
Luo et al. Advances in Difference Equations 2012, 2012:139
http://www.advancesindifferenceequations.com/content/2012/1/139

RESEARCH Open Access

Existence of solutions to strongly damped
quasilinear wave equations
Hong Luo1*, Li-mei Li1 and Tian Ma2

*Correspondence:
lhscnu@hotmail.com
1College of Mathematics and
Software Science, Sichuan Normal
University, Chengdu, Sichuan
610066, China
Full list of author information is
available at the end of the article

Abstract
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1 Introduction
This paper is concerned with the following initial-boundary problem of strongly damped
quasilinear wave equations:

⎧⎪⎪⎨
⎪⎪⎩

∂u
∂t – k ∂�u

∂t = –
∑

|α|≤m(–)|α|DαAα(x,u, . . . ,Dmu) + g(x,u, . . . ,Dmu),

u|∂� = · · · =Dm–u|∂� = ,

u(x, ) = ϕ, ut(x, ) = ψ ,

(.)

where k > ,m ≥ ,� is the Laplacian operator,� denotes an open bounded set of Rn with
smooth boundary ∂�, and u denotes vertical displacement at (x, t).
Equation (.) is a quasilinear wave equation with strong damping, which has many ap-

plications. The existence and asymptotic behavior for the strongly dampedwave equations
have been extensively studied by many authors [–]. Local well-posedness for strongly
damped wave equations with critical nonlinearities is studied in []. The existence and
asymptotic behavior for a strongly damped nonlinear wave equation have been concerned
in [, –, –]. Fan [] investigated the existence and the continuity of the inflated
attractors for a class of nonautonomous strongly damped wave equations through differ-
ential inclusion. Li [] obtained the existence of a global periodic attractor attracting any
bounded set exponentially in the phase space by introducing a new norm, which is equiv-
alent to the usual norm.
The quasilinear wave equation has been investigated by many authors in the last years

[–]. In [–], it is considered the boundary value problem for the quasilinear wave
equation. Under certain assumptions, the global smooth solvability is obtained. It has been
shown by Alinhac [, ] that the null condition implies global existence of smooth so-
lutions in two space dimensions. Zhang [] studies the global existence, singularities,
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and life span of smooth solutions of the Cauchy problem for a class of quasilinear hyper-
bolic systems with higher order dissipative terms and gives their applications to nonlinear
wave equations with higher order dissipative terms. Metcalfe and Sogge [] give a simple
proof of global existence for quadratic quasilinear Dirichlet-wave equations outside of a
wide class of compact obstacles in the critical case where the spatial dimension is three.
Yin [] gives the lower bound of a lifespan of classical solutions and discusses the long
time asymptotic behavior of solutions away from the blowup time.Weidemaier [] estab-
lishes local (in time) existence of classical solutions to the initial-boundary value problem
for a quasilinear wave equation. In [], the existence and uniqueness of the classical solu-
tions for the initial value problems and the first boundary problems of a quasilinear wave
equation are proved by the Galerkin method. In [], the numerical solution for a type
of quasilinear wave equation is studied. The three-level difference scheme for quasilinear
waver equation with strong dissipative term is constructed and the convergence is proved.
The strongly damped wave equations and the quasilinear wave equation have a lot

of results. But up to now, we find several results on the strongly damped quasilinear
wave equation. Chen [] shows that the initial boundary value problem for the strongly
damped quasilinear wave equation has a global solution and that there exists a com-
pact global attractor with finite dimension. Comparing Eq. (.) and [], we find that
Aα(x,u, . . . ,Dmu) = σ (ux)x, g(x,u, . . . ,Dmu) = –f (u) + g(x), and x ∈ � = [, ]. In this arti-
cle, our interest is to study that Eq. (.) has a solution under which condition of A and g .
This article uses the spatial sequence techniques, each side of the equation to be treated in
different spaces, which is an important way to get more extensive and wonderful results.
The outline of the paper is as follows. In Section , we provide essential preliminaries,

which include definitions and lemmas from []. In Section , we give existence of so-
lutions to abstract strongly damped wave equations. In Section , we present the main
results and their proof. Existence of solutions to a class of strongly damped quasilinear
wave equations is given.

2 Preliminaries
We introduce two spatial sequences:

⎧⎨
⎩
X ⊂H ⊂ X ⊂ X ⊂H ,

X ⊂H ⊂H ⊂H ,
(.)

where H , H, H, H are Hilbert spaces, X is a linear space, and X, X are Banach spaces.
All imbeddings of (.) are dense. Let

⎧⎨
⎩
L : X → X is one-one dense linear operator,

〈Lu, v〉H = 〈u, v〉H , ∀u, v ∈ X.
(.)

Furthermore, L has eigenvectors {ek} satisfying

Lek = λkek (k = , , . . .), (.)

and {ek} constitutes a common orthogonal basis of H and H.
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We consider the following abstract equation:

⎧⎨
⎩

du
dt + k d

dtLu =G(u), k > ,

u() = ϕ, ut() = ψ ,
(.)

whereG : X×R+ → X*
 is amap, R+ = [,∞) andL : X → X is a bounded linear operator

satisfying

〈Lu,Lv〉H = 〈u, v〉H , ∀u, v ∈ X. (.)

Definition . We say u ∈ W ,∞((,T),H) ∩ L∞((,T),X) is a global weak solution of
Eq. (.) provided that (ϕ,ψ) ∈ X ×H

〈ut , v〉H + k〈Lu, v〉H =
∫ t



〈
G(u), v

〉
dt + 〈ψ , v〉H + k〈Lϕ, v〉H , (.)

for all v ∈ X and  ≤ t ≤ T <∞.

Definition . Let un,u ∈ Lp((,T),X). We say un ⇀ u in Lp((,T),X) is uniformly
weakly convergent if {un} ⊂ Lp((,T),H) is bounded, and

⎧⎨
⎩
un ⇀ u in Lp((,T),X),

limn→∞
∫ T
 |〈un – u, v〉H | dt = , ∀v ∈H .

(.)

Definition . We say that amapG : X× (,∞)→ X*
 isT-coerciveweakly continuous if

for all {un} ⊂ Lploc((,∞),X)∩L∞
loc((,∞),H),un ⇀ u in Lp((,T),X) is uniformlyweakly

convergent, and

lim
n→∞

∫ t



∣∣〈Gun –Gu,Lun – Lu〉
∣∣dt = ,  < T < ∞,

then

lim
n→∞

∫ t



∣∣〈Gun, v〉∣∣dt = lim
n→∞

∫ T



∣∣〈Gu, v〉∣∣dt, ∀v ∈ X,  < t < ∞.

Lemma . ([]) Let {un} ∈ Lp((,T),Wm,p(�)) (m ≥ ) be bounded sequences, and {un}
uniformly weakly convergent to {u} ∈ Lp((,T),Wm,p(�)). Then, for all |α| ≤ m – , it fol-
lows that

Dαun →Dαu in L
(
(,T)× �

)
. (.)

Lemma . ([]) Let� ⊂ Rn be a open set, and f :�×RN → R satisfy the Caratheodory
condition and

∣∣f (x, ξ )∣∣ ≤ C
N∑
i=

|ξi|
pi
p + b(x). (.)

http://www.advancesindifferenceequations.com/content/2012/1/139
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If {uik } ⊂ Lpi (�) ( ≤ i ≤ N) is bounded and uik convergent to ui in � for all bounded
� ⊂ �, then for all v ∈ Lp′ , the following equality holds:

lim
k→∞

∫
�

f (x,uk , . . . ,uNk )vdx =
∫

�

f (x,u, . . . ,uN )vdx.

3 Existence of solutions to abstract equations
Let G = A + B : X × R+ → X*

 . Assume:
(A) There is a C functional F : X → R such that

〈Au,Lv〉 = 〈
–DF(u), v

〉
, ∀u, v ∈ X. (.)

(A) Functional F : X → R is coercive, i.e.,

F(u)→ ∞ ⇔ ‖u‖X → ∞. (.)

(A) B satisfies

∣∣〈Bu,Lv〉∣∣ ≤ CF(u) +
k

‖v‖H + g(t), ∀u, v ∈ X, (.)

for g ∈ Lloc(,∞).

Theorem . If G : X × R+ → X*
 is T-coercively weakly continuous, and

lim
n→∞

∫ t



∣∣〈Gun –Gu,Lun – Lu〉
∣∣dt + lim

n→∞‖un – u‖H = ,

then for all (ϕ,ψ) ∈ X ×H, then the following assertions hold:
() If G = A satisfies (A) and (A), then Eq. (.) has a global weak solution

u ∈W ,∞(
(,∞),H

) ∩W ,((,∞),H
) ∩ L∞(

(,∞),X
)
. (.)

() If G = A + B satisfies (A)-(A), then Eq. (.) has a global weak solution

u ∈W ,∞
loc

(
(,∞),H

) ∩W ,
loc

(
(,∞),H

) ∩ L∞
loc

(
(,∞),X

)
. (.)

() Furthermore, if L : X → X is a symmetric sectorial operator, i.e., 〈Lu, v〉 = 〈u,Lv〉,
and G = A + B satisfies

∣∣〈Gu, v〉∣∣ ≤ CF(u) +


‖v‖H + g(t), (.)

for g ∈ L(,T), then u ∈W ,
loc ((,∞);H).

Proof Let {ek} ⊂ X be a common orthogonal basis of H and H, satisfying (.). Set

⎧⎨
⎩
Xn = {∑n

i= αiei|αi ∈ R},
X̃n = {∑n

j= βj(t)ej|βj(t) ∈ C[,∞)}.
(.)
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Clearly, LXn = Xn, LX̃n = X̃n.
By using the Galerkin method, there exists un ∈ C([,∞),Xn) satisfying

⎧⎨
⎩

〈 dundt , v〉H + k〈Lun, v〉H =
∫ t
 〈G(un), v〉dt + 〈ψn, v〉H + k〈Lϕn, v〉H ,

un() = ϕn, u′
n() = ψn,

(.)

for ∀v ∈ Xn, and

∫ t



[〈
dun
dt

, v
〉
H
+ k

〈
Ldun

dt
, v

〉
H

]
dt =

∫ t


〈Gun, v〉dt (.)

for ∀v ∈ X̃n.
Firstly, we consider G = A. Let v = d

dt Lun in (.). Taking into account (.) and (.), it
follows that

 =
∫ t



[


d
dt

〈
dun
dt

,
dun
dt

〉
H

+ k
〈
dun
dt

,
dun
dt

〉
H

+
〈
DF(un),

dun
dt

〉]
dt

=



∥∥∥∥dundt

∥∥∥∥


H

–


‖ψn‖H + k

∫ t



∥∥∥∥dundt

∥∥∥∥


H

dt + F(un) – F(ϕn).

We get




∥∥∥∥dundt

∥∥∥∥


H

+ k
∫ t



∥∥∥∥dundt

∥∥∥∥


H

dt + F(un) = F(ϕn) +


‖ψn‖H . (.)

Let ϕ ∈ H. From (.) and (.), it is known that {en} is an orthogonal basis of H. We
find that ϕn → ϕ in H, and ψn → ψ in H. From that H ⊂ X is an imbedding, it follows
that

⎧⎨
⎩

ϕn → ϕ in X,

ψn → ψ in H.
(.)

From (.), (.), and (.), we obtain

{un} ⊂W ,∞(
(,∞),H

) ∩W ,((,∞),H
) ∩ L∞(

(,∞),X
)

is bounded.

Let
⎧⎨
⎩
un ⇀ *u inW ,∞((,∞),H)∩ L∞((,∞),X),

un ⇀ u inW ,((,∞),H),
(.)

which implies that un → u in W ,((,∞),H) is uniformly weakly convergent from that
H ⊂H is a compact imbedding.
If we have the following equality,

lim
n→∞

[
–

∫ t



∣∣〈Gun –Gu,Lun – Lu〉
∣∣dt + k


‖un – u‖H

]
= , (.)

http://www.advancesindifferenceequations.com/content/2012/1/139
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then u is a weak solution of Eq. (.) in view of (.), (.), and T-coercively weakly
continuous of G.
We will show (.) as follows. It follows that from (.)

∫ t



〈
d
dt

Lun –
d
dt

Lu,Lun – Lu
〉
H
dt =




∫ t



d
dt

〈un – u,un – u〉H dt

=


∥∥un(t) – u(t)

∥∥
H

–


‖ϕn – ϕ‖H .

Taking into account (.), (.) and (.), we get that

–
∫ t


〈Gun –Gu,Lun – Lu〉dt + k


‖un – u‖H

=
∫ t



[
〈Gu –Gun,Lun – Lu〉

+ k
〈
d
dt

Lun –
d
dt

Lu,Lun – Lu
〉
H

]
dt +

k

‖ϕn – ϕ‖H

=
∫ t



[
〈Gu,Lun – Lu〉 + 〈Gun,Lu〉 – k

〈
dun
dt

,u
〉
H

– k
〈
d
dt

u,un – u
〉
H

+
〈
dun
dt

,
dun
dt

〉
H

]
dt –

〈
dun
dt

,un
〉
H

+ 〈ψn,ϕn〉H +
k

‖ϕn – ϕ‖H .

From (.) and (.), we have

lim
n→∞‖ϕn – ϕ‖H = ,

lim
n→∞

∫ t


〈Gu,Lun – Lu〉dt = ,

lim
n→∞

∫ t



〈
d
dt

u,un – u
〉
H

dt = .

Then we get

lim
n→∞–

∫ t


〈Gun –Gu,Lun – Lu〉dt + k


lim
n→∞‖un – u‖H

= lim
n→∞

∫ t



[
〈Gun,Lu〉 – k

〈
dun
dt

,u
〉
H

+
∥∥∥∥dundt

∥∥∥∥


H

]
dt

– lim
n→∞

〈
dun
dt

,un
〉
H

+ 〈ψ ,ϕ〉H . (.)

In view of (.), (.), we obtain for all v ∈ ⋃∞
n= X̃n

lim
n→∞

∫ t


〈Gun,Lv〉dt =

∫ t



[
k
〈
du
dt

, v
〉
H

–
〈
du
dt

,
dv
dt

〉
H

]
dt

+
〈
du
dt

, v
〉
H

–
〈
ψ , v()

〉
H
. (.)

http://www.advancesindifferenceequations.com/content/2012/1/139
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Since
⋃∞

n= X̃n is dense in W ,((,T),H) ∩ Lp((,T),X), ∀p < ∞, (.) holds for all
v ∈W ,((,T),H)∩ Lp((,T),X). Thus, we have

lim
n→∞

∫ t


〈Gun,Lu〉dt =

∫ t



[
k
〈
du
dt

,u
〉
H

–
∥∥∥∥dudt

∥∥∥∥


H

]
dt

+
〈
du
dt

,u
〉
H

– 〈ψ ,ϕ〉H . (.)

From (.) and H ⊂H is compact imbedding, it follows that

lim
n→∞

∫ t



∥∥∥∥dundt

∥∥∥∥


H

dt =
∫ t



∥∥∥∥dudt

∥∥∥∥


H

dt,

lim
n→∞

〈
dun
dt

,un
〉
H

=
〈
du
dt

,u
〉
H

, a.e. t ≥ .

Clearly,

lim
n→∞

∫ t



〈
dun
dt

,un
〉
H

dt =
∫ t



〈
du
dt

,u
〉
H

dt.

Then (.) follows from (.)-(.), which imply assertion ().
Secondly, we consider G = A + B. Let v = d

dt Lun in (.). In view of (.) and (.), it
follows that




∥∥∥∥dundt

∥∥∥∥


H

+ k
∫ t



∥∥∥∥dundt

∥∥∥∥


H

dt + F(un) =
∫ t



〈
B(un),

d
dt

Lun
〉
dt + F(ϕn) +



‖ψn‖H .

From (.), we have




∥∥∥∥dundt

∥∥∥∥


H

+ F(un) + k
∫ t



∥∥∥∥dundt

∥∥∥∥


H

dt ≤ C
∫ t



[
F(un) +




∥∥∥∥dundt

∥∥∥∥


H

]
dt + f (t), (.)

where f (t) =
∫ t
 g(τ )dτ + 

‖ψ‖H
+ supn F(ϕn).

By using the Gronwall inequality, it follows that




∥∥∥∥dundt

∥∥∥∥


H

+ F(un) ≤ f ()eCt +
∫ t


f (τ )eC(t–τ ) dτ , (.)

which implies that for all  < T <∞,

{un} ⊂W ,∞(
(,T),H

) ∩ L∞(
(,T),X

)
is bounded.

From (.) and (.), it follows that

{un} ⊂W ,((,T),H
)

is bounded.

Let
⎧⎨
⎩
un ⇀ *u inW ,∞((,T),H)∩ L∞((,T),X),

un ⇀ u inW ,((,T),H),
(.)

http://www.advancesindifferenceequations.com/content/2012/1/139
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which implies that un → u in W ,((,T),H) is uniformly weakly convergent from that
H ⊂H is an compact imbedding.
The left proof is same as assertion ().
Lastly, assume (.) holds. Let v = dun

dt in (.). It follows that

∫ t



〈
dun
dt

,
dun
dt

〉
H
dt +

k


∥∥∥∥dundt

∥∥∥∥


H

≤ k

‖ψn‖H +

∫ t



[



∥∥∥∥d
un
dt

∥∥∥∥


H
+CF(un) + g(τ )

]
dτ .

From (.), the above inequality implies

∫ t



∥∥∥∥d
un
dt

∥∥∥∥


H
dτ ≤ C (C >  is constant). (.)

We see that for all  < T < ∞, {un} ⊂W ,((,T),H) is bounded. Thus, u ∈W ,((,T),H).
�

4 Main result
We consider the strongly damped quasilinear wave equations (.). We give the follow-
ing assumption for (.). There exists an C function F(x, ζ ), where ζ = {ζα||α| ≤ m}, ζα

corresponds to Dαu such that

Aα(x, ζ ) =
∂

∂ζα

F(x, ζ ), (.)

F(x, ζ )≥ C
∑
|β|=m

|ζβ |p –C, p ≥ , (.)

∑
|β|=m

[
Aβ (x, ξ ,η) –Aβ (x, ξ ,η)

]
(ηβ – ηβ )≥ λ|η – η|, (.)

where λ > , η = {ηβ ||β| =m}, ξ = {ξα||α| ≤m – },

∣∣Aα(x, ζ )
∣∣ ≤ C

( ∑
|α|≤m

|ζα|p– + 
)
, (.)

∣∣g(x, ζ )∣∣ ≤ C
( ∑

|β|≤m

|ζβ | p + 
)
. (.)

Definition. Wesay u ∈W ,
loc ((,∞),L(�))∩L∞

loc((,∞),Wm,p
 (�)) is theweak solution

of (.), if u() = ϕ, and for ∀v ∈ C∞
 (�), the following equality holds:

∫
�

∂u
∂t

vdx + k
∫

�

∇u∇vdx

= –
∫ t



∫
�

∑
|α|≤m

DαAα

(
x,u, . . . ,Dmu

)
Dαvdxdτ

+
∫ t



∫
�

g
(
x,u, . . . ,Dmu

)
vdxdt +

∫
�

ψvdx + k
∫

�

∇ϕ∇vdx. (.)

http://www.advancesindifferenceequations.com/content/2012/1/139
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Theorem . Under conditions (.)-(.), for (ϕ,ψ) ∈ Wm,p
 (�) × Lp(�), there exists a

global weak solution for (.)

u ∈ L∞
loc

(
(,∞),Wm,p

 (�)
)
,

ut ∈ L∞
loc

(
(,∞),L(�)

) ∩ Lloc
(
(,∞),H

(�)
)
.

Proof We introduce spatial sequences

X = C∞
 (�), X = X =Wm,p

 (�),

H =H = L(�), H =H
(�),

L = id : X → X, L = –�u.

Define map G = A + B : X → X*
 by

〈Au, v〉 = –
∫

�

∑
|α|≤m

Aα

(
x,u, . . . ,Dmu

)
Dαvdx,

〈Bu, v〉 =
∫

�

g
(
x,u, . . . ,Dmu

)
vdx.

We show that G = A + B : X → X*
 is T-coercively weakly continuous. Let {un} ⊂

L∞(,T ,W ,p(�)∩W ,p
 (�)) satisfying (.) and

lim
n→∞

∫ T



∫
�

[( ∑
|α|≤m

Aα

(
x,un, . . . ,Dmun

)
–

∑
|α|≤m

Aα

(
x,u, . . . ,Dmu

))(
Dαun –Dαu

)

+
(
g
(
x,un, . . . ,Dmun

)
– g

(
x,u, . . . ,Dmu

))
(un – u)

]
dxdt = . (.)

We need prove that

lim
n→∞

∫ T



∫
�

[ ∑
|α|≤m

Aα

(
x,un, . . . ,Dmun

)
+ g

(
x,un, . . . ,Dmun

)]
vdxdt

=
∫ T



∫
�

[ ∑
|α|≤m

Aα

(
x,u, . . . ,Dmu

)
+ g

(
x,u, . . . ,Dmu

)]
vdxdt. (.)

From (.) and Lemma ., we obtain

un → u, Dun →Du, . . . , Dm–un →Dm–u, in L
(
(,T)× �

)
. (.)

We have the deformation

∫ T



∫
�

[( ∑
|α|≤m

Aα

(
x,un, . . . ,Dmun

)
–

∑
|α|≤m

Aα

(
x,u, . . . ,Dmu

))(
Dαun –Dαu

)]
dxdt

+
∫ T



∫
�

[
g
(
x,un, . . . ,Dmun

)
– g

(
x,u, . . . ,Dmu

)]
(un – u)dxdt

http://www.advancesindifferenceequations.com/content/2012/1/139
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=
∫ T



∫
�

[( ∑
|α|≤m

Aα

(
x,un, . . . ,Dm–un,Dmu

)

–
∑

|α|≤m

Aα

(
x,u, . . . ,Dm–u,Dmu

))(
Dαun –Dαu

)]
dxdt

+
∫ T



∫
�

[( ∑
|α|≤m

Aα

(
x,un, . . . ,Dm–un,Dmun

)

–
∑

|α|≤m

Aα

(
x,un, . . . ,Dm–un,Dmu

))(
Dαun –Dαu

)]
dxdt

+
∫ T



∫
�

[
g
(
x,un, . . . ,Dmun

)
– g

(
x,u, . . . ,Dmu

)]
(un – u)dxdt. (.)

From (.), (.), (.), and Lemma ., we have

lim
n→∞

∫ T



∫
�

[
g
(
x,un, . . . ,Dmun

)
– g

(
x,u, . . . ,Dmu

)]
(un – u)dxdt = , (.)

∫ T



∫
�

[ ∑
|α|≤m

Aα

(
x,un, . . . ,Dm–un,Dmu

)

–
∑

|α|≤m

Aα

(
x,u, . . . ,Dm–u,Dmu

)](
Dαun –Dαu

)
dxdt = . (.)

From (.), (.), (.)-(.), it follows that

 =
∫ T



∫
�

[( ∑
|α|≤m

Aα

(
x,un, . . . ,Dm–un,Dmun

)

–
∑

|α|≤m

Aα

(
x,un, . . . ,Dm–un,Dmu

))(
Dαun –Dαu

)]
dxdt

≥ λ

∫ T



∫
�

∣∣Dmun –Dmu
∣∣ dxdt.

Since λ > , we have

lim
n→∞

∫ T



∫
�

∣∣Dmun –Dmu
∣∣ dxdt = . (.)

From (.), (.), (.), (.), and Lemma ., we get (.). Hence, G = A + B : X → X*


is T-coercively weakly continuous.
From (.) and (.), we get

〈Au,Lu〉 = –
〈
DF(x, ζ ), v

〉
,

F(x,u)→ ∞ ⇔ ‖u‖X → ∞,

which imply conditions (A), (A) of Theorem ..
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We will show (.) as follows. It follows that

∣∣〈Bu,Lv〉∣∣ =
∫

�

∣∣g(x,u, . . . ,Dmu
)∣∣|v|dx

≤ k


∫
�

|v| dx + 
k

∫
�

∣∣g(x,u, . . . ,Dmu
)∣∣ dx

≤ k

‖v‖H +C

∫
�

[ ∑
|α|≤m

|ζ | p + 
]

dx

≤ k

‖v‖H +CF(u) +C,

which implies condition (A) of Lemma .. From Lemma ., Eq. (.) has a solution

u ∈ L∞
loc

(
(,∞),Wm,p

 (�)
)
,

ut ∈ L∞
loc

(
(,∞),L(�)

) ∩ Lloc
(
(,∞),H

(�)
)
,

satisfying

∫
�

∂u
∂t

vdx + k
∫

�

∇u∇vdx

= –
∫ t



∫
�

∑
|α|≤m

DαAα

(
x,u, . . . ,Dmu

)
Dαvdxdτ

+
∫ t



∫
�

g
(
x,u, . . . ,Dmu

)
vdxdt +

∫
�

ψvdx + k
∫

�

∇ϕ∇vdx. �
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