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Abstract
In this paper, we determine the stability of a generalized Hyers-Ulam-Rassias-type
theorem concerning the additive functional equation 2f ( x+y+z2 ) = f (x) + f (y) + f (z) in
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1 Introduction
The study of the stability problem of functional equations originated from a question of
S.M. Ulam [] concerning the stability of group homomorphisms.
Let (G,∗) be a group and (G′,◦,d) be a metric group with the metric d(·, ·). Given ε >

, does there exist a δ(ε) >  such that if a mapping h : G → G′ satisfies the inequality
d(h(x ∗ y),h(x) ◦ h(y)) < δ for all x, y ∈ G, then there exists a homomorphism H : G → G′

with d(h(x),H(x)) < ε for all x ∈ G?
If the answer is affirmative, we would say the equation of homomorphism H(x ∗ y) =

H(x) ◦H(y) is stable. The concept of stability for a functional equation arises when we re-
place the functional equation by an inequality which acts as a perturbation of the equation.
Hyers [] gave a first affirmative partial answer to the question of Ulam for Banach spaces.
Hyers theorem was generalized by Aoki [] for additive mappings and by Rassias [] for
linear mappings by considering an unbounded Cauchy difference ‖f (x+ y) – f (x) – f (y)‖ ≤
ε(‖x‖p+‖y‖p) for all ε >  and p ∈ [, ). Following the same approach as Rassias, Gajda []
gave an affirmative solution of this problem for p >  and also proved that it is possible to
solve the Rassias-type theorem for p = . A further generalizationwas obtained byGǎvruta
[], who replaced ε(‖x‖p +‖y‖p) by a general control function ϕ(x, y). The paper of Rassias
has significantly influenced the development of what we now call the Hyers-Ulam-Rassias
stability of functional equations. Since then, several stability problems for various func-
tional equations have been investigated in [, , , –, , ]. Quite recently, the stabil-
ity problem for the Pexiderized quadratic functional equation, Jensen functional equation,
cubic functional equation, functional equations associated with inner product spaces, and
a mixed type additive-cubic functional equation were considered in [, , , ], and
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[], respectively, in the intuitionistic fuzzy normed spaces; while the idea of intuitionistic
fuzzy normed space was introduced in [], and further studied in [–, –, ] to
deal with some summability problems.
In , Radu [] proposed that the fixed-point alternative method is very useful for

obtaining the solution of the Ulam problem and obtained the stability of the Cauchy func-
tional equation in Banach spaces through the fixed-point method. Since then, several sta-
bility problems of this concept have been established by various authors, e.g., [, , ,
] and references therein.
The aim of this paper is to present a relationship between three various disciplines: the

theory of fuzzy spaces, the theory of functional equations, and fixed-point theory. We
determine the stability of the additive functional equation

f
(
x + y + z



)
= f (x) + f (y) + f (z) (.)

in the setting of intuitionistic fuzzy normed spaces by using the fixed-point alternative
theorem. Also, we investigate the stability of this functional equation through the direct
method.

2 Definitions, notations and preliminary results
In this section, we recall some notations, basic definitions, and preliminary results used
in this paper.
A binary operation ∗ : [, ]× [, ] → [, ] is said to be a continuous t-norm if it satisfies

the following conditions:

(a) ∗ is associative and commutative,
(b) ∗ is continuous,
(c) a ∗  = a for all a ∈ [, ],
(d) a ∗ b ≤ c ∗ d whenever a ≤ c and b≤ d for each a,b, c,d ∈ [, ].

A binary operation ♦ : [, ] × [, ] → [, ] is said to be a continuous t-conorm if it
satisfies the following conditions:

(a′) ♦ is associative and commutative,
(b′) ♦ is continuous,
(c′) a♦ = a for all a ∈ [, ],
(d′) a♦b ≤ c♦d whenever a≤ c and b≤ d for each a,b, c,d ∈ [, ].

Using the notions of continuous t-norm and t-conorm, Saadati and Park [] have re-
cently introduced the concepts of intuitionistic fuzzy normed space and defined conver-
gence and Cauchy sequences in this setting as follows.

Definition . The five-tuple (X,μ,ν,∗,♦) is said to be an intuitionistic fuzzy normed
spaces (for short, IFN-Spaces) if X is a vector space, ∗ is a continuous t-norm, ♦ is a con-
tinuous t-conorm, andμ, ν are fuzzy sets onX×(,∞) satisfying the following conditions.
For every x, y ∈ X and s, t > 

(i) μ(x, t) + ν(x, t)≤ ,
(ii) μ(x, t) > ,
(iii) μ(x, t) =  if and only if x = ,
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(iv) μ(αx, t) = μ(x, t
|α| ) for each α �= ,

(v) μ(x, t) ∗ μ(y, s) ≤ μ(x + y, t + s),
(vi) μ(x, ·) : (,∞) → [, ] is continuous,
(vii) limt→∞ μ(x, t) =  and limt→ μ(x, t) = ,
(viii) ν(x, t) < ,
(ix) ν(x, t) =  if and only if x = ,
(x) ν(αx, t) = ν(x, t

|α| ) for each α �= ,
(xi) ν(x, t)♦ν(y, s)≥ ν(x + y, t + s),
(xii) ν(x, ·) : (,∞)→ [, ] is continuous,
(xiii) limt→∞ ν(x, t) =  and limt→ ν(x, t) = .

In this case, (μ,ν) is called an intuitionistic fuzzy norm. For simplicity in notation, we
denote the intuitionistic fuzzy normed spaces by (X,μ,ν) instead of (X,μ,ν,∗,♦). For ex-
ample, let (X,‖ · ‖) be a normed space, and let a ∗ b = ab and a♦b = min{a + b, } for all
a,b ∈ [, ]. For all x ∈ X and every t > , consider

μ(x, t) :=
t

t + ‖x‖ and ν(x, t) :=
‖x‖

t + ‖x‖ .

Then (X,μ,ν) is an intuitionistic fuzzy normed space.

Definition . Let (X,μ,ν) be an intuitionistic fuzzy normed space. Then a sequence
x = (xk) is said to be

(i) convergent to L ∈ X with respect to the intuitionistic fuzzy norm (μ,ν) if, for every
ε >  and t > , there exists k ∈N such that μ(xk – L, t) >  – ε and ν(xk – L, t) < ε

for all k ≥ k. In this case, we write (μ,ν)-limxk = L or xk
(μ,ν)–→ L as k → ∞.

(ii) Cauchy sequence with respect to the intuitionistic fuzzy norm (μ,ν) if, for every
ε >  and t > , there exists k ∈N such that μ(xk – x�, t) >  – ε and ν(xk – x�, t) < ε

for all k,� ≥ k. IFN-space (X,μ,ν) is said to be complete if every Cauchy sequence
in (X,μ,ν) is convergent in IFN-space. In this case, (X,μ,ν) is called intuitionistic
fuzzy Banach space.

Remark . Let (X,‖ · ‖) be a real normed linear space,

μ :=
t

t + ‖x‖ and ν :=
‖x‖

t + ‖x‖

for all x ∈ X and t > . Then xn
‖·‖–→ x if and only if xn

(μ,ν)–→ x.

Recall the following results related to the concept of fixed point.

Theorem . (Banach’s contraction principle) Let (X,d) be a complete generalized metric
space and consider a mapping J : X → X be a strictly contractive mapping, that is,

d(Jx, Jy) ≤ Ld(x, y), ∀x, y ∈ X

for some (Lipschitz constant) L < . Then
(i) The mapping J has one and only one fixed point x* = J(x*);
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(ii) The fixed-point x* is globally attractive, that is,

lim
n→∞ Jnx = x*,

for any starting point x ∈ X ;
(iii) One has the following estimation inequalities for all x ∈ X and n≥ :

d
(
Jnx,x*

) ≤ Lnd
(
x,x*

)
, (.)

d
(
Jnx,x*

) ≤ 
 – L

d
(
Jnx, Jn+x

)
, (.)

d
(
x,x*

) ≤ 
 – L

d(x, Jx). (.)

Theorem . (The alternative of fixed point []) Suppose we are given a complete gen-
eralized metric space (X,d) and a strictly contractive mapping J : X → X, with Lipschitz
constant L. Then, for each given element x ∈ X, either

d
(
Jnx, Jn+x

)
= +∞, ∀n≥  (.)

or

d
(
Jnx, Jn+x

)
< +∞, ∀n≥ n◦ (.)

for some natural number n◦. Moreover, if the second alternative holds then
(i) The sequence (Jnx) is convergent to a fixed point y* of J ;
(ii) y* is the unique fixed point of J in the set Y = {y ∈ X,d(Jn◦x, y) < +∞};
(iii) d(y, y*) ≤ 

–Ld(y, Jy), y ∈ Y .

3 Stability of the additive functional equation through the fixed-point
alternative

Using the fixed point alternative, here we can prove the stability of the Hyers-Ulam-
Rassias-type theorem in IFN-spaces. First, we prove the following lemma which will be
used in our main result.

Lemma . Let X be a linear space, (Y ,μ,ν) be an IFN-space and ϕ : X ×X ×X → [,∞)
be a function. Consider a set G = {g : X → Y } and define

ds(g,h) = inf

{
γ ∈R

+ : μ
(
g(x) – h(x),γ t

) ≥ t
t + ϕ(x, x,x)

and

ν
(
g(x) – h(x),γ t

) ≤ ϕ(x, x,x)
t + ϕ(x, x,x)

}
, (.)

for all g,h ∈G, x ∈ X and t > . Then ds is a complete generalized metric on G.

Proof Let g,h,k ∈G, ds(g,h) < γ and ds(h,k) < γ. Then, for all x ∈ X and t > , we have

μ
(
g(x) – h(x),γt

) ≥ t
t + ϕ(x, x,x)

, μ
(
h(x) – k(x),γt

) ≥ t
t + ϕ(x, x,x)

;
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and

ν
(
g(x) – h(x),γt

) ≤ ϕ(x, x,x)
t + ϕ(x, x,x)

, ν
(
h(x) – k(x),γt

) ≤ ϕ(x, x,x)
t + ϕ(x, x,x)

.

Therefore,

μ
(
g(x) – k(x), (γ + γ)t

) ≥ μ
(
g(x) – h(x),γt

) ∗ μ
(
h(x) – k(x),γt

) ≥ t
t + ϕ(x, x,x)

and

ν
(
g(x) – k(x), (γ + γ)t

) ≤ ν
(
g(x) – h(x),γt

)♦ν
(
h(x) – k(x),γt

) ≤ ϕ(x, x,x)
t + ϕ(x, x,x)

,

for each x ∈ X and t > . Thus, ds(g,k) ≤ γ + γ, which is a triangle inequality for ds. The
rest of the conditions follow directly from the definition. �

Theorem . Let X be a linear space and f be a mapping from X to an intuitionistic fuzzy
Banach space (Y ,μ,ν). Suppose that ϕ : X ×X ×X → [,∞) is a function such that

μ

(
f

(
x + y + z



)
– f (x) – f (y) – f (z), t

)
≥ t

t + ϕ(x, y, z)
and

ν

(
f

(
x + y + z



)
– f (x) – f (y) – f (z), t

)
≤ ϕ(x, y, z)

t + ϕ(x, y, z)
,

⎫⎪⎪⎬
⎪⎪⎭ (.)

for all x, y, z ∈ X and t > . If ϕ(x, y, z) ≤ α
ϕ(x, y, z) holds for some real number α

with α <  then there exists a unique additive mapping T : X → Y such that T(x) =
(μ,ν)-limn→∞ nf ( x

n ),

μ
(
f (x) – T(x), t

) ≥ ( – α)t
( – α)t + αϕ(x, x,x)

and

ν
(
f (x) – T(x), t

) ≤ αϕ(x, x,x)
( – α)t + αϕ(x, x,x)

,
(.)

for all x ∈ X and t > .

Proof Putting y = x and z = x in (.). Then for x ∈ X and t > 

μ
(
f (x) – f (x), t

) ≥ t
t + ϕ(x, x,x)

and

ν
(
f (x) – f (x), t

) ≤ ϕ(x, x,x)
t + ϕ(x, x,x)

.

Replacing x by x/, we get

μ

(
f

(
x


)
– f (x), t

)
≥ t

t + ϕ( x ,x,
x
 )

and

μ

(
f

(
x


)
– f (x), t

)
≥ ϕ( x ,x,

x
 )

t + ϕ( x ,x,
x
 )
.

(.)

http://www.advancesindifferenceequations.com/content/2012/1/141
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Consider the set G = {g : X → Y } and the mapping d defined on G×G by

ds(g,h) = inf

{
γ ∈R

+ : μ
(
g(x) – h(x),γ t

) ≥ t
t + ϕ(x, x,x)

and

ν
(
g(x) – h(x),γ t

) ≤ ϕ(x, x,x)
t + ϕ(x, x,x)

}

for all x ∈ X and t > . It is known that ds(g,h) is a complete generalized metric on G by
Lemma .. Now we consider the linear mapping J :G → G such that Jg(x) = g( x ) for all
x ∈ X. Let g,h ∈G be such that ds(g,h) = ξ . Then, for all x ∈ X and t > , we have

μ
(
g(x) – h(x), ξ t

) ≥ t
t + ϕ(x, x,x)

and ν
(
g(x) – h(x), ξ t

) ≤ ϕ(x, x,x)
t + ϕ(x, x,x)

.

Using the hypothesis of the function ϕ and a mapping J , we obtain

μ
(
Jg(x) – Jh(x),αξ t

)
= μ

(
g
(
x


)
– h

(
x


)
,
αξ t


)
≥

αt


αt
 + ϕ( x ,x,

x
 )

≥
αt


αt
 + α

ϕ(x, x,x)
,

this implies

μ
(
Jg(x) – Jh(x),αξ t

) ≥ t
t + ϕ(x, x,x)

and similarly

ν
(
Jg(x) – Jh(x),αξ t

)
= ν

(
g
(
x


)
– h

(
x


)
,
αξ t


)
≥ ϕ( x ,x,

x
 )

αt
 + ϕ( x ,x,

x
 )

≥ ϕ(x, x,x)
t + ϕ(x, x,x)

,

for all x ∈ X and t > . From above, we conclude that ds(g,h) = ξ implies ds(Jg, Jh) ≤ αξ .
Hence,

ds(Jg, Jh) ≤ αds(g,h),

for all g,h ∈G. Using the hypothesis of the function ϕ and from (.), we have

μ

(
f

(
x


)
– f (x), t

)
≥

t
α

t
α
+ ϕ(x, x,x)

and

ν

(
f

(
x


)
– f (x), t

)
≥ ϕ(x, x,x)

t
α
+ ϕ(x, x,x)

,
(.)

for all x ∈ X, t >  and α < . Replacing t by αt
 in (.), we get

μ

(
f (x) – f

(
x


)
,
αt


)
≥ t

t + ϕ(x, x,x)
and

ν

(
f (x) – f

(
x


)
,
αt


)
≥ ϕ(x, x,x)

t + ϕ(x, x,x)
,
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for all x ∈ X, t >  and α < . It follows that

ds(f , Jf ) ≤ α


.

Using the fixed-point alternative we deduce the existence of a fixed point of J , that is, the
existence of a mapping T : X → Y such that

T
(
x


)
=
T(x)


for all x ∈ X. ThemappingT is a unique fixed point of J in the set E = {h ∈G : ds(g,h) < ∞}.
It follows that T is the unique fixed point of J with the property that there exists c ∈ (,∞)
such that

μ
(
g(x) – h(x), ct

) ≥ t
t + ϕ(x, x,x)

and ν
(
g(x) – h(x), ct

) ≤ ϕ(x, x,x)
t + ϕ(x, x,x)

,

for all x ∈ X and t > . Moreover, we have d(Jnf ,T) →  as n → ∞ which implies

(μ,ν)- lim
n→∞nf

(
x
n

)
= T(x),

for all x ∈ X. Also ds(f ,T) ≤ 
–α

ds(f , Jf ) implies ds(f ,T) ≤ α
–α . This means that (.)

holds. For all x, y, z ∈ X and t > , write

μ

(
T

(
x + y + z



)
– T(x) – T(y) – T(z), t

)

≥ μ

(
T

(
x + y + z



)
– n+f

(
x + y + z
n+

)
,
t


)
∗ μ

(
nf

(
x
n

)
– T(x),

t


)

∗ μ

(
nf

(
y
n

)
– T(y),

t


)
∗ μ

(
nf

(
z
n

)
– T(z),

t


)

∗ μ

(
n+f

(
x + y + z
n+

)
– nf

(
x
n

)
– nf

(
y
n

)
– nf

(
z
n

)
,
t


)
. (.)

Letting n → ∞ in (.) and using (.), we get

μ

(
T

(
x + y + z



)
– T(x) – T(y) – T(z), t

)
= .

Similarly, we obtain

ν

(
T

(
x + y + z



)
– T(x) – T(y) – T(z), t

)
= ,

for all x, y, z ∈ X and t > . Thus, the mapping T satisfies (.) and so it is additive. �

Corollary . Let X be a normed linear space and (Y ,μ,ν) be an intuitionistic fuzzy Ba-
nach space. Let θ be a positive real number and r is a real number with r > . If a mapping

http://www.advancesindifferenceequations.com/content/2012/1/141


Mohiuddine and Alghamdi Advances in Difference Equations 2012, 2012:141 Page 8 of 16
http://www.advancesindifferenceequations.com/content/2012/1/141

f : X → Y satisfies the conditions

μ

(
f

(
x + y + z



)
– f (x) – f (y) – f (z), t

)
≥ t

t + θ (‖x‖r + ‖y‖r + ‖z‖r) and

ν

(
f

(
x + y + z



)
– f (x) – f (y) – f (z), t

)
≤ θ (‖x‖r + ‖y‖r + ‖z‖r)

t + θ (‖x‖r + ‖y‖r + ‖z‖r) ,

for all x, y, z ∈ X and t > , then there exists a unique additive mapping T : X → Y such
that T(x) = (μ,ν)-limn→∞ nf ( x

n ),

μ
(
f (x) – T(x), t

) ≥ (r – )t
(r – )t + (r– + )θ‖x‖r and

ν
(
f (x) – T(x), t

) ≤ (r– + )θ‖x‖r
(r – )t + (r– + )θ‖x‖r ,

for all x ∈ X and t > .

Proof Taking ϕ(x, y, z) = θ (‖x‖r +‖y‖r +‖z‖r) in Theorem ., for all x, y, z ∈ X, and choos-
ing α = –r , we get the desired result. �

Theorem . Let X be a linear space and ϕ : X ×X ×X → [,∞) be a function such that
there exists α <  with ϕ(x, y, z) ≤ αϕ(x, y, z) for all x, y, z ∈ X and t > . Suppose f is
a mapping from X to an intuitionistic fuzzy Banach space (Y ,μ,ν) satisfying (.). Then
there exists a unique additive mapping T : X → Y such that T(x) = (μ,ν)-limn→∞ f (nx)

n ,

μ
(
f (x) – T(x), t

) ≥ ( – α)t
( – α)t + ϕ(x, x,x)

and

ν
(
f (x) – T(x), t

) ≤ ϕ(x, x,x)
( – α)t + ϕ(x, x,x)

,
(.)

for all x ∈ X and t > .

Proof Consider a complete generalized metric space (G,ds) same as in the proof of The-
orem .. We define a linear mapping J :G →G such that

Jg(x) =
g(x)


, (.)

for all x ∈ X. Indeed, for given g and h in G, ds(g,h) = ξ . Then

μ
(
g(x) – h(x), ξ t

) ≥ t
t + ϕ(x, x,x)

and ν
(
g(x) – h(x), ξ t

) ≤ ϕ(x, x,x)
t + ϕ(x, x,x)

,

for all x ∈ X and t > . By the given hypothesis and using (.), we have

μ
(
Jg(x) – Jh(x),αξ t

)
= μ

(
g(x) – h(x), αξ t

) ≥ αt
αt + ϕ(x, x, x)

≥ t
t + ϕ(x, x,x)

and

ν
(
Jg(x) – Jh(x),αξ t

)
= ν

(
g(x) – h(x), αξ t

) ≤ ϕ(x, x, x)
αt + ϕ(x, x, x)

≥ ϕ(x, x,x)
t + ϕ(x, x,x)

,

http://www.advancesindifferenceequations.com/content/2012/1/141
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for all x ∈ X and t > . This means that ds(Jg, Jh) ≤ αξ . Thus, ds(Jg, Jh) ≤ αds(g,h) for all g
and h in G. It follows from (.) that

μ

(
f (x)


– f (x),
t


)
≥ t

t + ϕ(x, x,x)
and

ν

(
f (x)


– f (x),
t


)
≥ ϕ(x, x,x)

t + ϕ(x, x,x)
,

(.)

for all x ∈ X and t > . From the definition of complete generalized metric space, we have
ds(f , Jf ) ≤ 

 . Using the fixed-point alternative, we deduce the existence of a fixed point
of J , that is, the existence of a mapping T : X → Y such that T(x) = T(x) for all x ∈ X.
Moreover, we have d(Jnf ,T)→  which implies

(μ,ν)- lim
n→∞

f (nx)
n

= T(x),

for all x ∈ X. Also ds(f ,T) ≤ 
–α

ds(f , Jf ) implies ds(f ,T) ≤ 
–α . The rest of the proof can

be done by the same way as in Theorem .. �

Corollary . Let X be a normed linear space and (Y ,μ,ν) be an intuitionistic fuzzy Ba-
nach space. Let θ be a positive real number and r is a real number with  < r < 

 . If a
mapping f : X → Y satisfies the conditions,

μ

(
f

(
x + y + z



)
– f (x) – f (y) – f (z), t

)
≥ t

t + θ (‖x‖r + ‖y‖r + ‖z‖r) and

ν

(
f

(
x + y + z



)
– f (x) – f (y) – f (z), t

)
≤ θ (‖x‖r + ‖y‖r + ‖z‖r)

t + θ (‖x‖r + ‖y‖r + ‖z‖r) ,

for all x, y, z ∈ X and t > , then there exists a unique additive mapping T : X → Y such
that T(x) = (μ,ν)-limn→∞ f (nx)

n ,

μ
(
f (x) – T(x), t

) ≥ (r – )t
(r – )t + (r + r–)θ‖x‖r and

ν
(
f (x) – T(x), t

) ≤ (r + r–)θ‖x‖r
(r – )t + (r + r–)θ‖x‖r ,

for all x ∈ X and t > .

Proof Taking ϕ(x, y, z) = θ (‖x‖r +‖y‖r +‖z‖r) in Theorem ., for all x, y, z ∈ X, and choos-
ing α = –r , we get the desired result. �

4 Stability of the additive functional equation through the direct method
In this section, we deal with the stability results concerning the additive functional equa-
tion via direct method in intuitionistic fuzzy normed spaces.

http://www.advancesindifferenceequations.com/content/2012/1/141
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Theorem . Let X be a linear space and (Z,μ′,ν ′) be an IFN-space. Suppose that ϕ :
X ×X ×X → Z is a function such that for some real number α with  < |α| < /

μ′
(

ϕ

(
x

,
y

,
z


)
, t

)
≥ μ′

(
ϕ(x, y, z),

t
|α|

)
and

ν ′
(

ϕ

(
x

,
y

,
z


)
, t

)
≤ ν ′

(
ϕ(x, y, z),

t
|α|

)
,

(.)

for all x, y, z ∈ X and t > . Let f be a mapping from X to an intuitionistic fuzzy Banach
space (Y ,μ,ν) such that

μ

(
f

(
x + y + z



)
– f (x) – f (y) – f (z), t

)
≥ μ′(ϕ(x, y, z), t) and

ν

(
f

(
x + y + z



)
– f (x) – f (y) – f (z), t

)
≤ ν ′(ϕ(x, y, z), t),

⎫⎪⎪⎬
⎪⎪⎭ (.)

for all x, y, z ∈ X and t > . Then there exists a unique additive mapping T : X → Y such
that

μ
(
f (x) – T(x), t

) ≥ μ′
(

ϕ(x, x,x),
( – |α|)t

|α|
)

and

ν
(
f (x) – T(x), t

) ≤ ν ′
(

ϕ(x, x,x),
( – |α|)t

|α|
)
,

⎫⎪⎪⎬
⎪⎪⎭ (.)

for all x ∈ X and t > .

Proof Put y = x and z = x in (.). Then for all x ∈ X and t > 

μ
(
f (x) – f (x), t

) ≥ μ′(ϕ(x, x,x), t) and

ν
(
f (x) – f (x), t

) ≤ ν ′(ϕ(x, x,x), t). (.)

Replacing x by x
j+ in (.) and using (.), we obtain

μ

(
j+f

(
x
j+

)
– jf

(
x
j

)
, jt

)
≥ μ′

(
ϕ

(
x
j+

,
x
j
,
x
j+

)
, t

)
≥ μ′

(
ϕ(x, y, z),

t
|α|j+

)

and

ν

(
j+f

(
x
j+

)
– jf

(
x
j

)
, jt

)
≤ ν ′

(
ϕ

(
x
j+

,
x
j
,
x
j+

)
, t

)
≤ ν ′

(
ϕ(x, y, z),

t
|α|j+

)
,

for all x ∈ X, t >  and an integer j ≥ . By replacing t = |α|j+t, we get

μ

(
j+f

(
x
j+

)
– jf

(
x
j

)
, j|α|j+t

)
≥ μ′(ϕ(x, y, z), t) and

ν

(
j+f

(
x
j+

)
– jf

(
x
j

)
, j|α|j+t

)
≤ ν ′(ϕ(x, y, z), t).

⎫⎪⎪⎬
⎪⎪⎭ (.)

http://www.advancesindifferenceequations.com/content/2012/1/141
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It follows from

nf
(

x
n

)
– f (x) =

n–∑
j=

(
j+f

(
x
j+

)
– jf

(
x
j

))

and (.) that

μ

(
nf

(
x
n

)
– f (x),

n–∑
j=

j|α|j+t
)

≥
n–∏
j=

μ

(
j+f

(
x
j+

)
– jf

(
x
j

)
, j|α|j+t

)

≥ μ′(ϕ(x, x,x), t) and

ν

(
nf

(
x
n

)
– f (x),

n–∑
j=

j|α|j+t
)

≤
n–∐
j=

ν

(
j+f

(
x
j+

)
– jf

(
x
j

)
, j|α|j+t

)

≤ ν ′(ϕ(x, x,x), t),
for all x ∈ X, t >  and n > ,where

∏n
i=ai = a∗a∗· · ·∗an and∏n

i=ai = a ♦a ♦ · · · ♦an.
Replacing x by x

p in the last inequalities, we have

μ

(
n+pf

(
x

n+p

)
– pf

(
x
p

)
,
n–∑
j=

j+p|α|j+t
)

≥ μ′
(

ϕ

(
x
p

,
x
p

,
x
p

)
, t

)
≥ μ′

(
ϕ(x, x,x),

t
|α|p

)
and

ν

(
n+pf

(
x

n+p

)
– pf

(
x
p

)
,
n–∑
j=

j+p|α|j+t
)

≤ ν ′
(

ϕ

(
x
p

,
x
p

,
x
p

)
, t

)
≤ ν ′

(
ϕ(x, x,x),

t
|α|p

)
,

whence

μ

(
n+pf

(
x

n+p

)
– pf

(
x
p

)
,
n–∑
j=

j+p|α|j+p+t
)

≥ μ′(ϕ(x, x,x), t) and

ν

(
n+pf

(
x

n+p

)
– pf

(
x
p

)
,
n–∑
j=

j+p|α|j+p+t
)

≤ ν ′(ϕ(x, x,x), t),

for all x ∈ X, t > , n >  and p≥ . Hence,

μ

(
n+pf

(
x

n+p

)
– pf

(
x
p

)
, t

)
≥ μ′

(
ϕ(x, x,x),

t∑n+p–
j=p j|α|j+

)
and

ν

(
n+pf

(
x

n+p

)
– pf

(
x
p

)
, t

)
≤ ν ′

(
ϕ(x, x,x),

t∑n+p–
j=p j|α|j+

)
.

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

(.)

Since  < |α| < 
 , we have

∑∞
j=(|α|)j+ < ∞. This shows that (nf ( x

n )) is a Cauchy se-
quence in an intuitionistic fuzzy Banach space (Y ,μ,ν) and so it converges to some point

http://www.advancesindifferenceequations.com/content/2012/1/141
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T(x) ∈ Y . Thus, we define a mapping T : X → Y such that

T(x) = (μ,ν)- lim
n→∞nf

(
x
n

)
.

Hence, for all x ∈ X and t > , we have

μ

(
nf

(
x
n

)
– T(x), t

)
=  and ν

(
nf

(
x
n

)
– T(x), t

)
= .

Moreover, if we put p =  in (.), we get

μ

(
nf

(
x
n

)
– f (x), t

)
≥ μ′

(
ϕ(x, x,x),

t∑n–
j= j|α|j+

)
and

ν

(
nf

(
x
n

)
– f (x), t

)
≤ ν ′

(
ϕ(x, x,x),

t∑n–
j= j|α|j+

)
,

for all x ∈ X, t >  and n > . Therefore,

μ
(
T(x) – f (x), t

) ≥ μ

(
T(x) – nf

(
x
n

)
, t/

)
∗ μ

(
nf

(
x
n

)
– f (x), t/

)

≥ μ′
(

ϕ(x, x,x),
t∑n–

j= (|α|)j+
)

and

ν
(
T(x) – f (x), t

) ≤ ν

(
T(x) – nf

(
x
n

)
, t/

)
♦ν

(
nf

(
x
n

)
– f (x), t/

)

≤ ν ′
(

ϕ(x, x,x),
t∑n–

j= (|α|)j+
)
,

for all x ∈ X, t >  and n > . Letting n→ ∞ in the above inequalities, we obtain

μ
(
T(x) – f (x), t

) ≥ μ′
(

ϕ(x, x,x),
( – |α|)t

|α|
)

and

ν
(
T(x) – f (x), t

) ≤ ν ′
(

ϕ(x, x,x),
( – |α|)t

|α|
)
.

Hence, T satisfies (.). Let x, y, z ∈ X. Then

μ

(
T

(
x + y + z



)
– T(x) – T(y) – T(z), t

)

≥ μ

(
T

(
x + y + z



)
– n+f

(
x + y + z
n+

)
,
t


)
∗ μ

(
nf

(
x
n

)
– T(x),

t


)

∗ μ

(
nf

(
y
n

)
– T(y),

t


)
∗ μ

(
nf

(
z
n

)
– T(z),

t


)

∗ μ

(
n+f

(
x + y + z
n+

)
– nf

(
x
n

)
– nf

(
y
n

)
– nf

(
z
n

)
,
t


)
(.)
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and by using (.)

μ

(
n+f

(
x + y + z
n+

)
– nf

(
x
n

)
– nf

(
y
n

)
– nf

(
z
n

)
, t

)

≥ μ′
(

ϕ

(
x
n

,
y
n

,
z
n

)
,
t
n

)
≥ μ′

(
ϕ(x, y, z),

t
n|α|n

)
. (.)

Letting n → ∞ in (.) and (.), we get

μ

(
T

(
x + y + z



)
– T(x) – T(y) – T(z), t

)
= .

Similarly, we obtain

ν

(
T

(
x + y + z



)
– T(x) – T(y) – T(z), t

)
= ,

for all x, y, z ∈ X and t > . This means that T satisfies (.) and so it is additive. To prove
the uniqueness of T , assume that S be another additive mapping from X into Y , which
satisfies (.). For x ∈ X, clearly T(x) = nT( x

n ) and S(x) = nS( x
n ) for all n. It follows from

(.) that

μ
(
T(x) – S(x), t

)
= μ

(
nT

(
x
n

)
– nS

(
x
n

)
, t

)

≥ μ

(
nT

(
x
n

)
– nf

(
x
n

)
,
t


)
∗ μ

(
nf

(
x
n

)
– nS

(
x
n

)
,
t


)

≥ μ′
(

ϕ

(
x
n

,
x
n

,
x
n

)
,
( – |α|)t
n+|α|

)

≥ μ′
(

ϕ(x, x,x),
( – |α|)t
n+|α|n+

)
(.)

and similarly

ν
(
T(x) – S(x), t

) ≤ ν ′
(

ϕ(x, x,x),
( – |α|)t
n+|α|n+

)
. (.)

We see that the right-hand side of (.) and (.) tending to  and , respectively, as
n → ∞. Therefore, μ(T(x) – S(x), t) =  and ν(T(x) – S(x), t) =  for all x ∈ X and t > .
Hence, T(x) = S(x). �

Corollary . Let X be a normed linear space and (R,μ′,ν ′) be an intuitionistic fuzzy
Banach space. Let θ be a positive real number and r is a real number with  < r < . If a
mapping f : X → Y satisfies the conditions,

μ

(
f

(
x + y + z



)
– f (x) – f (y) – f (z), t

)
≥ μ′(θ(‖x‖r + ‖y‖r + ‖z‖r), t) and

ν

(
f

(
x + y + z



)
– f (x) – f (y) – f (z), t

)
≤ ν ′(θ(‖x‖r + ‖y‖r + ‖z‖r), t),

http://www.advancesindifferenceequations.com/content/2012/1/141
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for all x, y, z ∈ X and t > , then there exists a unique additive mapping T : X → Y such
that

μ
(
f (x) – T(x), t

) ≥ μ′
(

θ‖x‖r , t
α + 

)
and ν

(
f (x) – T(x), t

) ≤ ν ′
(

θ‖x‖r , t
α + 

)
,

for all x ∈ X and t > .

Proof Taking ϕ(x, y, z) = θ (‖x‖r +‖y‖r +‖z‖r) in Theorem ., for all x, y, z ∈ X, and choos-
ing |α| = /, we get the desired result. �

Theorem . Let X be a linear space and (Z,μ′,ν ′) be an IFN-space. Suppose that ϕ :
X ×X ×X → Z is a function such that for some real number α with  < |α| < 

μ′(ϕ(x, y, z), t) ≥ μ′(|α|ϕ(x, y, z), t) and

ν ′(ϕ(x, y, z), t) ≤ ν ′(|α|ϕ(x, y, z), t), (.)

for all x, y, z ∈ X and t > . Let (Y ,μ,ν) an intuitionistic fuzzy Banach space and a map
f : X → Y satisfies (.). Then there exists a unique additive mapping T : X → Y such that

μ
(
f (x) – T(x), t

) ≥ μ′(ϕ(x, x,x), ( – |α|)t) and

ν
(
f (x) – T(x), t

) ≤ ν ′(ϕ(x, x,x), ( – |α|)t), (.)

for all x ∈ X and t > .

Proof From (.), it is easy to see that

μ

(
f (x)


– f (x),
t


)
≥ μ′(ϕ(x, x,x), t) and

ν

(
f (x)


– f (x),
t


)
≤ ν ′(ϕ(x, x,x), t),

(.)

for all x ∈ X and t > . Replacing x by nx, we get

μ

(
f (n+x)
n+

–
f (nx)
n

,
t

n+

)
≥ μ′(ϕ(

nx, n+x, nx
)
, t

) ≥ μ′
(

ϕ(x, x,x),
t

|α|n
)

and

ν

(
f (n+x)
n+

–
f (nx)
n

,
t

n+

)
≤ ν ′(ϕ(

nx, n+x, nx
)
, t

) ≤ ν ′
(

ϕ(x, x,x),
t

|α|n
)
.

It follows that, for all x ∈ X and t > , we have

μ

(
f (n+x)
n+

–
f (nx)
n

,
|α|nt
n+

)
≥ μ′(ϕ(x, x,x), t) and

ν

(
f (n+x)
n+

–
f (nx)
n

,
|α|nt
n+

)
≤ ν ′(ϕ(x, x,x), t).
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Proceeding the same lines as in the proof of Theorem ., we get

μ

(
f (nx)
n

– f (x),
n–∑
j=

|α|jt
j+

)
≥ μ′(ϕ(x, x,x), t) and

ν

(
f (nx)
n

– f (x),
n–∑
j=

|α|jt
j+

)
≤ ν ′(ϕ(x, x,x), t),

for all x ∈ X, t >  and n > . Thus,

μ

(
f (nx)
n

– f (x), t
)

≥ μ′
(

ϕ(x, x,x),
t∑n–

j=
|α|j
j+

)
≥ μ′(ϕ(x, x,x), ( – |α|)t) and

ν

(
f (nx)
n

– f (x), t
)

≤ ν ′
(

ϕ(x, x,x),
t∑n–

j=
|α|j
j+

)
≤ ν ′(ϕ(x, x,x), ( – |α|)t).

Rest of the proof can be done by the same way as in Theorem .. �

Corollary . Let X be a normed linear space and (R,μ′,ν ′) be an intuitionistic fuzzy
Banach space. Let θ be a positive real number and r is a real number with  < r < 

 . If a
mapping f : X → Y satisfies the conditions

μ

(
f

(
x + y + z



)
– f (x) – f (y) – f (z), t

)
≥ μ′(θ(‖x‖r + ‖y‖r + ‖z‖r), t) and

ν

(
f

(
x + y + z



)
– f (x) – f (y) – f (z), t

)
≤ ν ′(θ(‖x‖r + ‖y‖r + ‖z‖r), t),

for all x, y, z ∈ X and t > , then there exists a unique additive mapping T : X → Y such
that

μ
(
f (x) – T(x), t

) ≥ μ′
(

θ‖x‖r , t
r + 

)
and ν

(
f (x) – T(x), t

) ≤ ν ′
(

θ‖x‖r , t
r + 

)
,

for all x ∈ X and t > .

Proof Taking ϕ(x, y, z) = θ (‖x‖r +‖y‖r +‖z‖r) in Theorem ., for all x, y, z ∈ X, and choos-
ing |α| = , we get the desired result. �
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