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Abstract
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1 Introduction
The fractional derivative (or called the noninteger order derivative) was invented by Leib-
nitz and L’Hospital around the seventeenth century and the related calculuswas developed
in about  years later [–]. Although the concepts and calculus of fractional differen-
tial equations (FDEs) are several centuries old, they are realized only some decades ago
that these derivatives can be employed in modeling the real world excellently [, ]. Thus
in recent years, the FDEs are extensively applied to many fields of the science and engi-
neering, such as heat transfer problem of blast furnace [], financial market’s behaviors
[], polymer physics [, ], material molding [], electrocircuit [], chemical reaction
[], and biology []. Boundary value problems (BVPs) of differential equations could be
seen in scientific and engineering disciplines and have been investigated systematically by
many authors; for more details, we refer to [–] and related references therein. More
precisely, there has been much work of extending the theory of BVPs from classical differ-
ential equations to the sense of fractional differential equations. For instance, in [], a kind
of irregular boundary value problems is discussed. In [], the existence of fractional dif-
ferential equations with anti-periodic boundary conditions is studied, and in [], Z. Bai
investigates the positive solutions of nonlinear fractional boundary value problems. For
more details of positive solutions of fractional differential systems and fractional BVPs
with nonlocal conditions, see [, ] and references therein.
In this paper, we mainly study a kind of general irregular boundary value problem for

nonlinear fractional equations of fractional order q ∈ (, ]. Motivated by [], we consider
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the following irregular boundary value problem

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

cDqx(t) = f (t,x(t)),  ≤ t ≤ π ,  < q ≤ ,

(–)αx′() + (–)βx′(π ) + ax() + bx(π ) = ,

(–)αx() + (–)βx(π ) = ,

αi = , , βi = , , i = , ,

()

where cDq is the Caputo fractional derivative of order q which is defined in next section
and f : [,π ]×X → X. Here, (X,‖ · ‖) is a Banach space and � = C([,π ],X) denotes the
Banach space of all continuously differentiable functions from [,π ] to X endowed with a
topology of uniform convergence with the norm denoted by ‖ · ‖.

2 Preliminaries
We give some basic definitions and properties of the fractional calculus theory which are
essential in this paper. They are easily found in [, , , ].

Definition . ([]) A real function f (x) > , x > , is said to be in the space Cμ, μ ∈ R if
there exists a real number p (> μ), such that f (x) = xpf(x), where f(x) ∈ C[, +∞), and it
is said to be in the space Cm

μ if and only if f (m) ∈ Cμ,m ∈N .

Definition . ([, ]) The Riemann-Liouville fractional integral operator of order q ≥ ,
of a function x ∈ Cμ, μ > –, is defined as

Iqx(t) =


�(q)

∫ t


(t – τ )q–x(τ )dτ , q > , t > . ()

Particularly, if q = , Ix(t) = x(t).

Definition . ([, ]) The fractional derivative of x(t) in the Caputo sense is defined as

cDqx(t) =


�(n – q)

∫ t


(t – τ )n–q–x(n)(τ )dτ ,

for n –  < q ≤ n, n ∈N+, t > , x ∈ Cn
–.

Lemma . ([]) For q > , the general solution of the fractional differential equation
cDqx(t) =  is given by

x(t) = c + ct + ct + · · · + cn–tn–,

where ci ∈ R, i = , , , . . . ,n –  (n = [q] + , [q] denotes the integer part of the real number
q).

Lemma . ([]) For any x ∈ Cn
–, then

Iq
{cDqx(t)

}
= x(t) + c + ct + ct + · · · + cn–tn–, ()

where ci ∈ R, i = , , . . . ,n– (n = [q]+). Here, Iq denotes the Riemann-Liouville fractional
integral operator of order q.
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Lemma . For any given σ ∈ C[,π ], the unique solution of the boundary value problem

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

cDqx(t) = σ (t),  ≤ t ≤ π ,  < q ≤ ,

(–)αx′() + (–)βx′(π ) + ax() + bx(π ) = ,

(–)αx() + (–)βx(π ) = ,

αi = , , βi = , , i = , ,

()

is given by

x(t) =
∫ t



(t – s)q–

�(q)
σ (s)ds –

M

M
–
M

M
t, M 	= , ()

where

M =
(
a(–)β – b(–)α

)
π –

(
(–)α+α + (–)α+β + (–)α+β + (–)β+β

)
,

M =
(
a(–)β – b(–)α

)∫ π



(π – s)q–

�(q)
σ (s)ds

–
(
(–)α+β + (–)β+β

)∫ π



(π – s)q–

�(q – )
σ (s)ds,

M = π (–)β+β

∫ π



(π – s)q–

�(q – )
σ (s)ds

–
(
(–)α+β + (–)β+β

)∫ π



(π – s)q–

�(q)
σ (s)ds.

Proof According to Eq. (), the general solution of Eq. () can be written as

x(t) = Iqσ (t) – c – ct =
∫ t



(t – s)q–

�(q)
σ (s)ds – c – ct, ()

where c, c are arbitrary constants. Then differentiating Eq. () to t yields that

x′(t) =
∫ t



(t – s)q–

�(q – )
σ (s)ds – c. ()

Using the boundary conditions in Eq. (), we have the following equations from Eq. ()
and Eq. ():

⎧⎪⎪⎨
⎪⎪⎩
(–)α (–c) + (–)β (

∫ π


(π–s)q–
�(q–) σ (s)ds – c)

+ a(–c) + b(
∫ π


(π–s)q–

�(q) σ (s)ds – c – cπ ) = ,

(–)α (–c) + (–)β (
∫ π


(π–s)q–

�(q) σ (s)ds – c – cπ ) = .

()

It follows that

⎧⎨
⎩
c = AB–BB

AB–AB
,

c = AB–AA
AB–AB

,
()
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where

A = (–)β
∫ π



(π – s)q–

�(q – )
σ (s)ds + b

∫ π



(π – s)q–

�(q)
σ (s)ds,

A = a + b,

A = (–)α + (–)β ,

B = (–)β
∫ π



(π – s)q–

�(q)
σ (s)ds,

B = (–)α + (–)β + bπ ,

B = (–)βπ .

Setting M = AB – AB, M = AB – AA, M = AB – BB, we get Eq. (). This
completes the proof. �

The boundary value condition in BVP () is more general. If a = b = , and α = α =
β = β = , the boundary value condition becomes antiperiodic boundary value condi-
tion. If a = b = , α = α = , and β = β =  (or a = b = , α = α = , and β = β = ),
the boundary value condition becomes periodic boundary value condition. Therefore, the
above two kinds of boundary value conditions are spacial cases of the irregular bound-
ary value condition considered in BVP (). Furthermore, it is easy to conclude that BVP
() is solvable with antiperiodic boundary value condition and unsolvable with periodic
boundary condition.

Corollary  A unique solution of a general linear second order irregular boundary value
problem can be obtained by fixing q =  in Lemma ., which is a meaningful result. More-
over, the condition M 	=  is necessary to guarantee the existence of solution (see Eq. ()).

Remark . In some references (such as [, ]), the σ is always restricted in C[,π ],
i.e., a continuous function. But in our opinion, this restriction would arise some little
problems. For ensuring that x(t) in Eq. () makes sense, σ has to be at least first order
continuously differentiable, i.e., σ ∈ C[,π ]. Otherwise, the Lemma . is not true since
the second order derivative d

dt x(t) does not exist when q = .

The following theorem is needed to prove the existence of at least one solution of
the general irregular boundary value problem, and its detailed proof can be seen in
[, , ].

Theorem. (Krasnoselskii, [, Theorem..]) LetM be a closed convex and nonempty
subset of a Banach space X. Suppose that 	 and 
 map M into X and that

(i) 	x +
y ∈M (∀x, y ∈ M),
(ii) 	 is compact and continuous,
(iii) 
 is a contraction mapping.
Then there exists y* in M such that

	y* +
y* = y*.

http://www.advancesindifferenceequations.com/content/2012/1/133
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3 Main results
In this section, we propose ourmain results of existence and uniqueness of general irregu-
lar boundary value problem. Firstly, we prove an existence and uniqueness theorem based
on the contraction mapping principle in Banach space [, ].

Theorem . Let f : [,π ] × X → X be a first-order continuously differentiable function
satisfying the condition

∥∥f (t,x) – f (t, y)
∥∥ ≤ L‖x – y‖, ∀t ∈ [,π ],x, y ∈ X.

Then the boundary value problem () has a unique solution provided � < , where

� =
L

|M|�(q + )
{|M|πq + πq∣∣(–)α+β + (q + )(–)β+β

+ q(–)α+β + π
(
a(–)β – b(–)α

)∣∣},

and M is defined in Lemma ..

Proof Now we define F :� → � by

(Fx)(t) =
∫ t



(t – s)q–

�(q)
f
(
s,x(s)

)
ds –

(–)β+βπ

M

∫ π



(π – s)q–

�(q – )
f
(
s,x(s)

)
ds

+
((–)α+β + (–)β+β )

M

∫ π



(π – s)q–

�(q)
f
(
s,x(s)

)
ds

–
t(a(–)β – b(–)α )

M

∫ π



(π – s)q–

�(q)
f
(
s,x(s)

)
ds

+
t((–)α+β + (–)β+β )

M

∫ π



(π – s)q–

�(q – )
f
(
s,x(s)

)
ds,

and let us defineM = supt∈[,π ] ‖f (t, )‖ and

r ≥ M

( –μ)|M|�(q + )
{|M|πq + πq∣∣(–)α+β + (q + )(–)β+β

+ q(–)α+β + π
(
a(–)β – b(–)α

)∣∣},

where μ is a real number satisfying � ≤ μ < , and � is well defined in Section . As the
similar idea in [], we denote Br = {x ∈ � : ‖x‖ ≤ r}. Furthermore, for any x ∈ Br , we have

∥∥(Fx)(t)∥∥
≤

∫ t



(t – s)q–

�(q)
∥∥f (s,x(s))∥∥ds + π (–)β+β

|M|
∫ π



(π – s)q–

�(q – )
∥∥f (s,x(s))∥∥ds

+
(–)α+β + (–)β+β

|M|
∫ π



(π – s)q–

�(q)
∥∥f (s,x(s))∥∥ds

+
t(a(–)β – b(–)α )

|M|
∫ π



(π – s)q–

�(q)
∥∥f (s,x(s))∥∥ds
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+
t((–)α+β + (–)β+β )

|M|
∫ π



(π – s)q–

�(q – )
∥∥f (s,x(s))∥∥ds

≤
∫ t



(t – s)q–

�(q)
[∥∥f (s,x(s)) – f (s, )

∥∥ +
∥∥f (s, )∥∥]

ds

+
π (–)β+β

|M|
∫ π



(π – s)q–

�(q – )
[∥∥f (s,x(s)) – f (s, )

∥∥ +
∥∥f (s, )∥∥]

ds

+
(–)α+β + (–)β+β

|M|
∫ π



(π – s)q–

�(q)
[∥∥f (s,x(s)) – f (s, )

∥∥ +
∥∥f (s, )∥∥]

ds

+
t(a(–)β – b(–)α )

|M|
∫ π



(π – s)q–

�(q)
[∥∥f (s,x(s)) – f (s, )

∥∥ +
∥∥f (s, )∥∥]

ds

+
t((–)α+β + (–)β+β )

|M|
∫ π



(π – s)q–

�(q – )
[∥∥f (s,x(s)) – f (s, )

∥∥ +
∥∥f (s, )∥∥]

ds

≤ (Lr +M)
[

πq

�(q + )
+

π (–)β+β

|M| · πq–

�(q)
+
(–)α+β + (–)β+β

|M| · πq

�(q + )

+
π (a(–)β – b(–)α )

|M| · πq

�(q + )
+

π ((–)α+β + (–)β+β )
|M| · πq–

�(q)

]

≤ (� +  –μ)r

≤ r,

thus F(Br)⊂ Br is verified.
Now for any x, y ∈ � and for each t ∈ [,π ], we obtain that

∥∥(Fx)(t) – (Fy)(t)
∥∥

≤
∫ t



(t – s)q–

�(q)
∥∥f (s,x(s)) – f

(
s, y(s)

)∥∥ds

+
π (–)β+β

|M|
∫ π



(π – s)q–

�(q – )
∥∥f (s,x(s)) – f

(
s, y(s)

)∥∥ds

+
(–)α+β + (–)β+β

|M|
∫ π



(π – s)q–

�(q)
∥∥f (s,x(s)) – f

(
s, y(s)

)∥∥ds

+
t((–)βa – (–)αb)

|M|
∫ π



(π – s)q–

�(q)
∥∥f (s,x(s)) – f

(
s, y(s)

)∥∥ds

+
t((–)α+β + (–)β+β )

|M|
∫ π



(π – s)q–

�(q – )
∥∥f (s,x(s)) – f

(
s, y(s)

)∥∥ds

≤ L‖x – y‖�

[
πq

�(q + )
+

π (–)β+β

|M| · πq–

�(q)
+
(–)α+β + (–)β+β

|M| · πq

�(q + )

+
π (a(–)β – b(–)α )

|M| · πq

�(q + )
+

π ((–)α+β + (–)β+β )
|M| · πq–

�(q)

]

≤ � · ‖x – y‖�,

as � ≤ , therefore, F is a contraction. By using the conclusion of contraction mapping
principle in Banach space, we complete our proof. �

http://www.advancesindifferenceequations.com/content/2012/1/133
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Remark . We restrict the function f (t, ·) to be in L at least, which is different from the
hypothetical conditions of f (t,x) in []. For the simplicity of our proof in Theorem .,
f (t,x) is a first-order continuously differentiable function satisfying Lipschitz condition.

Theorem . Assume that f : [,π ] × X → X is a first-order continuously differentiable
function and maps bounded subsets of [,π ]×X into relative compact subsets of X, satis-
fying the following assumptions:
(A) ‖f (t,x) – f (t, y)‖ ≤ L‖x – y‖, ∀t ∈ [,π ], x, y ∈ X ,
(A) ‖f (t,x)‖ ≤ h(t), ∀(t,x) ∈ [,π ]×X , and h ∈ L([,π ],R+).
If

L
|M|�(q + )

{
πq∣∣(–)α+β + (q + )(–)β+β

+ q(–)α+β + π
(
a(–)β – b(–)α

)∣∣} < ,

then the general irregular boundary value problem () has at least one solution on [,π ].

Proof We first restrict

r ≥ ‖h‖L
|M|�(q + )

{|M|πq + πq∣∣(–)α+β + (q + )(–)β+β

+ q(–)α+β + π
(
a(–)β – b(–)α

)∣∣},

and denote Br = {x ∈ � : ‖x‖ ≤ r}. Moreover, the operators 	 and 
 are defined on Br as

(	x)(t) =


�(q)

∫ t


(t – s)q–f

(
s,x(s)

)
ds,

(
x)(t) =
π (–)β+β+

M

∫ π



(π – s)q–

�(q – )
f
(
s,x(s)

)
ds

+
(–)α+β + (–)β+β

M

∫ π



(π – s)q–

�(q)
f
(
s,x(s)

)
ds

–
t(a(–)β – b(–)α )

M

∫ π



(π – s)q–

�(q)
f
(
s,x(s)

)
ds

+
t((–)α+β + (–)β+β )

M

∫ π



(π – s)q–

�(q – )
f
(
s,x(s)

)
ds.

We could find that

‖	x +
y‖

≤ ‖h‖L
|M|�(q + )

{|Mg |πq + πq∣∣(–)α+β + (q + )(–)β+β

+ q(–)α+β + π
(
a(–)β – b(–)α

)∣∣}
≤ r,

http://www.advancesindifferenceequations.com/content/2012/1/133
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for x, y ∈ Br . Therefore, we have 	x + 
y ∈ Br . According to the assumption (A) of our
theorem, 
 is a contraction mapping since

L
|M|�(q + )

{
πq∣∣(–)α+β + (q + )(–)β+β

+ q(–)α+β + π
(
a(–)β – b(–)α

)∣∣} < ,

where M is well defined in Theorem .. By the definition of 	, we can easily check that
	 is continuous (since f (t,x) is continuous) and uniformly bounded on Br as

‖	x‖ ≤ πq‖h‖L
�(q + )

.

Now we prove the compactness of the operator 	. We denote fmax = sup(t,x)∈[,π ]×Br ‖f (t,
x)‖, and for any (t,x(t)) and (t,x(t)) in domain, we have

∥∥(	x)(t) – (	x)(t)
∥∥

=


�(q)

∥∥∥∥
∫ t



[
(t – s)q– – (t – s)q–

]
f
(
s,x(s)

)
ds +

∫ t

t
(t – s)q–f

(
s,x(s)

)
ds

∥∥∥∥
≤ fmax

�(q + )
∣∣tq – tq + (t – t)q

∣∣,

which is independent of x. Thus, 	 is equicontinuous. According to the fact that 	 maps
bounded subsets into relatively compact subsets, we know that 	(S)(t) is relatively com-
pact in X for every t, where S is a bounded subset of�. So	(·) is relatively compact on Br .
Thus, by using the Arzela-Ascoli theorem from functional analysis, 	 is compact on Br .
Finally, we have the conclusion that the general irregular boundary value problem () has
at least one solution on [,π ] since all assumptions of Theorem . are satisfied, so the
proof is completed. �

Furthermore, we have the next remark about the Green’s function of boundary value
problem ().

Remark . The Green’s function G(t, s) of boundary value problem () could be written
as

G(t, s) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(π–s)q–
M�(q–)

{t((–)α+β + (–)β+β ) – π (–)β+β}
+ (π–s)q–

M�(q)
{((–)α+β + (–)β+β ) – t(a(–)β – b(–)α )},

 ≤ t < s≤ π ,
(t–s)q–

�(q) + (π–s)q–
M�(q–)

{t((–)α+β + (–)β+β ) – π (–)β+β}
+ (π–s)q–

M�(q)
{((–)α+β + (–)β+β ) – t(a(–)β – b(–)α )},

 ≤ s ≤ t ≤ π .

()

Hence, by taking different q ∈ (, ], we obtain their Green’s function as Eq. (). Expressly,
if q = , a Green’s function of second order general irregular boundary problem is shown,
see [] and the last reference it cites. There is another truth, that is, the conclusion of []
is a special case by fixing αi = , i = , , and β = θ , β = θ + , a =  of this paper.

http://www.advancesindifferenceequations.com/content/2012/1/133
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4 Two examples
Example . Consider the following boundary value problem:

⎧⎪⎪⎨
⎪⎪⎩

cD.x(t) = 
et+ · |x|

+|x| , t ∈ [,π ],

x′() – x′(π ) – x() + x(π ) = ,

x() + x(π ) = .

()

Here, f (t,x) = 
et+ · |x|

+|x| , q = ., a = –, b = . As ‖f (t,x)– f (t, y)‖ ≤ 
‖x– y‖, therefore,

the assumption in Theorem . is tenable with L = 
 . Moreover,

L
|M|�(q + )

{|M|πq + πq∣∣(–)α+β + (q + )(–)β+β

+ q(–)α+β + π
(
a(–)β – b(–)α

)∣∣}

<



×
{
πq+ + πq(q +  + π )

π�(q + )

}

≈ . < .

Thus, according to Theorem ., the boundary value problem () has a unique solution
on [,π ].

Example . Consider the following boundary value problem:

⎧⎪⎪⎨
⎪⎪⎩

cD.x(t) = 
et+ · |x|

+|x| , t ∈ [,π ],

x′() – x′(π ) + .x() + x(π ) = ,

x() + x(π ) = .

()

Here, f (t,x) = 
et+ · |x|

+|x| , q = ., a = ., b = . As ‖f (t,x) – f (t, y)‖ ≤ 
‖x – y‖, there-

fore, the assumption (A) in Theorem . is tenable with L = 
 . Moreover,

L
|M|�(q + )

{
πq∣∣(–)α+β + (q + )(–)β+β

+ q(–)α+β + π
(
a(–)β – b(–)α

)∣∣}

<



× πq(q +  + .π )

.π�(q + )
≈ . < ,

and ‖f (t,x)‖ ≤ 
et+ = h(t) satisfies the assumption condition (A) in Theorem .. Thus,

according to Theorem ., the boundary value problem () has at least one solution on
[,π ].

5 Conclusions
In this paper, we mainly discuss the existence of solutions for a kind of irregular bound-
ary value problem of nonlinear fractional differential equations. Unlike the restrictions in
some references, we give a different opinion about the continuity and differentiation of

http://www.advancesindifferenceequations.com/content/2012/1/133
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derivative in the discussed boundary value problem. There are two important points to
make here. Firstly, the different restriction of derivative we give is necessary to guarantee
the existence of the second-order derivative. Generally speaking, taking BVP () as an ex-
ample, the function f (t,x(t)) is necessary to have [q]th order derivative to guarantee the
existence of solution could be ([q] + )th order differentiable. Secondly, we show a kind
of more general boundary condition than that in some references, and some conclusions
from other references are special cases of our results.
Finally, the recent applications of differential equations with fractional order as models

inmore andmore fields of science and engineeringmakes it necessary to study the qualita-
tive theory of such equations, and we hope that our work could make some contributions
in this direction.
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