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Abstract
In this article, we shall utilize the value distribution theory and complex oscillation
theory to investigate certain types of difference and differential equations. The results
we obtain generalize some previous results of Gundersen and Yang.
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1 Introduction andmain results
In this paper, we assume that the reader is familiar with the fundamental results and the
standard notations of the Nevanlinna theory (e.g., see [–]). In addition, we will use the
notation σ (f ) to denote the order of the meromorphic function f (z). We recall the defini-
tion of hyper-order (see []), σ(f ) of f (z) is defined by

σ(f ) = lim sup
r→∞

log logT(r, f )
log r

.

Let f and g be two non-constantmeromorphic functions in the complex plane. By S(r, f ),
we denote any quantity satisfying S(r, f ) = o(T(r, f )) as r → ∞, possibly outside a set of r
with finite linear measure. Then the meromorphic function β is called a small function
of f , if T(r,β) = S(r, f ). If f – β and g – β have the same zeros, counting multiplicity (ig-
noring multiplicity), then we say f and g share the small function β CM (IM).
Let z be a zero of f – β with multiplicity p and a zero of g – β with multiplicity q. We

denote byNL(r, 
f –β

) the counting function of the zeros of f –β where p > q ≥ , each point
counted p – q times. In the same way, we also define NL(r, 

g–β
).

Let f (z) be transcendental meromorphic function in the plane, c ∈C \ {} be a constant
such that f (z) �≡ f (z + c). The forward differences �nf (z) are defined in the standard way
[] by

�f (z) = f (z + c) – f (z), �n+f (z) = �nf (z + c) –�nf (z), n = , , . . . .

In , Brück raised the following conjecture:
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Conjecture Let f be a non-constant entire function such that the hyper order σ(f ) < ∞
and σ(f ) is not a positive integer. If f and f ′ share the finite value a CM, then

f ′ – a
f – a

= c,

where c is a nonzero constant.

The case that a =  had been proved by Brück himself in []. From differential equations

f ′ – 
f – 

= ez
n
,

f ′ – 
f – 

= ee
z
,

we see that when the hyper order σ(f ) of f is a positive integer or infinite, the conjecture
of Brück does not hold.
Gundersen and Yang proved the conjecture holds for entire functions of finite order,

see [], and Yang generalized this finite order for f (k) (k ≥ ), instead of f ′, see []. Chen
and Shon proved the conjecture holds if σ(f ) < 

 , see []. In terms of sharing a small
function α IM, recently Wang has generalized Gundersen and Yang’s results, see [].
In this paper, we consider the uniqueness of entire functions sharing a small function

with their linear difference and differential polynomial. Now we present the main theo-
rems.

Theorem . Let f (z) be a non-constant entire function, σ(f ) (< ∞) is not a positive in-
teger. Set L(f ) = ak(z)f (k)(z) + ak–(z)f (k–)(z) + · · · + a(z)f

′′ (z) + f (z) (k ≥ ), where aj(z)
( ≤ j ≤ k) are entire functions of order less than  and ak(z) �≡ . If f (z) and L(f ) share z
IM, and

s :=max

{
lim sup
r→∞

log(NL(r, 
f (z)–z ))

log r
, lim sup

r→∞

log(NL(r, 
L(f )–z

))
log r

}
< , (.)

then L(f ) – z = h(z)(f (z) – z), where h(z) is a meromorphic function of order no greater
than s.

Remark  Note that the term f ′(z) cannot be contained in L(f ), otherwise Theorem .
does not hold. For example: Set f (z) = e–z + z and L(f ) = f ′′(z) + f ′(z) + f (z). Then f (z)
and L(f ) share z IM, but

L(f ) – z
f (z) – z

= ez.

Theorem . Let f (z) be a non-constant entire function, σ(f ) (< ∞) is not a positive inte-
ger. Set L(f ) = ak(z)f (k)(z) + ak–(z)f (k–)(z) + · · · + a(z)f

′ (z) + a(z)f (z) (k ≥ ), where aj(z)
( ≤ j ≤ k) are entire functions and max{σ (aj)|j = , , . . . ,k} < σ (a) ∈ N. If f (z) and L(f )
share a IM (a is a constant), then

L(f ) – a = h(z)
(
f (z) – a

)
,

where h(z) is a meromorphic function of order no less than .
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Theorem . Let f (z) be a non-constant entire function of order less than 
 and a(z) be a

non-zero small function of f (z). Set A(f ) = ak(z)�kf (z) + · · · + a(z)�f (z) + a(z)f (z), where
aj(z) (j = , , . . . ,k) are polynomial and ak(z) �≡ . If f (z) – a(z) =  → A(f ) – a(z) = , then

A(f ) – a(z)
f (z) – a(z)

= B(z),

where B(z) is a non-zero polynomial.

2 Some lemmas
In order to prove our theorems, we need the following lemmas and notions.
Following Hayman [, pp.-], we define an ε-set to be a countable union of open

discs not containing the origin and subtending angles at the origin whose sum is finite.
If E is an ε-set then the set of r ≥  for which the circle S(, r) = {z ∈ C : |z| = r} meets E
has finite logarithmic measure, and for almost all real θ the intersection of E with the ray
arg z = θ is bounded.

Lemma. ([]) Let n ∈ N. Let f (z) be transcendental andmeromorphic of order less than
 in the plane. Then there exists an ε-set En such that

�nf (z) → f (n)(z) as z → ∞ in C \ En.

Lemma . ([]) Let w(z) be an entire function of order ρ(w) = β < 
 , A(r) =

inf|z|=r log |w(z)| and B(r) = sup|z|=r log |w(z)|. If β < α < , then

logdens
{
A(r) > cos(πα)B(r)

}
(E)≥  –

β

α
,

where the lower logarithmic density logdensH of subset H ⊂ (,∞) is defined by

logdensH = lim inf
r→∞

(∫ r



(
χH(t)/t

)
dt

)/
log r,

and the upper logarithmic density logdensH of subset H ⊂ (,∞) is defined by

logdensH = lim sup
r→∞

(∫ r



(
χH(t)/t

)
dt

)/
log r,

where χH(t) is the characteristic function of the set H.

Lemma . ([]) Let f (z) be an entire function of finite order. Suppose that α is a non-zero
small function of f (z). Then there exists a set E ⊂ (,∞) satisfying logdens(E) = , such that

log+M(r,α)
log+M(r, f )

→ ,
M(r,α)
M(r, f )

→ ,

holds for |z| = r ∈ E, r → ∞.
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Lemma . ([]) Let f (z) be a meromorphic function with ρ(f ) = η < ∞. Then for any
given ε > , there is a set E ⊂ (, +∞) that has finite logarithmic measure such that

∣∣f (z)∣∣ ≤ exp
{
rη+ε

}
,

holds for |z| = r /∈ [, ]∪ E, r → ∞.

Applying Lemma. to 
f , it is easy to see that for any given ε > , there is a setE ⊂ (,∞)

of finite logarithmic measure such that

exp
{
–rη+ε

} ≤ ∣∣f (z)∣∣ ≤ exp
{
rη+ε

}

holds for |z| = r /∈ [, ]∪ E, r → ∞.

Lemma . ([]) Let f (z) be a transcendental meromorphic function, and α >  be a given
constant. Then

(i) there exists a set E ⊂ (,∞) with finite linear measure zero and a constant B >  that
depends only on α and j = , . . . ,k, such that if ϕ ∈ [, π ) \ E, then there is a
constant R = R(ϕ) >  so that for all z satisfying arg z = ϕ and |z| = r ≥ R, we have

∣∣∣∣ f
(j)(z)
f (z)

∣∣∣∣ ≤ B
(
T(αr, f )

r
(
logα r

)
logT(αr, f )

)j

, (.)

for all j = , . . . ,k;
(ii) there exists a set E ⊂ (,∞) with finite logarithmic measure and a constant B > 

that depends only on α and j = , . . . ,k, such that for all z satisfying |z| = r /∈ [, ]∪ E,
we have (.) holds.

Lemma . ([]) Let f (z) be an entire function of infinite order with σ(f ) = σ , and μ(r)
be the central index of f (z). Then

lim sup
r→∞

log logμ(r)
log r

= σ(f ) = σ .

3 Proof of Theorem 1.1
Under the hypothesis of Theorem ., see [], it is easy to get that

L(f ) – z
f (z) – z

=
h(z)
h(z)

eθ (z), (.)

where θ (z) is an entire function, entire functions h(z) and h(z) satisfy

σ (h) = lim sup
r→∞

log(NL(r, 
L(f )–z

))
log r

, σ (h) = lim sup
r→∞

log(NL(r, 
f (z)–z ))

log r
.

Therefore, by (.), we see that h(z) = h(z)
h(z)

is a meromorphic function of order no greater
than s (< ). If f (z) is a polynomial, then σ ( L(f )–zf (z)–z ) = . Theorem . holds under this con-
dition. Next we suppose that f (z) is transcendental. Set F(z) = f (z) – z. Then F(z) is tran-
scendental, σ (F) = σ (f ), σ(F) = σ(f ) <∞ and σ(F) /∈ N.
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Substituting f (z) = F(z) + z into (.), we get

ak(z)F (k)(z) + ak–(z)F (k–)(z) + · · · + a(z)F
′′ (z) + F(z)

F(z)
=
h(z)
h(z)

eθ (z). (.)

If θ (z) is a constant, then Theorem . holds. Otherwise, θ (z) is a polynomial or a tran-
scendental entire function, rewritten (.), we have

ak(z)
F (k)(z)
F(z)

+ ak–(z)
F (k–)(z)
F(z)

+ · · · + a(z)
F ′′ (z)
F(z)

=
h(z)
h(z)

eθ (z) – . (.)

Set E = {z| h(z)h(z)
=  or h(z)

h(z)
= ∞}, obviously, E has finite linearmeasure. FromLemma .,

for any given ε > , there exists a set E ⊂ (,∞) that has finite logarithmic measure such
that

exp
{
–rα+ε

} ≤ ∣∣aj(z)∣∣ ≤ exp
{
rα+ε

}
(j = , , . . . ,k) (.)

holds for |z| = r /∈ [, ]∪ E, r → ∞, where α =max{σ (aj)|j = , . . . ,k} < .
By Lemma ., there exists a set E ⊂ (,∞) with finite logarithmic measure and a con-

stant B >  such that for all z satisfying |z| = r /∈ [, ]∪ E, we have

∣∣∣∣F
(j)(z)
F(z)

∣∣∣∣ ≤ BT(r,F)j+ (j = , . . . ,k). (.)

By (.)-(.), for |z| = r /∈ [, ]∪ (E ∪ E ∪ E), r → ∞, we have

∣∣∣∣h(z)h(z)
eθ (z) – 

∣∣∣∣
≤

∣∣∣∣ak(z)F
(k)(z)
F(z)

∣∣∣∣ +
∣∣∣∣ak–(z)F

(k–)(z)
F(z)

∣∣∣∣ + · · · +
∣∣∣∣a(z)F

′′ (z)
F(z)

∣∣∣∣
≤ k exp

{
rα+ε

}
T(r,F)k+.

LetM(r, h(z)h(z)
eθ (z) – ) = | h(z)h(z)

eθ (z) – |, we obtain

M
(
r,
h(z)
h(z)

eθ (z) – 
)
=

∣∣∣∣h(z)h(z)
eθ (z) – 

∣∣∣∣ ≤ k exp
{
rα+ε

}
T(r,F)k+. (.)

From (.), we obtain

σ(f ) = σ(F)≥ σ

(
h(z)
h(z)

eθ (z) – 
)

≥ . (.)

By Wiman-Valiron theory, there exists a set E ⊂ (,∞) having finite logarithmic mea-
sure, we choose z satisfying |z| = r /∈ [, ]∪ E ∪ E, and |F(z)| = |M(r,F(z))|, then

F (j)(z)
F(z)

=
(

υ(r)
r

)j(
 + o()

)
(j = , . . . ,k), (.)
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where υ(r) is the central index of F(z). By (.), (.), (.), we obtain

exp
{
–rα+ε

}(υ(r)
r

)k(
 + o()

) ≤ ∣∣ak(z)∣∣
(

υ(r)
r

)k(
 + o()

)

≤ M
(
r,
h(z)
h(z)

eθ (z) – 
)
+

∣∣∣∣ak–(z)
(

υ(r)
r

)k–(
 + o()

)∣∣∣∣
+ · · · +

∣∣∣∣a(z)
(

υ(r)
r

)(
 + o()

)∣∣∣∣
≤ M

(
r,
h(z)
h(z)

eθ (z) – 
)
+ k exp

{
rα+ε

}(υ(r)
r

)k–(
 + o()

)
.

Hence

(
υ(r)
r

)k(
 + o()

)

≤ (k + ) exp
{
rα+ε

}
M

(
r,
h(z)
h(z)

eθ (z) – 
)(

υ(r)
r

)k–(
 + o()

)
. (.)

By Lemma ., (.), α < , and σ(F)≥ , we obtain

σ(f ) = σ(F)≤ σ

(
h(z)
h(z)

eθ (z) – 
)
. (.)

By combining (.) and (.), we obtain

σ(f ) = σ(F) = σ

(
h(z)
h(z)

eθ (z) – 
)
. (.)

If θ (z) is polynomial, we know σ(f ) ∈N; If θ (z) is transcendental, we get σ(f ) = ∞. Hence
this contradicts the hypothesis of Theorem .. Theorem . is thus proved.

4 Proof of Theorem 1.2
Under the hypothesis of Theorem ., it is easy to get that

L(f ) – a
f (z) – a

= h(z),

where h(z) is a meromorphic function. If σ (h) < , by the proof of Theorem ., similarly,
we can prove

σ(f ) = σ (h – a) ∈N,

which contradicts the fact that σ(f ) /∈ N. This completes the proof of Theorem ..

5 Proof of Theorem 1.3
Proof : By the Hadamard factorization theorem, we have

A(f ) – a(z)
f (z) – a(z)

= B(z), (.)

http://www.advancesindifferenceequations.com/content/2012/1/127
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where B(z) is an entire function of order less than 
 . If f (z) is polynomial, Theorem .

holds. Next, we consider that f (z) is transcendental. Set F(z) = f (z) – a(z). Then F(z) is
transcendental, and σ (F) < 

 . Substituting f (z) = F(z) + a(z) into (.), we have

ak(z)�kF(z) + ak–(z)�k–F(z) + · · · + a(z)F(z) + b(z)
F(z)

= B(z), (.)

where b(z) = ak(z)�ka(z) + · · ·+ a(z)�a(z) + a(z)(a(z) – ). By Lemma ., there exists an
ε-set En such that

�jF(z)∼ F (j)(z) (j = , , . . . ,n), (.)

as z → ∞ in C \ En. By Wiman-Valiron theory, there is a subset E ⊂ (,∞) with finite
logarithmic measure. We choose z satisfying |z| = r /∈ E and |F(z)| = |M(r, f (z))|, then we
have

F (j)(z)
F(z)

=
(

υ(r)
r

)j(
 + o()

)
(j = , , . . . ,k), (.)

where υ(r) is the central index of F(z). By (.)-(.), we have

ak(z)
(

υ(r)
r

)n(
 + o()

)
+ · · · + a(z)

(
υ(r)
r

)(
 + o()

)
+
b(z)
F(z)

= B(z) – a(z). (.)

By Lemma ., there exists a set E ⊂ (,∞) satisfying logdens(E) =  such that

M(r,b(z))
M(r,F(z))

→ . (.)

Together with σ (F) < , we get

(
υ(r)
r

)n

≤
(

υ(r)
r

)n–

≤ · · · ≤
(

υ(r)
r

)
. (.)

By (.)-(.), we have

∣∣B(z) – a(z)
∣∣ ≤ C

(
υ(r)
r

)
rC , (.)

where C is a constant. By Lemma ., for any α satisfying μ < α < 
 , there exists a set E

with logdens(E)≥  – μ

α
, such that

∣∣B(
reiθ

)
– a

(
reiθ

)∣∣ ≥ M
(
r, (B – a)λ

)
, (.)

for |z| = r ∈ E, where λ = cosπα.
Note the characteristic function of E and E such that the relation

χE∩E(t) = χE (t) + χE (t) – χE∪E (t).

http://www.advancesindifferenceequations.com/content/2012/1/127
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Obviously, logdens(E ∪ E) ≤ . Hence we obtain

 –
μ

α
≤ logdens(E) + logdens(E) – logdens(E ∪ E)≤ logdens(E ∩ E).

Thus, the upper logarithmic density of (E ∩ E) \ (En ∪ E ∪ E ∪ [, ]) is also more than
 – μ

α
. By (.) and (.), for z ∈ (E ∩ E) \ (En ∪ E ∪ E ∪ [, ]), we have

M
(
r, (B – a)λ

) ≤ C
(

υ(r)
r

)
rC .

If B(z) is transcendental, we get σ (f ) = ∞, which contradicts our assumption that σ (f ) < 
 .

So B(z) is polynomial. This proves Theorem ..
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