
Jang Advances in Difference Equations 2012, 2012:132
http://www.advancesindifferenceequations.com/content/2012/1/132

RESEARCH Open Access

Approximate ∗-derivations on fuzzy Banach
∗-algebras
Sun Young Jang*

*Correspondence: jsym@ulsan.ac.kr
Department of Mathematics,
University of Ulsan, Ulsan, 680-749,
South Korea

Abstract
In this paper, we establish functional equations of ∗-derivations and prove the
stability of ∗-derivations on fuzzy Banach ∗-algebras. We also prove the superstability
of ∗-derivations on fuzzy Banach ∗-algebras.
MSC: 39B52; 47B47; 46L05; 39B72

Keywords: derivation; Cauchy equation; Jensen equation; fuzzy Banach ∗-algebra;
stability; superstability

1 Introduction
LetA be a Banach ∗-algebra. A linearmapping δ :D(δ) →A is said to be a derivation onA
if δ(ab) = δ(a)b+aδ(b) for all a,b ∈A, whereD(δ) is a domain of δ andD(δ) is dense inA. If
δ satisfies the additional condition δ(a*) = δ(a)* for all a ∈A, then δ is called a ∗-derivation
on A. It is well known that if A is a C*-algebra and D(δ) is A, then the ∗-derivation δ is
bounded. For several reasons, the theory of bounded derivations of C*-algebras is very
important in the theory of quantum mechanics and operator algebras [, ].
A functional equation is called stable if any function satisfying a functional equation “ap-

proximately” is near to a true solution of the functional equation.We say that a functional
equation is superstable if every approximate solution is an exact solution of it.
In , Ulam [] proposed the following question concerning stability of group ho-

momorphisms:Under what condition is there an additive mapping near an approximately
additive mapping? Hyers [] answered positively the problem of Ulam for the case where
G andG are Banach spaces. A generalized version of the theoremofHyers for an approx-
imately linear mapping was given by ThM Rassias []. Since then, the stability problems
of various functional equations have been extensively investigated by a number of authors
(for instances, [, , , , , ]). In particular, those of the important functional equa-
tions are the following functional equations:

f (x + y) = f (x) + f (y), (.)

f
(
x + y


)
= f (x) + f (y), (.)

which are called the Cauchy equation and the Jensen equation, respectively. Every solution
of the functional equations (.) and (.) is said to be an additive mapping.
Since Katsaras [] introduced the idea of fuzzy norm on a linear space, several defini-

tions for a fuzzy norm on a linear space have been introduced and discussed fromdifferent
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points of view [–]. We use the definition of fuzzy normed spaces given in [, ] to in-
vestigate the stability of derivation in the fuzzy Banach ∗-algebra setting. The stability of
functional equations in fuzzy normed spaces was begun by [], after then lots of results
of fuzzy stability were investigated [, , , ].

Definition . [, , ] Let X be a real vector space. A function N : X × R → [, ] is
called a fuzzy norm on X if for all x, y ∈ X and all s, t ∈R,

(N) N(x, t) =  for t ≤ ;
(N) x =  if and only if N(x, t) =  for all t > ;
(N) N(cx, t) =N(x, t

|c| ) if c �= ;
(N) N(x + y, s + t) ≥ min{N(x, s),N(y, t)};
(N) N(x, ·) is a non-decreasing function of R and limt→∞ N(x, t) = ;
(N) for x �= , N(x, ·) is continuous on R.

The pair (X,N) is called a fuzzy normed vector space.
Furthermore, we can make (X,N) a fuzzy normed ∗-algebra if we add (N) and (N) as

follows:

(N) N(xy, st)≥ min{N(x, s),N(y, t)};
(N) N(x, t) =N(x*, t).

The properties and examples of fuzzy normed vector spaces, fuzzy algebras, and fuzzy
norms are given in [, , , ].

Definition . [, , ] Let (X,N) be a fuzzy normed vector space. A sequence {xn} in X
is said to be convergent or converge if there exists an x ∈ X such that limn→∞ N(xn–x, t) = 
for all t > . In this case, x is called the limit of the sequence {xn} and we denote it by N-
limn→∞ xn = x.

Definition . [, , ] Let (X,N) be a fuzzy normed vector space. A sequence {xn} in
X is called Cauchy if for each ε >  and each t >  there exists an n ∈ N such that for all
n≥ n and all p > , we have N(xn+p – xn, t) >  – ε.

It is well known that every convergent sequence in a fuzzy normed vector space is
Cauchy. If each Cauchy sequence is convergent, then the fuzzy norm is said to be com-
plete and the fuzzy normed vector space is called a fuzzy Banach space.
We say that a mapping f : X → Y between fuzzy normed vector spaces X and Y is con-

tinuous at a point x ∈ X if for each sequence {xn} converging to x inX, then the sequence
{f (xn)} converges to f (x). If f : X → Y is continuous at each x ∈ X, then f : X → Y is said
to be continuous on X.
In this paper, using the functional equation of ∗-derivations

f (λa + b + cd) = λf (a) + f (b) + f (c)d + cf (d)

introduced in [] we prove fuzzy version of the stability of ∗-derivations associated to
the Cauchy functional equation and the Jensen functional equation. We also prove the
superstability of ∗-derivations on fuzzy Banach ∗-algebras.
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2 Stability of ∗-derivations on fuzzy Banach ∗-algebras
In this section, let A be a fuzzy Banach ∗-algebra.

Theorem . Let ϕ :A → [,∞) and ψ :A → [,∞) be control functions such that

ϕ̃(a,b, c,d) :=



∞∑
n=

–nϕ
(
na, nb, nc, nd

)
< ∞, (.)

lim
n→∞–nψ

(
na, nb

)
= . (.)

Suppose that f :A→A is a mapping with f () =  satisfying the followings:

lim
t→∞N

(
f (λa + b + cd) – λf (a) – f (b) – f (c)d – cf (d), tϕ(a,b, c,d)

)
=  (.)

uniformly on A and for all λ ∈ T := {λ ∈ C : |λ| = }

lim
t→∞N

(
f (a)* – f

(
a*

)
, tψ

(
a,a*

))
=  (.)

uniformly on A. Then there exists a unique ∗-derivation δ on A satisfying

lim
t→∞N

(
f (a) – δ(a), tϕ̃(a,a, , )

)
=  (.)

for all a ∈A.

Proof Let  < ε <  be given. Setting a = b, c = d =  and λ =  in (.), we can find some
t >  such that

N
(
f (a) – f (a), tϕ(a,a, , )

) ≥  – ε

for all a ∈A and t ≥ t. One can use induction to show that

N

(
f
(
na

)
– nf (a), t

n–∑
k=

n–k–ϕ
(
ka, ka, , 

)) ≥  – ε. (.)

Let t = t and put n = p then by replacing a with na in (.), we obtain

N

(
f (n+pa)
n+p

–
f (na)
n

,
t
n+p

p–∑
k=

p–k–ϕ
(
n+ka, n+ka, , 

)) ≥  – ε (.)

for all integers n≥ , p≥ . By the convergence of (.) there is n ∈N such that

t


n+p–∑
k=n

–kϕ
(
ka, ka, , 

) ≤ δ

for all n ≥ n and p > . Since the fuzzy norm N(x, ·) is nondecreasing, we can have

N
(
f (n+pa)
n+p

–
f (na)
n

, δ
)

http://www.advancesindifferenceequations.com/content/2012/1/132
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≥ N

(
f (n+pa)
n+p

–
f (na)
n

,
t
n+p

p–∑
k=

p–k–ϕ
(
n+ka, n+ka, , 

)) ≥  – ε. (.)

It follows from (.) and Definition . that the sequence { f (na)n } is Cauchy. Due to the
completeness of A, this sequence is convergent. Define

δ(a) :=N – lim
n→∞

f (na)
n

(.)

for all a ∈A. From the above equation, we have

δ

(

k

a
)
=N – lim

n→∞

k

f (n–ka)
n–k

=

k

δ(a) (.)

for each k ∈N. Moreover, letting n =  and passing the limit p→ ∞ in (.), we get

lim
t→∞N

(
f (a) – δ(a), tϕ̃(a,a, , )

)
=  (.)

for all a ∈A. Putting c = d =  and replacing a and b by na and nb, respectively, in (.),
there exists t >  such that

N
(
–nf

(
n(λa + b)

)
– λ–nf

(
na

)
– –nf

(
nb

)
, t–nϕ

(
na, nb, , 

)) ≥  – ε

for all t ≥ t. Let a,b ∈ A. Temporarily fix t > . Since limn→∞ 
n tϕ(

na, nb, , ) = ,
there exists n >  such that

tϕ
(
na, na, , 

) ≤ nt


,

for all n ≥ n. Hence, we have

N
(
δ(λa + b) – λδ(a) – δ(b), t

)
≥ min

{
N

(
δ(λa + b) – –nf

(
n(λa + b)

)
,
t


)
,N

(
λδ(a) – λ–nf

(
na

)
,
t


)
,

N
(

δ(b) – –nf
(
nb

)
,

t

)
,N

(
f
(
n(λa + b)

)
– λf

(
na

)
– f

(
nb

)
,
n
t

)}
for all n ≥ n and t > . The first three terms on the second and third lines of the above
inequality tend to  as n→ ∞. Furthermore, the last term is greater than

N
(
f
(
n(λa + b)

)
– λf

(
na

)
– f

(
nb

)
, tϕ

(
na, nb, , 

))
,

which is greater than or equal to  – ε. Therefore,

N
(
δ(λa + b) – λδ(a) – δ(b), t

) ≥  – ε

for all t > . It follows that δ(λa+b) = λδ(a)+δ(b) by (N) for all a,b ∈A and all λ ∈ T. Next,
let λ = λ + iλ ∈Cwhere λ,λ ∈ R. Let γ = λ – [λ] and γ = λ – [λ], where [λ] denotes

http://www.advancesindifferenceequations.com/content/2012/1/132


Jang Advances in Difference Equations 2012, 2012:132 Page 5 of 13
http://www.advancesindifferenceequations.com/content/2012/1/132

the integer part of λ. Then  ≤ γi <  ( ≤ i ≤ ). One can represent γi as γi =
λi,+λi,

 such
that λi,j ∈ T ( ≤ i, j ≤ ). From (.), we infer that

δ(λx) = δ(λx) + iδ(λx)

=
(
[λ]δ(x) + δ(γx)

)
+ i

(
[λ]δ(x) + δ(γx)

)
=

(
[λ]δ(x) +



δ(λ,x + λ,x)

)
+ i

(
[λ]δ(x) +



δ(λ,x + λ,x)

)
=

(
[λ]δ(x) +



λ,δ(x) +



λ,δ(x)

)
+ i

(
[λ]δ(x) +



λ,δ(x) +



λ,δ(x)

)
= λδ(x) + iλδ(x)

= λδ(x)

for all x ∈A. Hence, δ is C-linear. Putting a = b =  and replacing c and d by nc and nd,
respectively, in (.), there exists t >  such that

N
(
–nf

(
ncd

)
– –nf

(
nc

)(
nd

)
– –n

(
nc

)
f
(
nd

)
, t–nϕ

(
,, nc, nd

)) ≥  – ε

for all t ≥ t. Fix t(> ) temporarily. By (.) there exists n >  such that

tϕ
(
,, nc, nd

) ≤ nt


for all n ≥ n and t > . We have

N
(
δ(cd) – δ(c)d – cδ(d), t

)
≥ min

{
N

(
δ(cd) – –nf

(
ncd

)
,
t


)
,N

(
δ(c)d – –nf

(
nc

)(
nd

)
,
t


)
,

N
(
cδ(d) – –n

(
nc

)
f
(
nd

)
,
t


)
,

N
(
f
(
ncd

)
– f

(
nc

)(
nd

)
–

(
nc

)
f
(
nd

)
,
n
t

)}
≥ min

{
N

(
δ(cd) – –nf

(
ncd

)
,
t


)
,N

(
δ(c)d – –nf

(
nc

)(
nd

)
,
t


)
,

N
(
cδ(d) – –n

(
nc

)
f
(
nd

)
,
t


)
,

N
(
f
(
ncd

)
– f

(
nc

)(
nd

)
–

(
nc

)
f
(
nd

)
, tϕ

(
,, nc, nd

))}

for all n ≥ n and t > . From the above computation

δ(cd) = δ(c)d + cδ(d) (.)

for all c,d ∈ A. So it is a derivation on A. Moreover, it follows from (.) with n =  and
(.) that limt→∞ N(δ(a) – f (a), tϕ̃(a,a, , )) =  for all a ∈ A. It is well known that the

http://www.advancesindifferenceequations.com/content/2012/1/132
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additive mapping δ satisfying (.) is unique (see [] or []). Replacing a and a* by na
and na*, respectively, in (.) we can find t >  such that

N
(
–nf

(
na

)* – –nf
(
na*

)
, t–nψ

(
na, na*

)) ≥  – ε

for all a ∈A and all t > t. Since limn→∞ –nψ(na, na*) = , there exists some n >  such
that tψ(na, na*) < tn

 for all n≥ n. Hence,

N
(
δ(a)* – δ

(
a*

)
, t

)
≥ min

{
N

(
δ(a)* – –nf

(
na

)*, t


)
,N

(
δ
(
a*

)
– –nf

(
na*

)
,
t


)
,

N
(
f
(
na

)* – f
(
na*

)
,
nt


)}
.

The first two terms on the right-hand side of the above inequality tend to  as n → ∞.
Furthermore, the last term is greater than

N
(
f
(
na

)* – f
(
na*

)
, tψ

(
na, na*

))
,

which is greater than or equal to  – ε. So, we have that N(δ(a)* – δ(a*), t) >  – ε for all
t > . It follows from that δ(a*) = δ(a)* for all a ∈A. So, δ is a *-derivation on A. �

Theorem . Suppose that f : A → A is a mapping with f () =  for which there exist
functions ϕ :A → [,∞) and ψ :A → [,∞) such that

ϕ̃(a,b, c,d) :=



∞∑
n=

nϕ
(
–na, –nb, –nc, –nd

)
< ∞,

lim
n→∞nψ

(
–na, –nb

)
= ,

lim
t→∞N

(
f (λa + b + cd) – λf (a) – f (b) – f (c)d – cf (d), tϕ(a,b, c,d)

)
= ,

lim
t→∞N

(
f (a)* – f (a)*, tψ

(
a,a*

))
= 

for all λ ∈ T and all a,b, c,d ∈A. Then there exists a unique ∗-derivation δ onA satisfying

lim
t→∞N

(
f (a) – δ(a), tϕ̃(a,a, , )

)
= 

for all a ∈A.

3 Stability of ∗-derivations associated to the Jensen equation
The stability of the Jensen equation has been studied first by Kominek and then by several
other mathematicians: ([]). In this section, we study the stability of ∗-derivation associ-
ated to the Jensen equation in a fuzzy Banach ∗-algebraA.

Theorem . Let A be a fuzzy Banach ∗-algebra. Suppose that f :A → A is a mapping
with f () =  for which there exist functions ϕ :A → [,∞) and ψi :A → [,∞) ( ≤ i ≤

http://www.advancesindifferenceequations.com/content/2012/1/132
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) such that

ϕ̃(a,b) :=
∞∑
n=

–nϕ
(
na, nb

)
< ∞, (.)

lim
n→∞–nψi

(
na, nb

)
=  ( ≤ i≤ ),

lim
t→∞N

(
f

(
λa + λb



)
– λf (a) – λf (b), tϕ(a,b)

)
= , (.)

lim
t→∞N

(
f
(
a*

)
– f (a)*, tψ

(
a,a*

))
= , (.)

lim
t→∞N

(
f (ab) – af (b) – f (a)b, tψ(a,b)

)
=  (.)

for all a,b ∈A and all λ ∈ T. Then there exists a unique ∗-derivation δ on A satisfying

lim
t→∞N

(
f (a) – δ(a),

t

(
ϕ̃(a, –a) + ϕ̃(–a, a)

))
=  (.)

for all a ∈A.

Proof Let  < ε <  be given. Letting λ = – and b = –a in (.), we can find some t > 
such that

N
(
f (a) + f (–a), tϕ(a, –a)

) ≥  – ε

for all a ∈ A and t ≥ t. Letting λ =  and replacing a and b by –a and a, respectively, in
(.), we get also t ≥ t such that

N
(
f (a) – f (–a) – f (a), tϕ(–a, a)

) ≥  – ε

for all a ∈A and t ≥ t. Thus,

N
(
f (a) –



f (a),

t

(
ϕ(a, –a) + ϕ(–a, a)

))
≥ min

{
N

(


(
f (a) + f (–a)

)
,
t

ϕ(a, –a)

)
,

N
(


(
f (a) – f (–a) – f (a)

)
,
t

ϕ(–a, a)

)}
≥  – ε (.)

for all a ∈A. Replace a by na in (.)

N
(
f (na)
n

–
f (n+a)
n+

,
t

n+
(
ϕ
(
na, –na

)
+ ϕ

(
–na, n+a

))) ≥  – ε.

Given δ > , there exists an integer n >  such that

t


n–∑
j=m

–j
(
ϕ
(
ja, –ja

)
+ ϕ

(
–ja, j+a

)) ≤ δ

for all n ≥ m≥ n.

http://www.advancesindifferenceequations.com/content/2012/1/132


Jang Advances in Difference Equations 2012, 2012:132 Page 8 of 13
http://www.advancesindifferenceequations.com/content/2012/1/132

So, we have

N
(


n

f
(
na

)
–


m

f
(
ma

)
, δ

)
(.)

≥ N

(

n

f
(
na

)
–


m

f
(
ma

)
,
t


n–∑
j=m

–j
(
ϕ
(
ja, –ja

)
+ ϕ

(
–ja, j+a

)))
(.)

≥ min
m≤j≤n–

{
N

(

j
f
(
ja

)
–


j+

f
(
j+a

)
,
t

(
ϕ
(
ja, –ja

)
+ ϕ

(
–ja, j+a

)))}
≥  – ε

for all nonnegative integers n, m with n ≥ m ≥ n and all a ∈ A. It follows from Defini-
tion . that the sequence { 

n f (
na)} is a Cauchy sequence for all a ∈ A. Since A is com-

plete, the sequence { 
n f (

na)} is convergent. So, one can define the mapping δ :A → A
by

δ(a) =N – lim
n→∞


n

f
(
na

)
(.)

for all a ∈ A. If we put λ =  and replace a, b with na, nb, respectively, in (.), we can
find some t >  such that

N
(
f

(
n

a + b


)
– f

(
na

)
– f

(
nb

)
, –ntϕ

(
na, nb

)) ≥  – ε

for all t ≥ t. Fix t >  temporarily. Since limn→∞ –nϕ(na, nb) = , there is some n > 
such that tϕ(na, nb) < nt

 for all n≥ n. Then we have

N
(
δ

(
a + b


)
– δ(a) – δ(b), t

)
≥ min

{
N

(
δ

(
a + b


)
–


n

f
(
n

a + b


)
,
t


)
,N

(
δ(a) –

f (na)
n

,
t


)
,

N
(

δ(b) –
f (nb)
n

,
t


)
,N

(
f

(
n

a + b


)
– f

(
na

)
– f

(
nb

)
,
nt


)}
for all a,b ∈ A and t > . The first three terms on the second and third lines of the above
inequality tend to  as n→ ∞. Furthermore, the last term is greater than

N
(
f

(
n

a + b


)
– f

(
na

)
– f

(
nb

)
, tϕ

(
na, nb

))
,

which is greater than or equal to  – ε.
So, we have

N
(
δ

(
a + b


)
– δ(a) – δ(b), t

)
≥  – ε

for all t > . By the definition of fuzzy norm, we have

δ
(
a + b


)
= δ(a) + δ(b) (.)

http://www.advancesindifferenceequations.com/content/2012/1/132
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for all a,b ∈A. Since f () = , we have δ() = . Putting b =  in (.), we get δ( a ) = δ(a)
for each a ∈ A and, therefore, δ(a) + δ(b) = δ( a+b ) = δ(a + b) for all a,b ∈ A. Moreover,
lettingm =  and passing the limit n→ ∞ in (.), we get

N
(
f (a) – δ(a),

t

(
ϕ̃(a, –a) + ϕ̃(–a, a)

)) ≥  – ε

for all a ∈A. So, we have Eq. (.). It is known that such an additive mapping δ is unique.
Let λ ∈ T. Replacing both a and b in (.) by na and dividing the both sides of the obtained
inequality by n, there exists some t >  such that

N
(
–nf

(
λna

)
– λ–nf

(
na

)
, –ntϕ

(
na, na

)) ≥  – ε

for all a ∈ A and all t ≥ t. Fix t >  temporarily. Since limn→∞ –nφ(na, nb) = , there
exists n >  such that –nφ(na, nb)≤ t

 for all n≥ n.
If we consider the following inequality

N
(
δ(λa) – λδ(a), t

)
≥ min

{
N

(
δ(λa) – –nf

(
λna

)
,
t


)
,N

(
λδ(a) – –nf

(
λna

)
,
t


)
,

N
(
–nf

(
λna

)
– –nf

(
λna

)
,
t


)}
,

then the first two terms on the second line of the above inequality tend to  as n→ ∞ and
the last term is greater than

N
(
–nf

(
λna

)
– λ–nf

(
na

)
, –ntϕ

(
na, na

))
,

which is greater than or equal to  – ε. So, we can get δ(λa) = λδ(a) for all λ ∈ C by the
similar discussion in the proof Theorem .. Replacing both a and a* in (.) by na and
na*, and then dividing the both sides of the obtained inequality by n, we find some t > 
such that

N
(
–nf

(
na

)* – –nf
(
na*

)
, t–nψ

(
na, na*

)) ≥  – ε

for all t ≥ t. Fix t >  temporarily. Since limn→∞ –nψ(na, na*) = , there exists n > 
such that –ntψ(na, na*) ≤ t

 for all n≥ n. We consider the following inequality:

N
(
δ
(
a*

)
– δ(a)*, t

)
≥ min

{
N

(
δ
(
a*

)
– –nf

(
na*

)
,
t


)
,N

(
δ(a)* – –nf

(
na

)*, t


)
,

N
(
–nf

(
na*

)
– –nf

(
na

)*, t


)}
.

Then we get δ(a*) = δ(a)* for all a ∈ A. For the derivation property, replacing both a and
b in (.) by na and nb, we can find some t >  such that

N
(
f (nab)

n
–
naf (nb)

n
–
f (na)(nb)

n
, –ntψ

(
na, nb

)) ≥  – ε

http://www.advancesindifferenceequations.com/content/2012/1/132


Jang Advances in Difference Equations 2012, 2012:132 Page 10 of 13
http://www.advancesindifferenceequations.com/content/2012/1/132

for all t ≥ t. By (.), there exists n ∈N such that –ntψ(na, nb) ≤ t
 for all n ≥ n and

t > . We can get δ(ab) = δ(a)b + aδ(b) for all a,b ∈A from the following computation:

N
(
δ(ab) – aδ(b) – δ(a)b, t

)
≥ min

{
N

(
δ(ab) –

f (nab)
n

,
t


)
,N

(
aδ(b) –

naf (nb)
n

,
t


)
,

N
(

δ(a)b –
f (na)(nb)

n
,
t


)
,N

(
f (nab)

n
–
naf (nb)

n
–
f (na)(nb)

n
,
t


)}
.

Hence, δ is the ∗-derivation on A that we want. �

4 Superstability of ∗-derivations
In this section, we prove the superstability of ∗-derivations on a fuzzy Banach ∗-algebras.
More precisely, we introduce the concept of (ψ ,ϕ)-approximate ∗-derivation and show
that any (ψ ,ϕ)-approximate ∗-derivation is just a ∗-derivation.

Definition . Suppose that A is a ∗-normed algebra and s ∈ {–, }. Let δ : A → A be
a mapping for which there exist a function ϕ : A → A, and functions ψi : A × A → R

(≤ i ≤ ) satisfying

lim
n→∞n–sψi

(
nsa,b

)
= lim

n→∞n–sψi
(
a,nsb

)
=  (a,b ∈A) (.)

such that

lim
t→∞N

(
ϕ(a)b – aδ(b), tψ(a,b)

)
= , (.)

lim
t→∞N

(
ϕ(a)cd – a

(
δ(c)d – cδ(d)

)
, tψ(a, cd)

)
= , (.)

lim
t→∞N

(
aδ(b)* – ϕ(a)b*, tψ(a,b)

)
=  (.)

for all a,b, c,d ∈A. Then δ is called a (ψ ,ϕ)-approximate ∗-derivation on A.

Theorem. LetA be a fuzzy Banach ∗-algebra with approximate unit. Then any (ψ ,ϕ)-
approximate ∗-derivation δ on A is a ∗-derivation.

Proof We assume that (.) holds. An arbitrary ε >  is given. Let a,b ∈A and λ ∈ C. For
n ∈N there exists t >  by (.) such that

N
(
n–s

(
nsbδ(λa) – ϕ

(
nsb

)
λa

)
,n–stψ

(
nsb,λa

)) ≥  – ε,

N
(
n–s

(
ϕ
(
nsb

)
λa – λnsbδ(a)

)
,n–st|λ|ψ

(
nsb,a

)) ≥  – ε

for all t ≥ t. Fix t >  temporarily. Since limn→∞ n–sψ(nsa,b) = limn→∞ n–sψ(a,nsb) = ,
there exists n >  such that tn–sψ(nsb,λa) ≤ t

 and n–st|λ|ψ(nsb,a) ≤ t
 for all n ≥ n

and t > .

http://www.advancesindifferenceequations.com/content/2012/1/132
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We have

N
(
b
(
δ(λa) – λδ(a)

)
, t

)
=N

(
n–s

(
nsbδ(λa) – ϕ

(
nsb

)
λa + ϕ

(
nsb

)
λa – λnsbδ(a)

)
, t

)
≥ min

{
N

(
n–s

(
nsbδ(λa) – ϕ

(
nsb

)
λa

)
,
t


)
,N

(
n–s

(
ϕ
(
nsb

)
λa – λnsbδ(a)

)
,
t


)}
.

Since

N
(
n–s

(
nsbδ(λa) – ϕ

(
nsb

)
λa

)
,
t


)
≥ N

(
n–s

(
nsbδ(λa) – ϕ

(
nsb

)
λa

)
, tn–sψ

(
nsa,b

))
and

N
(
n–s

(
ϕ
(
nsb

)
λa – λnsbδ(a)

)
,
t


)
≥ N

(
n–s

(
ϕ
(
nsb

)
λa – λnsbδ(a)

)
, tn–s|λ|ψ

(
nsb,a

))
,

it leads us to have a conclusion that N(b(δ(λa) – λδ(a)), t) ≥  – ε for all t > . Therefore,
b(δ(λa) – λδ(a)) =  for all b ∈ A by (N). Let {ei}i∈I be an approximate unit of A. If we
replace b with {ei}i∈I , then we have

ei
(
δ(λa) – λδ(a)

)
= 

for all i ∈ I . So we conclude that δ(λa) = λδ(a) for all a ∈ A and λ ∈ C. Next, we are going
to prove the additivity of δ. By (.), there exists t >  such that

N
(
n–s

(
nscδ(a + b) – ϕ

(
nsc

)
(a + b)

)
,n–stψ

(
nsc,a + b

)) ≥  – ε,

N
(
n–s

(
nscδ(a) – ϕ

(
nsc

)
a
)
,n–stψ

(
nsc,a

)) ≥  – ε,

and

N
(
n–s

(
nscδ(b) – ϕ

(
nsc

)
b
)
,n–stψ

(
nsc,b

)) ≥  – ε

for all t ≥ t. Fix t >  temporarily. By (.), we can find n >  such that n–stψ(nsc,a+b)≤
t
 , n

–stψ(nsc,a) ≤ t
 , and n–stψ(nsc,b) ≤ t

 for all n≥ n.
For the additivity, we can have

N
(
c
(
δ(a + b) – δ(a) – δ(b)

)
, t

)
=N(n–s

(
nscδ(a + b) – ϕ

(
nsc

)
(a + b)

)
+ n–s

(
nscδ(a) – ϕ

(
nsc

)
a
)
+ n–s

(
nscδ(b) – ϕ

(
nsc

)
b
)
, t)

≥ min

{
N

(
n–s

(
nscδ(a + b) – ϕ

(
nsc

)
(a + b)

)
,
t


)
,N

(
n–s

(
nscδ(a) – ϕ

(
nsc

)
a
)
,
t


)
,

N
(
n–s

(
nscδ(b) – ϕ

(
nsc

)
b
)
,
t


)}
≥ min

{
N

(
n–s

(
nscδ(a + b) – ϕ

(
nsc

)
(a + b)

)
,n–stψ

(
nsc,a + b

))
,
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N
(
n–s

(
nscδ(a) – ϕ

(
nsc

)
a
)
,n–stψ

(
nsc,a

))
,

N
(
n–s

(
nscδ(b) – ϕ

(
nsc

)
b
)
,n–stψ

(
nsc,b

))}
.

Since all terms of the final inequality of the above inequality are larger than  – ε, we can
haveN(c(δ(a+b) – δ(a) – δ(b)), t) > – ε for all t > .We can get c(δ(a+b) – δ(a) – δ(b)) = 
for all a,b, c ∈ A by (N). By using the approximate unit of A, we have that δ(a + b) =
δ(a) + δ(b) for all a,b ∈ A. Next, we are going to show the derivation property of δ. From
(.) and (.), there exists t >  such that

N
(
n–s

(
nszδ(ab) – ϕ

(
nsz

)
(ab)

)
,n–stψ

(
nsz,ab

)) ≥  – ε,

N
(
n–s

(
ϕ
(
nsz

)
ab – nsz

(
δ(a)b + aδ(b)

))
,n–stψ

(
nsz,ab

)) ≥  – ε

for all t ≥ t. By (.), we can find n >  such that n–stψ(nsz,ab) ≤ t
 and n

–stψ(nsz,ab) ≤
t
 for all n≥ n. The following computation

N
(
z
(
δ(ab) – δ(a)b – aδ(b)

)
, t

)
≥ min

{
N

(
n–s

(
nszδ(ab) – ϕ

(
nsz

)
(ab)

)
,
t


)
,

N
(
n–s

(
ϕ
(
nsz

)
ab – nsz

(
δ(a)b + aδ(b)

))
,
t


)}
≥ min

{
N

(
n–s

(
nszδ(ab) – ϕ

(
nsz

)
(ab)

)
,n–stψ

(
nsz,ab

))
,

N
(
n–s

(
ϕ
(
nsz

)
ab – nsz

(
δ(a)b + aδ(b)

))
,n–stψ

(
nsz,ab

))} ≥  – ε

yields that δ(ab) = δ(a)b + aδ(b) for all a,b ∈ A. By (.) and (.) there exists t >  such
that

N
(
n–s

(
nszδ

(
a*

)
– ϕ

(
nsz

)
a*

)
,n–stψ

(
nsz,a*

)) ≥  – ε,

N
(
n–s

(
ϕ
(
nsz

)
a* – nszδ(a)*

)
,n–stψ

(
nsz,a

)) ≥  – ε

for all t ≥ t. For fixing t >  temporarily, there exists n >  such that n–stψ(n–sz,a*)≤ t


and n–stψ(nsz,a) ≤ t
 for n≥ n. From the following computation

N
(
z
(
δ
(
a*

)
– δ(a)*

)
, t

)
=N

(
n–s

(
nszδ

(
a*

)
– ϕ

(
nsz

)
a*

)
+ n–s

(
ϕ
(
nsz

)
a* – nszδ(a)*

)
, t

)
≥ min

{
N

(
n–s

(
nszδ

(
a*

)
– ϕ

(
nsz

)
a*

)
,
t


)
,N

(
n–s

(
ϕ
(
nsz

)
a* – nszδ(a)*

)
,
t


)}
≥ min

{
N

(
n–s

(
nszδ

(
a*

)
– ϕ

(
nsz

)
a*

)
,n–stψ

(
n–sz,a*

))
,

N
(
n–s

(
ϕ
(
nsz

)
a* – nszδ(a)*

)
,n–stψ

(
nsz,a

))}
>  – ε

we can have N(z(δ(a*) – δ(a)*), t) >  – ε for all t > . By (N) and using approximate unit
δ(a*) = δ(a)* for all a ∈A. Thus, δ is a ∗-derivation on A. �
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