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1 Introduction
Theory of impulsive differential equations has been emerging as an important area of in-
vestigation since these equations provide natural frameworks for describing many real life
phenomena appearing in physics, chemical technology, population dynamics, and eco-
nomics; see the remarkable monographs [–]. There have been significant contributions
regarding the investigations of qualitative properties of solutions of such equations in the
last three decades [–]. However, dealing with nonlinear impulsive differential equa-
tions have faced, as usual, several drawbacks that caused slackening progress of this the-
ory.
One of the most important ways to investigate the asymptotic structure of two equa-

tions is to build asymptotic equivalence between their solutions. Establishing such equiv-
alence enables researchers to comment on the asymptotic behavior of solutions of certain
nonlinear equations by studying another linear equation whose solutions bear the same
character. In spite of the fact that this way is of great significance in the theory of analysis,
it has been less considered in the literature.
In this paper, we introduce the definition of Lp(k)-equivalence between linear and non-

linear perturbed impulsive differential equationswith an unbounded linear part in an arbi-
trary Banach space. By means of the Schauder-Tychonoff principle, sufficient conditions
are established to guarantee the existence of such equivalence. To expose the feasibility
of our theoretical results, an example involving partial impulsive differential equations of
the parabolic type is provided. Similar problems but with different approaches regarding
Lp(k)-equivalence for impulsive differential equations were first reported in the papers
[–].

© 2012 Georgieva et al.; licensee Springer. This is an Open Access article distributed under the terms of the Creative Commons
Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction
in any medium, provided the original work is properly cited.

http://www.advancesindifferenceequations.com/content/2012/1/144
mailto:jalzabut@psu.edu.sa
http://creativecommons.org/licenses/by/2.0


Georgieva et al. Advances in Difference Equations 2012, 2012:144 Page 2 of 12
http://www.advancesindifferenceequations.com/content/2012/1/144

2 Statement of the problem
Let X be a Banach space with the norm ‖ · ‖ and the identical operator I . By D(T) ⊂X, we
will denote the domain of the operator T :D(T)→X.
Consider the following two impulsive differential equations:

⎧⎨
⎩

du
dt = A(t)u, t �= tn,

u(t+n ) =Qn(u(tn)), n = , , . . . ,
()

and ⎧⎨
⎩

du
dt = A(t)u + f (t,u), t �= tn,

u(t+n ) =Qn(u(tn)) + hn(u(tn)), n = , , . . . ,
()

where A(t) : D(A(t)) → X (t ∈ R+) and Qn : D(Qn) → D(A(tn)) are linear and possibly un-
bounded operators. The functions f (·, ·) : R+ × X → X and hn : X → X are continuous
where R+ = [,∞). The sets D(A(t)) and D(Qn) are dense in X. The points of jumps tn
satisfy the conditions  = t < t < t < · · · < tn < · · · with limn→∞ tn = ∞. We setQ = I and
h(u) =  (u ∈X).
Furthermore, we assume that all functions under consideration are left continuous and

that there exists the Cauchy operator U(t, s) (≤ s ≤ t) of the linear equation

du
dt

= A(t)u. ()

Sufficient conditions for the existence of U(t, s) can be found in [, ]. One can easily
check that

V (t, s) =U(t, s)QnU(tn, tn–)Qn– · · ·QkU(tk , s) ( ≤ s≤ tk < tn < t) ()

is the Cauchy operator of the linear impulsive differential equation (). We observe that
the operator V (t, s) is bounded if one of the following conditions hold:
(B) QnU(tn, tn–) are bounded operators, n = , , . . . .
(B) U(tn+, tn)Qn are bounded operators, n = , , . . . .

Lemma  Let one of the conditions (B) or (B) hold. Then the solution u(t) of the equation

u(t) = V (t, )u() +
∫ t


V (t, s)f

(
s,u(s)

)
ds +

∑
<tn<t

V
(
t, t+n

)
hn

(
u(tn)

)
()

satisfies the impulsive differential equation ().

The proof of the above statement is straightforward and can be achieved by direct sub-
stitution.
Let the following condition be fulfilled:
(H) There exists continuous function k(·, ·) :R+ ×R+ →R+ such that

∥∥V (t, s)ξ
∥∥ ≤ k(t, s)‖ξ‖,

where  ≤ s < t and ξ ∈D(A(s)).
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We introduce the following spaces:

Lp(k) =
{
g(·) :R+ → X : sup

t∈R+

∫ t


k(t, s)

∥∥g(s)∥∥p ds <∞
}

and

lp(k) =
{
g = {gn}∞n= ⊂ X : sup

t∈R+

∑
<tn<t

k
(
t, t+n

)‖gn‖p < ∞
}

with the norms

‖g‖Lp(k) = sup
t∈R+

(∫ t


k(t, s)

∥∥g(s)∥∥p ds
) 

p
and ‖g‖lp(k) = sup

t∈R+

( t∑


k
(
t, t+n

)‖gn‖p
) 

p

.

The following conditions are needed in the sequel:
(H) There exists constantM >  such that supt∈R+

∫ t
 k(t, s)ds≤ M.

(H) There exists constantM >  such that supt∈R+

∑
<tn<t k(t, t

+
n ) ≤ M.

Definition  Equation () is called Lp(k)-equivalent to Eq. () in the nonempty, closed,
and convex subset B of X if there exists a convex and closed subset D of X such that for
any solution u(t) of () lying in the set B there exists a solution u(t) of () lying in the set
B∪D, and satisfying the relation u(t) – u(t) ∈ Lp(k).
If Eq. () is Lp(k)-equivalent to Eq. () in the set B, and vice versa, we say that Eqs. ()

and () are Lp(k)-equivalent in the set B.

By S(R+,X), we denote the linear set of all functions which are continuous for t �= tn (n =
, , . . .), having left and right limits at points tn and are left continuous. The set S(R+,X)
is a locally convex space with respect to the metric

ρ(u, v) = sup
<T<∞

( + T)–
max≤t≤T ‖u(t) – v(t)‖

 +max≤t≤T ‖u(t) – v(t)‖ .

The convergence with respect to this metric coincides with the uniform convergence on
each bounded interval. For this space, an analogue of Arzella-Ascoli’s theorem is valid.

Lemma  ([]) The set M ⊂ S(R+,X) is relatively compact if the intersections M(t) =
{m(t) :m ∈M} are relatively compact for t ∈R+ and M is equicontinuous on each interval
(tn, tn+], n = , , , . . . .

The proof of the above theorems is completed by applying the theorem of Arzella-Ascoli
on each interval (tn, tn+], n = , , , . . . and constitutes a diagonal line sequence.
Let C be a nonempty subset of X. Set

C̃ =
{
u ∈ S(R+,X) : u(t) ∈ C, t ∈ R+

}
.

We now have the following lemma.
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Lemma  ([]) Let C be a nonempty, convex, and closed subset of X. Suppose an operator
T transforms C̃ into itself and is continuous and compact. Then T has a fixed point in C̃.

The proof of Lemma  follows by utilizing the fixed-point principle of Schauder-
Tychonoff.
The following lemmas are borrowed from [].

Lemma  ([]) Let the following conditions be fulfilled:
. Condition (B) (or (B)) holds.
. Conditions (H), (H), and (H) hold.

Then, for any function F ∈ Lp(k) and for any sequence H = {Hn}∞n= ∈ lp(k), the linear non-
homogeneous impulsive differential equation

⎧⎨
⎩

du
dt = A(t)u + F(t), t �= tn,

u(t+n ) =Qn(u(tn)) +Hn(u(tn)), n = , , . . . ,
()

has a bounded solution u(t) for which

u(t) = V (t, )u() +
∫ t


V (t, s)F(s)ds +

∑
<tn<t

V
(
t, t+n

)
Hn ()

and

∥∥u(t)∥∥ ≤ ∥∥V (t, )u()
∥∥ +M


q
 ‖F‖Lp(k) +M


q
 ‖H‖lp(k). ()

Lemma  ([]) Let the following conditions be fulfilled:
. Condition (B) (or (B)) holds.
. Conditions (H) and (H) hold.

Then the operator G defined by the formula

GF(t) =
∫ t


V (t, s)F(s)ds ()

maps Lp(k) into Lp(k) and the following estimate is valid:

‖GF‖Lp(k) ≤ M‖F‖Lp(k), ()

where 
p +


q = .

Lemma  ([]) Let the following conditions be fulfilled:
. Condition (B) (or (B)) holds.
. Conditions (H) and (H) hold.

Then the operator G, defined by the formula

GH(t) =
∑
<tn<t

V
(
t, t+n

)
Hn ()
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maps lp(k) into Lp(k) and the following estimate is valid:

‖GH‖Lp(k) ≤ M

p
 M


q
 ‖H‖lp(k), ()

where 
p +


q = .

3 Themain results
Set

u(t) = u(t) – u(t),

where u(t) is the solution of Eq. () and u(t) is the solution of Eq. ().
Then u(t) = V (t, )u() and u(t) is solution of the linear nonhomogeneous impulsive

differential equation () for F(t) = f (t,u(t)) and Hn = hn(u(tn)). Consequently,

u(t) =Gf
(
t,u(t) + u(t)

)
+Ghn

(
u(tn) + u(tn)

)
.

We define the operator

T(u,u)(t) =Gf
(
t,u(t) + u(t)

)
+Ghn

(
u(tn) + u(tn)

)
. ()

Theorem  Let the following conditions be fulfilled:
. Condition (B) (or (B)) holds.
. Conditions (H), (H), and (H) hold.
. There exists a nonempty, convex, and closed subset D of X such that

T(u,u)(t) ∈ D for each u with u(t) ∈D (t ∈R+).

. For any fixed u ∈ B̃, the following inclusions hold:
.

∫ t
 V (t, s)f (s,u(s) + u(s))ds ∈ Ku (t) (u ∈ D̃),

.
∑

<tn<t V (t, t+n )hn(u(tn) + u(tn)) ∈ Ku
n (u ∈ D̃), where Ku (t) is for any fixed

t ∈R+ and Ku
n is for any fixed n = , , . . . a compact subset of X .

. supw∈B̃∪D̃ ‖f (t,w)‖ ≤ F(t), for t ∈ R+, where the function F(t) is continuous and
F ∈ Lp(k).

. supw∈B̃∪D̃ hn(w) ≤ Hn, for n = , , . . . , where the sequence H = {Hn}∞n= ∈ lp(k).
Then Eq. () is Lp(k)-equivalent to Eq. () in the set B and the following estimate is valid:

‖u – u‖Lp(k) ≤ M‖F‖Lp(k) +M

p
 M


q
 ‖H‖lp(k).

Proof We will prove that for each solution u(t) of Eq. () lying in the set B the operator
T(u,u) has a fixed point u(t) such that u + u ∈ B̃∪ D̃ and lies in Lp(k).
In view of condition  of Theorem , it follows that the operator T(u,u) defined by ()

maps the set

D̃ =
{
u ∈ S(R+,X) : u(t) ∈ D, t ∈R+

}
into itself for u ∈ B̃.
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LetM = {m(t) = T(u,u)(t) : u ∈ D̃, t ∈ R+}. We will show the equicontinuity of the func-
tions in the setM. Let t′ > t′′ and t′, t′′ ∈ (tn, tn+]. It can be verified that

∥∥m(
t′
)
–m

(
t′′

)∥∥ ≤ sup
w∈B̃∪D̃

∫ t′′



∥∥V (
t′, s

)
–V

(
t′′, s

)∥∥∥∥f (s,w)∥∥ds
+ sup

w∈B̃∪D̃

∫ t′

t′′

∥∥V (
t′, s

)∥∥∥∥f (s,w)∥∥ds
+ sup

w∈B̃∪D̃

∑
<tn<t′′

∥∥V (
t′, t+n

)
–V

(
t′′, t+n

)∥∥∥∥hn(w)∥∥.

The continuity of the function V (t, s) on (tn, tn+], condition (H) and condition  of Theo-
rem  imply the equicontinuity of the setM.
Fromcondition  of Theorem  and (), we deduce the compactness of the intersections

M(t) = {m(t) :m ∈ M} for t ∈ R+. Consequently, from Lemma , it follows that the set M
is compact.
We will show that the operator T(u,u) is continuous in S(R+,X). Let the sequence

{ũk}∞k= ⊂ D̃ be convergent to the function ũ ∈D in the metric of the space S(R+,X).
Then the sequence

{
zk(t)

}∞
k= =

{
f
(
t,u(t) + ũk(t)

)}∞
k=

tends to z(t) = f (t,u(t) + ũ(t)) for any t ∈R+ and the sequence

{
vk(n)

}∞
k= =

{
hn

(
u(tn) + ũk(tn)

)}∞
k=

tends to {v(n)}∞n= = {hn(u(tn) + ũ(tn))}∞n= coordinate-wisely (n = , , . . .).
From conditions  and  of Theorem , it follows that

∥∥zk(t)∥∥ ≤ F(t) (t ∈ R+)

and

∥∥vk(n)∥∥ ≤ Hn (n = , , . . .).

In virtue of the theorem of Lebesgue, we take the limit inside the integral and obtain
that the sequence of functions Gzk(t) tends for t ∈ R+ to the function Gz(t). On the
other hand, by the analogue of the theorem of Lebesgue for the series, we obtain that the
sequence of functions G(vk(n))(t) tends to the function G(v(n))(t). Since the functions

Gzk(t) +G
(
vk(n)

)
(t)

lie in a compact set, they also tend to the metric of the space S(R+,X).
In view of Lemma , it follows that for any u ∈ B̃ the operator T(u,u) has a fixed point

u ∈ D̃, that is, T(u,u) = u.

http://www.advancesindifferenceequations.com/content/2012/1/144
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From conditions  and  of Theorem , Lemma , and Lemma , it follows that this fixed
point u ∈ Lp(k) and the following estimate is valid:

‖u‖Lp(k) ≤ M‖F‖Lp(k) +M

p
 M


q
 ‖H‖lp(k),

where 
p +


q = . �

Remark  The case when the operator A(t) (t ∈R+) is linear bounded and the sets B and
D are balls is considered in [].

We shall illustrate the effectiveness of Theorem  by constructing an example involv-
ing the partial impulsive differential equations. For more details on the general theory of
partial impulsive differential equations, we suggest that the reader consults [, ].

4 An example
In this section, we consider linear and nonlinear perturbed partial impulsive differen-
tial equations. We transform these equations to ordinary impulsive differential equations
with an unbounded linear operator and show that they satisfy the conditions of Theo-
rem . More information regarding the theory of ordinary differential equations with an
unbounded linear operator can be reached at [].
Let � be a bounded domain with smooth boundary ∂� in R

n, Q = (,∞) × �, and
� = (,∞)× ∂�.
We denote

Pn =
{
(tn,x) : x ∈ �

}
, P =

∞⋃
n=

Pn

and

�n =
{
(tn,x) : x ∈ ∂�

}
, � =

∞⋃
n=

�n.

Consider the following linear impulsive parabolic initial value problem:

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

∂u
∂t = Ã(t,x,D)u, (t,x) ∈Q \ P,
Dαu(t,x) = , |α| <m, (t,x) ∈ � \ �,

u(,x) = v(x), x ∈ �,

u(t+n ,x) = Q̃n(u(tn,x)), x ∈ �,n = , , . . . ,

()

and the nonlinear perturbed impulsive parabolic initial value problem

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

∂u
∂t = Ã(t,x,D)u + f̃ (t,x,u), (t,x) ∈Q \ P,
Dαu(t,x) = , |α| <m, (t,x) ∈ � \ �,

u(,x) = v(x), x ∈ �,

u(t+n ,x) = Q̃n(u(tn,x)) + h̃n(u(tn,x)), x ∈ �,n = , , . . . ,

()

http://www.advancesindifferenceequations.com/content/2012/1/144
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where Ã(t,x,D) =
∑

|α|≤m aα(t,x)Dα , Q̃n : D(Q̃n) → D(Ã(tn,x,D)) (n = , , . . .) are linear
operators and f̃ (·, ·, ·) :R+ ×R

n ×R→R and h̃n :R→ R are continuous functions.
Let X = Lp(�,R) ( ≤ p < ∞), where

Lp(�,R) =
{
v :� →R;

∫
�

∣∣v(x)∣∣p dx <∞
}

with the norm |v|p = (
∫
�

|v(x)|p dx) p .
Along with the family Ã(t,x,D), t ∈R+ of strongly elliptic operators, we associate a fam-

ily of linear operators A(t), t ∈R+ acting in X by

A(t)u = Ã(t,x,D)u for u ∈ D.

This is can be achieved as follows: D =D(A(t)) =W m,p(�)∩Wm,p
 (�), t ∈ R+.

Let vi ∈ X (i = , ). We set

f (t,u)(x) = f̃
(
t,x,u(t,x)

)
, u ∈ X, t ∈R+,x ∈ �,

and

Qn
(
u(tn)

)
(x) = Q̃n

(
u(tn,x)

)
,

hn
(
u(tn)

)
(x) = h̃n

(
u(tn,x)

)
,

whereQn :D(Qn)→ D,D(Qn) ⊂ X lie dense in X and are linear operators, f :R+ ×X → X
and hn : X → X are continuous functions.
We claim that Eqs. () and () are Lp(k)-equivalent. Let U(t, s) be the Cauchy operator

of the linear equation ().
Sufficient conditions for the validity of the estimate

∣∣U(t, s)
∣∣
p→p ≤ Ce–k(t–s) ( ≤ s≤ t;C,k >  constants)

can be found in [].
Let tn = n (n = , , . . .), f̃ (t,x,u) = e–γ t sinu(t,x), h̃n(u(tn,x)) = e–αn 

+u(tn ,x)
and Q̃nξ =

e–k
C qn(n)ξ (ξ ∈R), where the positive constants α, γ , and k satisfy k + k –αp > , k + k –

γ p >  and k > 

p C – k. The functions qn(·) : R+ → R (n = , , . . .) are defined such that

|qn(t)| ≤  for each t ∈ R+.
Then

f (t,u) = e–γ t sinu(t),

hn
(
u(tn)

)
= e–αn 

 + u(tn)

and

Qnη =
e–k
C

qn(n)η (η ∈ X).

http://www.advancesindifferenceequations.com/content/2012/1/144
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We shall find the function k(t, s) ( ≤ s≤ t) of condition (H). Let  < s ≤ m < n < t < n+
and ξ ∈D. Then the following estimate is valid

∣∣V (t, s)ξ
∣∣
p =

∣∣U(t, tn)Qn · · ·QmU(tm, s)ξ
∣∣
p

≤ Ce–k(t–n)
e–k
c

qn(n) · · · e
–k

c
qm(m)Ce–k(m–s)|ξ |p

≤ Ce–k(t–s)e–k(n–m+)|ξ |p
≤ Ce–(k+k)(t–s)|ξ |p.

Set

k(t, s) = Ce–(k+k)(t–s) (≤ s ≤ t).

For the constantM of condition (H), we obtain

sup
t∈R+

∫ t


k(t, s)ds = sup

t∈R+
Ce–(k+k)t

∫ t


e(k+k)s ds≤ c

k + k
.

Hence,

M =
c

k + k
.

For the constantM of condition (H), we obtain

sup
t∈R+

∑
<n<t

k
(
t,n+

)
= sup

t∈R+
Ce–(k+k)t

n∑
j=

e(k+k)j ≤ C
 – e–(k+k)

.

Hence,

M =
C

 – e–(k+k)
.

Let r >  and

ρ >



p C(k + k)

k + k – 

p C

(
r

k + k
+

μ

p (�)

 – eαp–k–k

)
. ()

We shall find the function Fr+ρ(t) and the sequence Hr+ρ = {Hn,r+ρ}∞n= so that conditions
 and  of Theorem  are satisfied. We observe that

sup
|w|p≤r+ρ

∣∣f (t,w)∣∣p = sup
|w|p≤r+ρ

e–γ t| sinw|p ≤ e–γ t(r + ρ)

and

sup
|w|p≤r+ρ

∣∣hn(w)∣∣p = sup
|w|p≤r+ρ

e–αn
∣∣∣∣ 
 +w

∣∣∣∣
p
≤ e–αnμ


p (�).

Hence, Fr+ρ(t) = e–γ t(r + ρ) and Hn,r+ρ = e–αnμ

p (�).

http://www.advancesindifferenceequations.com/content/2012/1/144
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It remains to show that Fr+ρ ∈ Lp(k) and Hr+ρ ∈ lp(k). Indeed

‖Fr+ρ‖Lp(k) = sup
t∈R+

(∫ t


Ce–(k+k)(t–s)

∣∣e–γ s(r + ρ)
∣∣p ds) 

p

=
(

C
k + k – γ p

) 
p
(r + ρ) sup

t∈R+

(
e–γ pt – e–(k+k)t

) 
p

<
(

C
k + k – γ p

) 
p
(r + ρ)

and

‖Hr+ρ‖lp(k) = sup
t∈R+

( ∑
<n<t

Ce–(k+k)(t–n)
∣∣e–αnμ


p (�)

∣∣p) 
p

=
(
Cμ(�)

) 
p sup
t∈R+,n<t

(
e–(k+k)t

n∑
j=

e(k+k–αp)j

) 
p

<
(

Cμ(�)
 – eαp–k–k

) 
p
.

Set Bσ = {u ∈ X : |u|p ≤ σ }. We shall show that for any u(t) ∈ Br (t ∈ R+), the operator
T(u,u) defined by () maps the set

C(ρ) =
{
u ∈ S(R+,X) : u(t) ∈ Bρ , t ∈R+

}
into itself.
From (), (), and (), we obtain

∥∥T(u,u)(t)∥∥ ≤ M

q
 ‖Fr+ρ‖Lp(k) +M


q
 ‖Hr+ρ‖lp(k) < ρ

for each t ∈R+. Hence, the operator T(u,u) maps the set C(ρ) into itself.
By means of a compactness criterion in [], we shall prove condition .. We observe

that the set

M(t) =
{
m(t) =

∫ t


V (t, s)f

(
s,u(s) + u(s)

)
ds : |u|p ≤ ρ, t ∈R

+
}

is compact subset of X for any fixed t ∈R+. Indeed

∣∣m(t)(x)
∣∣ ≤

∫ t


Ce–(k+k)(t–s)e–γ s∣∣sin(u(s)(x) + u(s)(x)

)∣∣ds
≤ Ce–(k+k)t

∫ t


e(k+k–γ )s ds ≤ C

k + k – γ
()

and

∣∣m(t)(x)
∣∣
p =

(∫
�

∣∣m(t)(x)
∣∣p dx) 

p
≤ C

k + k – γ
μ


p (�) ()

and hence |m(t)(x)|p ≤ N , where N is a positive constant.
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We shall show that

∣∣m(t)(x + h) –m(t)(x)
∣∣
p →  (h→ ).

This follows from the relations below

∣∣m(t)(x + h) –m(t)(x)
∣∣
p ≤ Ce–(k+k)t

∫ t


e(k+k–γ )s∣∣sin(u(s)(x + h) + u(s)(x + h)

)
– sin

(
u(s)(x) + u(s)(x)

)∣∣
p ds

≤ Ce–(k+k)t
∫ t


e(k+k–γ )s∣∣u(s)(x + h) – u(s)(x)

∣∣
p ds

+Ce–(k+k)t
∫ t


e(k+k–γ )s∣∣u(s)(x + h) – u(s)(x)

∣∣
p ds.

In a similar way, one can show the validity of condition .. The conditions of The-
orem  are fulfilled, and hence Eqs. () and () are in Lp(k)-equivalent. Hence, every
solution u(t,x) of () induces a solution u(t,x) of () such that the function α(t) =
|u(t,x) – u(t,x)| lies in Lp(k) for any x ∈ �.
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