , t �= ti,

–�x′|t=ti = Ii(x(ti)), i = , , . . . ,n,

x() =
∑m–

i= aix(ξi), x() =
∑m–

i= bix(ξi),

where ai,bi ∈ (, ),  < ξ < ξ < · · · < ξm– < ,
∑m–

i= biξi < ,
∑m–

i= ai( – ξi) < . The ex-
istence results of one and two positive solutions are obtained based on the fixed point
theorems in a cone.
For the case of Ii = , i = , , . . . ,m, one of the special cases of problem (.) is the fol-

lowing multi-point boundary value problem

⎧⎨
⎩x′′(t) + a(t)x′(t) + b(t)x(t) + h(t)f (x(t)) = , t ∈ (, ),

x() = , x() =
∑m–

i= aix(ξi),
(.)

where  < ξ < ξ < · · · < ξm– < . Boundary value problem (.) and related problems
have been extensively studied in many papers in recent years (see [–] and references
therein). The existence and multiplicity results of positive solutions are obtained by ap-
plying the Krasnosel’skii fixed-point theorem in cones, the Leggett-Williams fixed point
theorem and the fixed point index theory. For example, Ma and Wang in [] studied the
existence of positive solutions to the nonlinear boundary-value problem

⎧⎨
⎩x′′(t) + a(t)x′(t) + b(t)x(t) + h(t)f (x(t)) = , t ∈ (, ),

x() = , x() = αx(η),
(.)

where a ∈ C(J), b ∈ C(J , (–∞, )),  < η <  and  < αφ(η) <  are given, φ is the unique
solution of the linear boundary value problem

⎧⎨
⎩x′′(t) + a(t)x′(t) + b(t)x(t) = , t ∈ (, ),

x() = , x() = .

The authors established the existence of at least one positive solution of (.) if f is either
superlinear or sublinear by applying the fixed point theorem in cones.
Inspired by the work of the above papers, the aim of this paper is to establish the ex-

istence and multiplicity of positive solutions for the IBVP (.). We discuss the bound-
ary value problem with Stieltjes integral boundary conditions, i.e., the IBVP (.) which
includes second order two-point, three-point, multi-point and nonlocal boundary value
problems as special cases. Moreover, α[·] and β[·] are two linear functions on C[, ] de-
noting the Stieltjes integrals, where A,B are of bounded variation, that is dA and dB may
change sign. By using the Krasnosel’skii fixed-point theorem and the Leggett-Williams
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fixed point theorem, some existence and multiplicity results of positive solutions are ob-
tained.
This paper is organized as follows. In Section , we present some preliminaries and lem-

mas. Section  is devoted to the proof of the main results. In Section , two examples are
given to demonstrate the validity of our main results.

2 Some preliminaries and lemmas
In this section, we first introduce some background definitions in a Banach space, present
some basic lemmas, and then present the fixed point theorems that are to be used in the
proof of the main results.
Let PC(J ,R+) = {x : x ∈ C(J ,R+),x|Ji ∈ C(J ,R+), i = , , . . . ,m, and x′(t+i ) exists for i =

, , . . . ,m} with the norm ‖x‖PC =max{‖x‖PC ,‖x′‖PC}, where

‖x‖PC = sup
t∈J

∣∣x(t)∣∣, ∥∥x′∥∥
PC = sup

t∈J

∣∣x′(t)
∣∣.

Then PC(J ,R+) is a Banach space. A function x ∈ PC(J ,R+)∩C(J ′,R) is called a positive
solution of problem (.) if it satisfies (.).

Lemma . [] Assume that a ∈ C(J), b ∈ C(J , (–∞, )). Let φ and ψ be the unique solu-
tion of the following boundary value problem

⎧⎨
⎩φ′′(t) + a(t)φ′(t) + b(t)φ(t) = , t ∈ J ,

φ() = , φ() = 

and
⎧⎨
⎩ψ ′′(t) + a(t)ψ ′(t) + b(t)ψ(t) = , t ∈ J ,

ψ() = , ψ() = ,

respectively. Then φ is strictly increasing on J, ψ is strictly decreasing on J.

Throughout this paper, we adopt the following assumptions:

(H) a ∈ C(J), b ∈ C(J , (–∞, )), k,k ∈ (, ], k,k ≥ , k > , and

GA(s) =
∫ 


G(t, s)p(s)dA(t) ≥ ,

GB(s) =
∫ 


G(t, s)p(s)dB(t)≥ , s ∈ J ,

where

k =  – α[ψ], k = α[φ], k = β[ψ],

k =  – β[φ], k = kk – kk,

G(t, s) =

ρ

⎧⎨
⎩φ(t)ψ(s), ≤ t ≤ s ≤ ,

φ(s)ψ(t), ≤ s ≤ t ≤ ,
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ρ = φ′(), p(t) = exp

(∫ t


a(s)ds

)
.

(H) h : (, ) → R
+ is a Lebesgue integral and  <

∫ 
 h(t)dt < +∞, Ii :R+ → R

+ is contin-
uous for i = , , . . . ,m.

(H) f : J ×R
+ →R

+ is continuous.

Remark. If dA and dB are twopositivemeasures, then assumption (H) can be replaced
by the weaker assumption

(H ′
) a ∈ C(J), b ∈ C(J , (–∞, )), and k > , k > , k > .

Lemma . Assume that (H) holds. Then for any y ∈ L[, ], the problem

⎧⎪⎪⎨
⎪⎪⎩
x′′(t) + a(t)x′(t) + b(t)x(t) + y(t) = , t ∈ J , t �= ti,

–�x′|t=ti = Ii ∈R, i = , , . . . ,m,

x() = α[x], x() = β[x],

(.)

has a unique solution given by the following formula:

x(t) =
∫ 


G(t, s)p(s)y(s)ds +ψ(t)α[x] + φ(t)β[x]

+ψ(t)
j∑

i=

ρ–p(ti)φ(ti)Ii + φ(t)
m∑

i=j+

ρ–p(ti)ψ(ti)Ii (.)

for t ∈ Ji, i = , , . . . ,m. Moreover, x(t)≥  on J provided y≥ .

Proof By similar arguments in []. So it is omitted. �

Remark . If (H) holds, then for any t, s ∈ J , it is easy to testify that

γ (t)G(s, s)≤ G(t, s)≤ G(s, s), (.)

where γ (t) =min{φ(t),ψ(t)}, t ∈ J . Let ξ ∈ (, t), η ∈ (tm, ), then

G(t, s)≥ γG(s, s), t ∈ [ξ ,η], s ∈ J , (.)

where γ =minξ≤t≤η γ (t).
Put

K =
{
x ∈ PC

(
J ,R+) : min

ξ≤t≤η
x(t)≥ γ ‖x‖PC ,α[x]≥ ,β[x]≥ 

}
.

Clearly, K is a cone of PC(J ,R+). For any r > , let Kr = {x ∈ K : ‖x‖PC < r}, ∂Kr = {x ∈ K :
‖x‖PC = r} and Kr = {x ∈ K : ‖x‖PC ≤ r}.
For x ∈ C(J ,R+), we define two operators T and S by

Tx(t) = ψ(t)α[x] + φ(t)β[x] + Fx(t) +Qx(t)

http://www.advancesindifferenceequations.com/content/2012/1/124
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and

Sx(t) = k–
(
kφ(t) + kψ(t)

)(
α[Fx] + α[Qx]

)
+ k–

(
kφ(t) + kψ(t)

)(
β[Fx] + β[Qx]

)
+ Fx(t) +Qx(t),

where

Fx(t) =
∫ 


G(t, s)p(s)h(s)f

(
s,x(s)

)
ds,

Qx(t) =ψ(t)
j∑

i=

ρ–p(ti)φ(ti)Ii
(
x(ti)

)
+ φ(t)

m∑
i=j+

ρ–p(ti)ψ(ti)Ii
(
x(ti)

)
.

Lemma. Assume that (H)-(H) hold. Then T : K → K, S : C(I,R+)→ K are completely
continuous.

Proof Problem (.) has a solution x if and only if x solves the operator equation x = Tx
in K . Let x ∈ K , by (.) and the monotonicity of φ, ψ , we have

‖Tx‖PC ≤ α[x] + β[x] +
∫ 


G(s, s)p(s)h(s)f

(
s,x(s)

)
ds

+
j∑

i=

ρ–p(ti)φ(ti)Ii
(
x(ti)

)
+

m∑
i=j+

ρ–p(ti)ψ(ti)Ii
(
x(ti)

)
.

Moreover, by (.) and the definition of γ , we have

min
ξ≤t≤η

∣∣Tx(t)∣∣ ≥ γ (t)α[x] + γ (t)β[x] + γ (t)
∫ 


G(s, s)p(s)h(s)f

(
s,x(s)

)
ds

+ γ (t)
j∑

i=

ρ–p(ti)φ(ti)Ii
(
x(ti)

)
+ γ (t)

m∑
i=j+

ρ–p(ti)ψ(ti)Ii
(
x(ti)

)
≥ γ ‖Tx‖PC .

On the other hand,

α[Tx] = α[ψ]α[x] + α[φ]β[x] + α[Fx] + α[Qx]

= ( – k)α[x] + kβ[x] +
∫ 



(∫ 


G(t, s)p(s)h(s)f

(
s,x(s)

)
ds

)
dA(t)

+ ( – k)
j∑

i=

ρ–p(ti)φ(ti)Ii
(
x(ti)

)
+ k

m∑
i=j+

ρ–p(ti)ψ(ti)Ii
(
x(ti)

)

= ( – k)α[x] + kβ[x] +
∫ 


GA(s)h(s)f

(
s,x(s)

)
ds

+ ( – k)
j∑

i=

ρ–p(ti)φ(ti)Ii
(
x(ti)

)
+ k

m∑
i=j+

ρ–p(ti)ψ(ti)Ii
(
x(ti)

) ≥ ,

β[Tx] = β[ψ]α[x] + β[φ]β[x] + β[Fx] + β[Qx]

http://www.advancesindifferenceequations.com/content/2012/1/124
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= kα[x] + ( – k)β[x] +
∫ 



(∫ 


G(t, s)p(s)h(s)f

(
s,x(s)

)
ds

)
dB(t)

+ k
j∑

i=

ρ–p(ti)φ(ti)Ii
(
x(ti)

)
+ ( – k)

m∑
i=j+

ρ–p(ti)ψ(ti)Ii
(
x(ti)

)

= kα[x] + ( – k)β[x] +
∫ 


GB(s)h(s)f

(
s,x(s)

)
ds

+ k
j∑

i=

ρ–p(ti)φ(ti)Ii
(
x(ti)

)
+ ( – k)

m∑
i=j+

ρ–p(ti)ψ(ti)Ii
(
x(ti)

) ≥ .

This shows that T : K → K .
Now we consider the operator S. Similarly as for the operator T , we have

‖Sx‖PC ≤ k–(k + k)
(
α[Fx] + α[Qx]

)
+ k–(k + k)

(
β[Fx] + β[Qx]

)
+

∫ 


G(s, s)p(s)h(s)f

(
s,x(s)

)
ds

+
j∑

i=

ρ–p(ti)φ(ti)Ii
(
x(ti)

)
+

m∑
i=j+

ρ–p(ti)ψ(ti)Ii
(
x(ti)

)
,

and

min
ξ≤t≤η

|Sx(t)| ≥ k–(k + k)γ (t)
(
α[Fx] + α[Qx]

)
+ k–(k + k)γ (t)

(
β[Fx] + β[Qx]

)

+ γ (t)
∫ 


G(s, s)p(s)h(s)f

(
s,x(s)

)
ds

+ γ (t)
j∑

i=

ρ–p(ti)φ(ti)Ii
(
x(ti)

)
+ γ (t)

m∑
i=j+

ρ–p(ti)ψ(ti)Ii
(
x(ti)

)
≥ γ ‖Sx‖PC .

Moreover,

α[Sx] = k–
(
kk + k( – k)

)(
α[Fx] + α[Qx]

)
+ k–

(
kk + k( – k)

)(
β[Fx] + β[Qx]

)
+ α[Fx] + α[Qx]

= k–k
(
α[Fx] + α[Qx]

)
+ k–k

(
β[Fx] + β[Qx]

) ≥ , (.)

β[Sx] = k–
(
k( – k) + kk

)(
α[Fx] + α[Qx]

)
+ k–

(
k( – k) + kk

)(
β[Fx] + β[Qx]

)
+ β[Fx] + β[Qx]

= k–k
(
α[Fx] + α[Qx]

)
+ k–k

(
β[Fx] + β[Qx]

) ≥ . (.)

This yields that S : C(J ,R+) → K .
Next, by similar arguments in [], one can prove that T : K → K , S : C(J ,R+) → K are

completely continuous. So we omit further details, and Lemma . is proved. �
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Lemma. Assume that (H)-(H) hold. Then operators T and S have the same fixed point
in K.

Proof Let x be a fixed point of the operator S, i.e., x = Sx. Then by (.) and (.), we have

α[x] = k–k
(
α[Fx] + α[Qx]

)
+ k–k

(
β[Fx] + β[Qx]

)
,

β[x] = k–k
(
α[Fx] + α[Qx]

)
+ k–k

(
β[Fx] + β[Qx]

)
.

So we have

α[Fx] + α[Qx] = kα[x] – kβ[x], β[Fx] + β[Qx] = –kα[x] + kβ[x].

Then

x(t) = Sx(t)

= k–
(
kφ(t) + kψ(t)

)(
α[Fx] + α[Qx]

)
+ k–

(
kφ(t) + kψ(t)

)(
β[Fx] + β[Qx]

)
+ Fx(t) +Qx(t)

= k–
(
kφ(t) + kψ(t)

)(
kα[x] – kβ[x]

)
+ k–

(
kφ(t) + kψ(t)

)(
–kα[x] + kβ[x]

)
+ Fx(t) +Qx(t)

= ψ(t)α[x] + φ(t)β[x] + Fx(t) +Qx(t) = Tx(t).

This implies that x also is a fixed point of the operator T .
On the other hand, let x be a fixed point of the operator T , i.e., x = Tx. Then

α[x] = ( – k)α[x] + kβ[x] + α[Qx] + α[Fx],

β[x] = kα[x] + ( – k)β[x] + β[Qx] + β[Fx].

So we have

α[x] = k–
[
k

(
α[Qx] + α[Fx]

)
+ k

(
β[Fx] + β[Qx]

)]
,

β[x] = k–
[
k

(
α[Qx] + α[Fx]

)
+ k

(
β[Fx] + β[Qx]

)]
.

Therefore,

x(t) = Tx(t)

= ψ(t)α[x] + φ(t)β[x] + Fx(t) +Qx(t)

= ψ(t)k–
[
k

(
α[Qx] + α[Fx]

)
+ k

(
β[Fx] + β[Qx]

)]
+ φ(t)k–

[
k

(
α[Qx] + α[Fx]

)
+ k

(
β[Fx] + β[Qx]

)]
+ Fx(t) +Qx(t)

= k–
(
kφ(t) + kψ(t)

)(
α[Fx] + α[Qx]

)
+ k–

(
kφ(t) + kψ(t)

)(
β[Fx] + β[Qx]

)
+ Fx(t) +Qx(t) = Sx(t).

This implies that x is also a fixed point of the operator S. The proof is completed. �
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Lemma . [] Let X be a real Banach space, K is a cone in X. Assume that � and �

are two bounded open sets of X with θ ∈ � and � ⊂ �. Let T : K ∩ (�\�) → K be a
completely continuous operator such that either

(i) ‖Tx‖ ≤ ‖x‖, x ∈ K ∩ ∂� and ‖Tx‖ ≥ ‖x‖, x ∈ K ∩ ∂� , or
(ii) ‖Tx‖ ≥ ‖x‖, x ∈ K ∩ ∂� and ‖Tx‖ ≤ ‖x‖, x ∈ K ∩ ∂� .

Then T has a fixed point in K ∩ (� \ �).

Lemma . [, ] Let K be a cone in a real Banach space X, Kc = {x ∈ K : ‖x‖ < c}, ϕ is a
nonnegative continuous concave functional on K such that ϕ(x) ≤ ‖x‖, for all x ∈ Kc, and
K(ϕ,b,d) = {x ∈ K : b ≤ ϕ(x),‖x‖ ≤ d}. Suppose that T : Kc → Kc is completely continuous
and there exist positive constants  < a < b < d ≤ c such that

(C) {x ∈ K(ϕ,b,d) : ϕ(x) > b} �= φ and ϕ(Tx) > b for x ∈ K(ϕ,b,d),
(C) ‖Tx‖ < a for x ∈ Ka,
(C) ϕ(Tx) > b for x ∈ K(ϕ,b, c) with ‖Tx‖ > d.

Then T has at least three fixed points x, x and x with

‖x‖ < a, b < ϕ(x), a < ‖x‖ with ϕ(x) < b.

Remark . If there holds d = c, then condition (C) of Lemma . implies condition (C)
of Lemma ..

3 Main results
Let

f ω = lim sup
u→ω

max
t∈J

f (t,u)
u

, Iωi = lim sup
u→ω

Ii(u)
u

, i = , , . . . ,m,

fω = lim inf
u→ω

min
t∈[ξ ,η]

f (t,u)
u

, Iiω = lim inf
u→ω

Ii(u)
u

, i = , , . . . ,m,

where ω denotes  or ∞. Let

L =
∫ 


G(s, s)p(s)h(s)ds, L =

∫ 


GA(s)h(s)ds, L =

∫ 


GB(s)h(s)ds, (.)

σ =max
{
k–(k + k),k–(k + k)

}
, τ =min

{
k–(k + k),k–(k + k)

}
(.)

and let the nonnegative continuous concave functional ϕ on the cone K be defined by

ϕ(x) = min
ξ≤t≤η

∣∣x(t)∣∣.
In this section, we apply Lemmas . and . to establish the existence of positive solu-

tions for IBVP (.). Since operators T and S have the same fixed points (see Lemma .),
to prove the following theorems we always use the operator S instead of T .

Theorem . Assume that (H)-(H) hold. In addition, suppose f  +
∑m

j= Ij =  and
max{f∞, I∞, . . . , Im∞} = ∞ are satisfied, then IBVP (.) has at least one positive solution
x*(t).

http://www.advancesindifferenceequations.com/content/2012/1/124
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Proof From f  +
∑m

j= Ij = , there exists r >  such that f (t,u) < εu, Ij(u) < εu (j =
, , . . . ,m) for all t ∈ J and  ≤ u≤ r, where ε >  satisfies

ε <min

{


[L + σ (L + L)]
,


σ (

∑j
i= ρ

–p(ti)φ(ti) +
∑m

i=j+ ρ
–p(ti)ψ(ti))

}
. (.)

If x ∈ Kr , then ‖x‖PC ≤ r. So we have  ≤ x(t)≤ r, t ∈ J and

max
t∈J

∣∣Fx(t)∣∣ ≤
∫ 


G(s, s)p(s)h(s)f

(
s,x(s)

)
ds≤ Lεr, (.)

max
t∈J

∣∣Qx(t)
∣∣ =max

t∈J

[
ψ(t)

j∑
i=

ρ–p(ti)φ(ti)Ii
(
x(ti)

)
+ φ(t)

m∑
i=j+

ρ–p(ti)ψ(ti)Ii
(
x(ti)

)]

≤
j∑

i=

ρ–p(ti)φ(ti)Ii
(
x(ti)

)
+

m∑
i=j+

ρ–p(ti)ψ(ti)Ii
(
x(ti)

)
, (.)

α[Fx] =
∫ 


Fx(t)dA(t) =

∫ 



(∫ 


G(t, s)p(s)h(s)f

(
s,x(s)

)
ds

)
dA(t)

≤ εr
∫ 


GA(s)h(s)ds = εrL, (.)

β[Fx] =
∫ 


Fx(t)dB(t) =

∫ 



(∫ 


G(t, s)p(s)h(s)f

(
s,x(s)

)
ds

)
dB(t)

≤ εr
∫ 


GB(s)h(s)ds = εrL, (.)

α[Qx] =
∫ 


Qx(t)dA(t)

= ( – k)
j∑

i=

ρ–p(ti)φ(ti)Ii
(
x(ti)

)
+ k

m∑
i=j+

ρ–p(ti)ψ(ti)Ii
(
x(ti)

)
, (.)

β[Qx] =
∫ 


Qx(t)dB(t)

= k
j∑

i=

ρ–p(ti)φ(ti)Ii
(
x(ti)

)
+ ( – k)

m∑
i=j+

ρ–p(ti)ψ(ti)Ii
(
x(ti)

)
. (.)

So, by (.)-(.), for any x ∈ ∂Kr , t ∈ J , we have

∣∣Sx(t)∣∣ = k–
(
kφ(t) + kψ(t)

)(
α[Fx] + α[Qx]

)
+ k–

(
kφ(t) + kψ(t)

)(
β[Fx] + β[Qx]

)
+ Fx(t) +Qx(t)

≤ k–(k + k)
(
α[Fx] + α[Qx]

)
+ k–(k + k)

(
β[Fx] + β[Qx]

)
+max

t∈J
∣∣Fx(t)∣∣ +max

t∈J
∣∣Qx(t)

∣∣
≤ k–(k + k)α[Fx] + k–(k + k)β[Fx] +max

t∈J
∣∣Fx(t)∣∣

+ k–(k + k)

(
( – k)

j∑
i=

ρ–p(ti)φ(ti)Ii
(
x(ti)

)
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+k
m∑

i=j+

ρ–p(ti)ψ(ti)Ii
(
x(ti)

))

+ k–(k + k)

(
k

j∑
i=

ρ–p(ti)φ(ti)Ii
(
x(ti)

)

+ ( – k)
m∑

i=j+

ρ–p(ti)ψ(ti)Ii
(
x(ti)

))

+
j∑

i=

ρ–p(ti)φ(ti)Ii
(
x(ti)

)
+

m∑
i=j+

ρ–p(ti)ψ(ti)Ii
(
x(ti)

)

≤ k–(k + k)Lεr + k–(k + k)Lεr + Lεr

+ k–(k + k)
j∑

i=

ρ–p(ti)φ(ti)Ii
(
x(ti)

)

+ k–(k + k)
m∑

i=j+

ρ–p(ti)ψ(ti)Ii
(
x(ti)

)

≤ ε
[
L + σ (L + L)

]
r + εrσ

[ j∑
i=

ρ–p(ti)φ(ti) +
m∑

i=j+

ρ–p(ti)ψ(ti)

]

< r = ‖x‖PC , (.)

which means that

‖Sx‖PC ≤ ‖x‖PC , x ∈ ∂Kr . (.)

Next, consider max{f∞, I∞, . . . , Im∞} = ∞. Without loss of generality, we assume that
max{f∞, I∞, . . . , Im∞} = f∞, which means that there exists r >  such that f (t,u) > εu for
all t ∈ [ξ ,η] and u≥ r, where ε satisfies

ε >max

{


γ [L + τ (L + L)]
,


γ τ (

∑j
i= ρ

–p(ti)φ(ti) +
∑m

i=j+ ρ
–p(ti)ψ(ti))

}
. (.)

Let r ≥ max{r, rγ }, then for any x ∈ ∂Kr , t ∈ [ξ ,η], we have

∣∣Sx(t)∣∣ ≥ min
ξ≤t≤η

(
k–

(
kφ(t) + kψ(t)

)(
α[Fx] + α[Qx]

)
+ k–

(
kφ(t) + kψ(t)

)(
β[Fx] + β[Qx]

)
+ Fx(t) +Qx(t)

)
≥ γ k–(k + k)α[Fx] + γ k–(k + k)β[Fx]

+ γ

∫ 


G(s, s)p(s)h(s)f

(
s,x(s)

)
ds

≥ γ
[
k–(k + k)Lεr + k–(k + k)Lεr + Lεr

]
≥ γ ε

[
L + τ (L + L)

]
r

> r = ‖x‖PC .
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Consequently, we have

‖Sx‖PC ≥ ‖x‖PC , x ∈ ∂Kr . (.)

Applying (i) of Lemma . to (.) and (.) yields that S has a fixed point x* : r ≤
‖x*‖PC ≤ r. Thus it follows that IBVP (.) has a positive solution x*. �

Theorem . Assume that (H)-(H) hold. In addition, suppose f ∞ +
∑m

j= I∞j =  and
max{f, I, . . . , Im} = ∞ are satisfied, then IBVP (.) has at least one positive solution x*(t).

Proof Consider max{f, I, . . . , Im} = ∞. Without loss of generality, we assume that
max{f, I, . . . , Im} = f, which means that there exists R >  such that f (t,u) > εu for
all t ∈ [ξ ,η] and  ≤ u ≤ R, where ε satisfies (.). Then for any x ∈ ∂KR , t ∈ [ξ ,η], we
have

∣∣Sx(t)∣∣ ≥ min
ξ≤t≤η

(
k–

(
kφ(t) + kψ(t)

)(
α[Fx] + α[Qx]

)
+ k–

(
kφ(t) + kψ(t)

)(
β[Fx] + β[Qx]

)
+ Fx(t) +Qx(t)

)
≥ γ k–(k + k)α[Fx] + γ k–(k + k)β[Fx]

+ γ

∫ 


G(s, s)p(s)h(s)f

(
s,x(s)

)
ds

≥ γ
[
k–(k + k)LεR + k–(k + k)LεR + LεR

]
≥ γ ε

[
L + τ (L + L)

]
r

> R = ‖x‖PC ,

which yields that

‖Sx‖PC ≥ ‖x‖PC , x ∈ ∂KR . (.)

On the other hand, it follows from f ∞ +
∑m

j= I∞j =  that there exists R : R > R such
that f (t,u) < εu, Ij(u) < εu (j = , , . . . ,m) for all t ∈ J and u ≥ R, where ε >  satisfies
(.). Similar to (.), for any x ∈ ∂KR , t ∈ J , we have

∣∣Sx(t)∣∣ = k–
(
kφ(t) + kψ(t)

)(
α[Fx] + α[Qx]

)
+ k–

(
kφ(t) + kψ(t)

)(
β[Fx] + β[Qx]

)
+ Fx(t) +Qx(t)

≤ k–(k + k)
(
α[Fx] + α[Qx]

)
+ k–(k + k)

(
β[Fx] + β[Qx]

)
+max

t∈J
∣∣Fx(t)∣∣ +max

t∈J
∣∣Qx(t)

∣∣
≤ k–(k + k)α[Fx] + k–(k + k)β[Fx] +max

t∈J
∣∣Fx(t)∣∣

+ k–(k + k)
j∑

i=

ρ–p(ti)φ(ti)Ii
(
x(ti)

)

+ k–(k + k)
m∑

i=j+

ρ–p(ti)ψ(ti)Ii
(
x(ti)

)
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≤ ε
[
L + σ (L + L)

]
R + εRσ

[ j∑
i=

ρ–p(ti)φ(ti) +
m∑

i=j+

ρ–p(ti)ψ(ti)

]

< R = ‖x‖PC ,

which means that

‖Sx‖PC ≤ ‖x‖PC , x ∈ ∂KR . (.)

Applying (ii) of Lemma . to (.) and (.) yields that S has a fixed point x* : R ≤
‖x*‖PC ≤ R. Thus it follows that IBVP (.) has a positive solution x*. �

Theorem. Assume that (H)-(H) hold. In addition, we suppose that there exist positive
constants �, � and a < b < c such that

� > L + σ (L + L +M),

� < γ
(
L + τ (L + L +N)

)
,

where γ , Li (i = , , ) and σ , τ are defined by (.), (.) and (.), respectively, M ≥ ,
N ≥ , and

(S) f (t,u) ≤ c
�
, for (t,u) ∈ J × [, c], and

j∑
i=

ρ–p(ti)φ(ti)Ii(ui) +
m∑

i=j+

ρ–p(ti)ψ(ti)Ii(ui) ≤ M
�
c,

for ui ∈ [, c], i = , , . . . ,m.
(S) f (t,u) < a

�
, for (t,u) ∈ J × [,a], and

j∑
i=

ρ–p(ti)φ(ti)Ii(ui) +
m∑

i=j+

ρ–p(ti)ψ(ti)Ii(ui) ≤ M
�
a,

for ui ∈ [,a], i = , , . . . ,m.
(S) f (t,u) ≥ b

�
, for (t,u) ∈ [ξ ,η]× [b, c], and

j∑
i=

ρ–p(ti)φ(ti)Ii(ui) +
m∑

i=j+

ρ–p(ti)ψ(ti)Ii(ui) ≥ N
�
b,

for b≤ ui ≤ c, i = , , . . . ,m.

Then IBVP (.) has at least three positive solutions x, x and x with

‖x‖PC < a, b < min
ξ≤t≤η

∣∣x(t)∣∣ < ‖x‖PC ≤ c

and

a < ‖x‖PC , min
ξ≤t≤η

∣∣x(t)∣∣ < b.
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Proof We shall show that all the conditions of Lemma . are satisfied.
First, if x ∈ Kc, then ‖x‖PC ≤ c and (.), (.), (.) are valid if r is replaced by c

�
. From

this and (.), (.) and (.), for any x ∈ Kc, we have

∣∣Sx(t)∣∣ = k–
(
kφ(t) + kψ(t)

)(
α[Fx] + α[Qx]

)
+ k–

(
kφ(t) + kψ(t)

)(
β[Fx] + β[Qx]

)
+ Fx(t) +Qx(t)

≤ k–(k + k)
(
α[Fx] + α[Qx]

)
+ k–(k + k)

(
β[Fx] + β[Qx]

)
+max

t∈J
∣∣Fx(t)∣∣ +max

t∈J
∣∣Qx(t)

∣∣
≤ k–(k + k)α[Fx] + k–(k + k)β[Fx] +max

t∈J
∣∣Fx(t)∣∣

+ k–(k + k)

(
( – k)

j∑
i=

ρ–p(ti)φ(ti)Ii
(
x(ti)

)

+ k
m∑

i=j+

ρ–p(ti)ψ(ti)Ii
(
x(ti)

))

+ k–(k + k)

(
k

j∑
i=

ρ–p(ti)φ(ti)Ii
(
x(ti)

)

+ ( – k)
m∑

i=j+

ρ–p(ti)ψ(ti)Ii
(
x(ti)

))

+
j∑

i=

ρ–p(ti)φ(ti)Ii
(
x(ti)

)
+

m∑
i=j+

ρ–p(ti)ψ(ti)Ii
(
x(ti)

)

≤ k–(k + k)
L
�
c + k–(k + k)

L
�
c +

L
�
c

+ k–(k + k)
j∑

i=

ρ–p(ti)φ(ti)Ii
(
x(ti)

)

+ k–(k + k)
m∑

i=j+

ρ–p(ti)ψ(ti)Ii
(
x(ti)

)

≤ 
�

[
L + σ (L + L +M)

]
c < c,

which means that ‖Sx‖PC ≤ c,x ∈ Kc. Therefore, S : Kc → Kc. By Lemma ., we know
that S : Kc → Kc is completely continuous.
Next, it follows from condition (S) that if x ∈ Ka then

‖Sx‖PC ≤ k–(k + k)
(
α[Fx] + α[Qx]

)
+ k–(k + k)

(
β[Fx] + β[Qx]

)
+max

t∈J
∣∣Fx(t)∣∣ +max

t∈J
∣∣Qx(t)

∣∣
≤ σ

L
�
a + σ

L
�
a +

L
�
a + σ

j∑
i=

ρ–p(ti)φ(ti)Ii
(
x(ti)

)
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+ σ

m∑
i=j+

ρ–p(ti)ψ(ti)Ii
(
x(ti)

)

≤ 
�

[
L + σ (L + L +M)

]
a < a.

So the condition (C) of Lemma . holds.
Now, we take x(t) = b+c

 , t ∈ J , then it is easy to see that x(t) = b+c
 ∈ K(ϕ,b, c), and hence

ϕ(x) = min
ξ≤t≤η

∣∣x(t)∣∣ = b + c


> b.

Moreover, α[x]≥ , β[x]≥ . This proves that {x ∈ K(ϕ,b, c) : ϕ(x) > b} �= φ.
On the other hand, if x ∈ K(ϕ,b, c), then b ≤ x(t) ≤ c, t ∈ [ξ ,η]. By condition (S), we

have

ϕ(Sx) = min
ξ≤t≤η

∣∣Sx(t)∣∣
= min

ξ≤t≤η

(
k–

(
kφ(t) + kψ(t)

)(
α[Fx] + α[Qx]

)
+ k–

(
kφ(t) + kψ(t)

)(
β[Fx] + β[Qx]

)
+ Fx(t) +Qx(t)

)
≥ γ k–(k + k)

(
α[Fx] + α[Qx]

)
+ γ k–(k + k)

(
β[Fx] + β[Qx]

)
+ γ

∫ 


G(s, s)p(s)h(s)f

(
s,x(s)

)
ds

+ γ

j∑
i=

ρ–p(ti)φ(ti)Ii
(
x(ti)

)
+ γ

m∑
i=j+

ρ–p(ti)ψ(ti)Ii
(
x(ti)

)

≥ γ

{
k–(k + k)

Lb
�

+ k–(k + k)
Lb
�

+
Lb
�

+ k–(k + k)

×
(
( – k)

j∑
i=

ρ–p(ti)φ(ti)Ii
(
x(ti)

)
+ k

m∑
i=j+

ρ–p(ti)ψ(ti)Ii
(
x(ti)

))

+
j∑

i=

ρ–p(ti)φ(ti)Ii
(
x(ti)

)
+

m∑
i=j+

ρ–p(ti)ψ(ti)Ii
(
x(ti)

)
+ k–(k + k)

×
(
k

j∑
i=

ρ–p(ti)φ(ti)Ii
(
x(ti)

)
+ ( – k)

m∑
i=j+

ρ–p(ti)ψ(ti)Ii
(
x(ti)

))}

= γ

{
k–(k + k)

Lb
�

+ k–(k + k)
Lb
�

+
Lb
�

+ k–(k + k)

×
j∑

i=

ρ–p(ti)φ(ti)Ii
(
x(ti)

)
+ k–(k + k)

m∑
i=j+

ρ–p(ti)ψ(ti)Ii
(
x(ti)

)}

≥ 
�

γ
(
L + τ (L + L +N)

)
b

> b,
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which implies that ϕ(Sx) > b, for x ∈ K(ϕ,b, c). This shows that condition (C) of Lemma
. is also satisfied.
By Lemma . and Remark ., IBVP (.) has at least three positive solutions x,x and

x such that

‖x‖PC < a, b < min
ξ≤t≤η

∣∣x(t)∣∣ < ‖x‖PC ≤ c

and

a < ‖x‖PC , min
ξ≤t≤η

∣∣x(t)∣∣ < b.

The proof of Theorem . is completed. �

4 Examples
Example . Consider the following singular IBVP

⎧⎪⎪⎨
⎪⎪⎩
x′′(t) – x(t) +

√
t(–t)

(e+t–e–t )(e–t–et )

(√
t + | lnx|) = , t ∈ (, ) \ {t},

–�x′|t=t = √x(t), t = 
 ,

x() = α[x], x() = β[x].

(.)

We conclude that IBVP (.) has at least one positive solution.

Proof IBVP (.) can be regarded as a IBVP of the form (.), where a(t) ≡ , b(t) ≡ –,
h(t) =

√
t(–t)

(e+t–e–t )(e–t–et ) , f (t,u) =
√
t + | lnu|, I(u) = √u. It is not difficult to see that h(t) is

singular at t =  and t = ,  <
∫ 
 h(t)dt < +∞, h(t) ≥  for t ∈ (, ), f (t,u) ≥ , I(u) ≥ 

for t ∈ J , u ∈R
+. Choosing ξ = 

 , η = 
 , then

f = lim inf
u→

min
t∈[  ,  ]

f (t,u)
u

= ∞, f ∞ = lim sup
u→∞

max
t∈J

f (t,u)
u

= ,

I∞ = lim sup
u→∞

I(u)
u

= .

Let φ and ψ satisfy

φ′′ – φ = , φ() = , φ() = ,

ψ ′′ –ψ = , ψ() = , ψ() = .

Then

φ(t) =
e+t – e–t

e – 
, φ′() =

e
e – 

,

ψ(t) =
e–t – et

e – 
, p(t) = , ρ := φ′() =

e
e – 

,

G(t, s) =


e(e – )

⎧⎨
⎩

(
e+t – e–t

)(
e–s – es

)
,  ≤ t ≤ s≤ ,(

e+s – e–s
)(
e–t – et

)
,  ≤ s ≤ t ≤ .
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Case . Let α[x] = e–

(e

 –e


 )
x(  ), β[x] =

e–

(e

 –e


 )
x(  ). By direct calculation, we have

k =  – α[ψ] =


, k = α[φ] =

e 


(e + e 
 + )

,

k = β[ψ] =
e 


(e + e 
 + )

, k =  – β[φ] =


,

k =


–

e
(e + e 

 + )
> ,

GA(s) =
e – 

(e 
 – e 

 )
G

(


, s

)
≥ , GB(s) =

e – 
(e 

 – e 
 )
G

(


, s

)
≥ .

So all the conditions of Theorem . are satisfied. By Theorem ., IBVP (.) has at least
one positive solution.
Case . Let α[x] =

∫ 
 x(t)(π + ) cosπ t dt, that is dA(t) = (π + ) cosπ t dt, so the

measure dA changes sign on [, ]. For convenience, we still take β[x] = e–

(e

 –e


 )
x(  ). By

direct calculation, we have

k =  – α[ψ] =


e + 
, k = α[φ] =

e – 
e + 

,

k = β[ψ] =
e 


(e + e 
 + )

, k =  – β[φ] =


,

k =


e + 

[
 –

e 
 (e – )

(e + e 
 + )

]
> , GB(s) =

e – 
(e 

 – e 
 )
G

(


, s

)
≥ ,

GA(s) =


e – 
(
e –  – e–s + es – e+s + e–s

) ≥ .

So all conditions of Theorem . are satisfied. By Theorem ., IBVP (.) has at least one
positive solution. �

Example . Consider the following singular IBVP

⎧⎪⎪⎨
⎪⎪⎩
x′′(t) + t

+t x
′(t) – 

+t x(t) + h(t)f
(
t,x(t)

)
= , t ∈ (, ) \ {t},

–�x′|t=t = I, t = 
 ,

x() = x(  ), x() = 
x(


 ),

(.)

where

h(t) =

⎧⎨
⎩

+t

(e–

 –e–)t

√
tet
,  ≤ t ≤ 

 ,

+t
(–tet–)

√
–t ,


 ≤ t ≤ 

and

f (t,u) =

⎧⎪⎪⎨
⎪⎪⎩


 (t + )( – u),  ≤ t ≤ ,  ≤ u≤ ,

 (t + )(u – ),  ≤ t ≤ ,  ≤ u ≤ ,


 (t + )(u + ),  ≤ t ≤ ,u≥ .
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We conclude that IBVP (.) has at least three positive solutions.

Proof IBVP (.) can be regarded as a IBVP of the form (.), where a(t) = t
+t , b(t) = – 

+t .
It is not difficult to see that h(t) is singular at t =  and t = ,  <

∫ 
 h(t)dt < +∞, h(t) ≥ 

for t ∈ (, ), f (t,u)≥  for t ∈ J , u ∈R
+.

Let φ and ψ satisfy

φ′′ +
t

 + t
φ′ –


 + t

φ = , φ() = , φ() = ,

ψ ′′ +
t

 + t
ψ ′ –


 + t

ψ = , ψ() = , ψ() = .

Then

φ(t) = t, ψ(t) = e–t – te–, p(t) =
et

 + t
, ρ := φ′() = ,

G(t, s) =

⎧⎨
⎩t

(
e–s – se–

)
,  ≤ t ≤ s ≤ ,

s
(
e–t – te–

)
,  ≤ s≤ t ≤ .

By direct calculation, we have

k =  – α[ψ] =  +
 – 

√
e

e
, k = α[φ] =



,

k = β[ψ] =

√
e – 
e

, k =  – β[φ] =


,

k =


–

√
e – 
e

≈ . > ,

GA(s) =
es

 + s
G

(


, s

)
≥ , GB(s) =

es

( + s)
G

(


, s

)
≥ .

Therefore the conditions (H)-(H) hold. In addition, σ = e+–
√
e

e+–
√
e , τ = e–+

√
e

e+–
√
e ,

L =
∫ 


G(s, s)p(s)h(s)ds≈ .,

L =
∫ 


GA(s)h(s)ds =

√
, L =

∫ 


GB(s)h(s)ds =

√



.

Let ξ = 
 , η = 

 , M = , N = . Then γ = 
 , � > .,  < � < .. Take � = , � =


 , a = , b = , c = . Then  < I ≤ .. Consequently, all the assumptions of
Theorem . are satisfied, and thus, by Theorem ., we infer that the singular IBVP (.)
has at least three positive solutions x, x and x satisfying

‖x‖PC < ,  < min

≤t≤ 



∣∣x(t)∣∣ < ‖x‖PC ≤ ,,




≤ ‖x‖PC ≤  with min

≤t≤ 



∣∣x(t)∣∣ < . �
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