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Abstract
In this paper, we prove the Ulam-Hyers-Rassias stability of the Cauchy-Jensen additive
functional equation
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1 Introduction
The stability problem of functional equations originated from the question of Ulam []
concerning the stability of group homomorphisms. Hyers [] gave the first affirmative par-
tial answer to the question of Ulam for Banach spaces. Hyers’ theorem was generalized by
Th.M. Rassias [] for linear mappings by considering an unbounded Cauchy difference.

Theorem. (Rassias []) Let f : E → E′ be amapping froma normed vector space E into a
Banach space E′ subject to the inequality ‖f (x+y)– f (x)– f (y)‖ ≤ ε(‖x‖p+‖y‖p) for all x, y ∈
E, where ε and p are constants with ε >  and  ≤ p < . Then the limit L(x) = limn→∞ f (nx)

n

exists for all x ∈ E and L : E → E′ is the unique additive mapping which satisfies

∥∥f (x) – L(x)
∥∥ ≤ ε

 – p
‖x‖p

for all x ∈ E. Also, if for each x ∈ E the function f (tx) is continuous in t ∈R, then L is linear.

The functional equation f (x + y) + f (x – y) = f (x) + f (y) is called a quadratic functional
equation. In particular, every solution of the quadratic functional equation is said to be
a quadratic mapping. The Ulam-Hyers-Rassias stability of the quadratic functional equa-
tion was proved by Skof [] for mappings f : X → Y , where X is a normed space and Y is
a Banach space. Cholewa [] noticed that the theorem of Skof is still true if the relevant
domain X is replaced by an Abelian group. Czerwik [] proved the Ulam-Hyers-Rassias
stability of the quadratic functional equation.
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The stability problems of several functional equations have been extensively investigated
by a number of authors, and there are many interesting results concerning this problem
(see [–]).
Katsaras [] defined a fuzzy norm on a vector space to construct a fuzzy vector topo-

logical structure on the space. Somemathematicians have defined fuzzy norms on a vector
space from various points of view (see [, , ]).
In particular, Bag and Samanta [], following Cheng and Mordeson [], gave an idea

of a fuzzy norm in such a manner that the corresponding fuzzy metric is of Karmosil and
Michalek type []. They established a decomposition theorem of a fuzzy norm into a
family of crisp norms and investigated some properties of fuzzy normed spaces [].
In this paper we consider a mapping f : X → Y satisfying the following Cauchy-Jensen

functional equation

f
(
x + y + z



)
+ f

(
x – y + z



)
= f (x) + f (z) (.)

for all x, y, z ∈ X and establish the fuzzy ∗-homomorphisms and fuzzy ∗-derivations of
(.) in induced fuzzy C*-algebras.

2 Preliminaries
Definition . Let X be a real vector space. A functionN : X×R → [, ] is called a fuzzy
norm on X if for all x, y ∈ X and all s, t ∈R,

(N) N(x, t) =  for t ≤ ;
(N) x =  if and only if N(x, t) =  for all t > ;
(N) N(cx, t) =N(x, t

|c| ) if c 	= ;
(N) N(x + y, c + t) ≥ min{N(x, s),N(y, t)};
(N) N(x, ·) is a non-decreasing function of R and limt→∞ N(x, t) = ;
(N) for x 	= , N(x, ·) is continuous on R.

Example . Let (X,‖ · ‖) be a normed linear space and α,β > . Then

N(x, t) =

⎧⎨
⎩

αt
αt+β‖x‖ , t > ,x ∈ X,

, t ≤ ,x ∈ X

is a fuzzy norm on X.

Definition . Let (X,N) be a fuzzy normed vector space. A sequence {xn} in X is said
to be convergent or converge if there exists an x ∈ X such that limt→∞ N(xn – x, t) =  for
all t > . In this case, x is called the limit of the sequence {xn} in X and we denote it by
N- limt→∞ xn = x.

Definition . Let (X,N) be a fuzzy normed vector space. A sequence {xn} in X is called
Cauchy if for each ε >  and each t >  there exists an n ∈ N such that for all n ≥ n and
all p > , we have N(xn+p – xn, t) >  – ε.

It is well known that every convergent sequence in a fuzzy normed vector space is
Cauchy. If each Cauchy sequence is convergent, then the fuzzy norm is said to be complete
and the fuzzy normed vector space is called a fuzzy Banach space.
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We say that a mapping f : X → Y between fuzzy normed vector spaces X and Y is con-
tinuous at a point x ∈ X if for each sequence {xn} converging to x ∈ X the sequence {f (xn)}
converges to f (x). If f : X → Y is continuous at each x ∈ X, then f : X → Y is said to be
continuous on X (see []).

Definition . Let X be a ∗-algebra and (X,N) a fuzzy normed space.
() The fuzzy normed space (X,N) is called a fuzzy normed ∗-algebra if

N(xy, st)≥ N(x, s) ·N(y, t), N
(
x*, t

)
=N(x, t)

for all x, y ∈ X and all positive real numbers s and t.
() A complete fuzzy normed ∗-algebra is called a fuzzy Banach ∗-algebra.

Example . Let (X,‖ · ‖) be a normed ∗-algebra. Let

N(x, t) =

⎧⎨
⎩

t
t+‖x‖ , t > ,x ∈ X,

, t ≤ ,x ∈ X.

Then N(x, t) is a fuzzy norm on X and (X,N) is a fuzzy normed ∗-algebra.

Definition . Let (X,‖ · ‖) be a normed C*-algebra and Nx a fuzzy norm on X.
() The fuzzy normed ∗-algebra (X,Nx) is called an induced fuzzy normed ∗-algebra.
() The fuzzy Banach ∗-algebra (X,Nx) is called an induced fuzzy C*-algebra.

Definition . Let (X,Nx) and (Y ,N) be induced fuzzy normed ∗-algebras.
() A multiplicative C-linear mapping H : (X,Nx)→ (Y ,N) is called a fuzzy

∗-homomorphism if H(x*) =H(x)* for all x ∈ X .
() A C-linear mapping D : (X,Nx) → (X,Nx) is called a fuzzy ∗-derivation if

D(xy) =D(x)y + xD(y) and D(x*) =D(x)* for all x, y ∈ X .

Definition . LetX be a set. A function d : X×X → [,∞] is called a generalizedmetric
on X if d satisfies the following conditions:
() d(x, y) =  if and only if x = y for all x, y ∈ X ;
() d(x, y) = d(y,x) for all x, y ∈ X ;
() d(x, z) ≤ d(x, y) + d(y, z) for all x, y, z ∈ X .

Theorem . Let (X,d) be a complete generalized metric space and J : X → X be a strictly
contractive mapping with Lipschitz constant L < . Then, for all x ∈ X, either d(Jnx, Jn+x) =
∞ for all nonnegative integers n or there exists a positive integer n such that
() d(Jnx, Jn+x) < ∞ for all n ≥ n;
() the sequence {Jnx} converges to a fixed point y* of J ;
() y* is the unique fixed point of J in the set Y = {y ∈ X : d(Jnx, y) <∞};
() d(y, y*) ≤ 

–Ld(y, Jy) for all y ∈ Y .
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3 Hyers-Ulam-Rassias stability of CJA functional equation (1.1) in fuzzy Banach
∗-algebras

In this section, using the fixed point alternative approach we prove the Ulam-Hyers-
Rassias stability of the functional equation (.) in fuzzy Banach spaces. Throughout this
paper, assume that X is a vector space and that (Y ,N) is a fuzzy Banach space.

Theorem . Let ϕ : X → [,∞) be a function such that there exists an L < 
 with

ϕ( x ,
y
 ,

z
 )≤ Lϕ(x,y,z)

 for all x, y, z ∈ X. Let f : X → Y be a mapping satisfying

N
(

μf
(
x + y + z



)
+μf

(
x – y + z



)
– f (μx) – f (μz), t

)
≥ t

t + ϕ(x, y, z)
, (.)

N
(
f (xy) – f (x)f (y), t

) ≥ t
t + ϕ(x, y, )

, (.)

N
(
f
(
x*

)
– f (x)*, t

) ≥ t
t + ϕ(x, , )

(.)

for all x, y, z ∈ X and t > . Then there exists a fuzzy ∗-homomorphism H : X → Y such
that

N
(
f (x) –H(x), t

) ≥ ( – L)t
( – L)t + Lϕ(x, x,x)

(.)

for all x ∈ X and t > .

Proof Letting μ =  and replacing (x, y, z) by (x, x,x) in (.), we have

N
(
f (x) – f (x), t

) ≥ t
t + ϕ(x, x,x)

(.)

for all x ∈ X and t > . Replacing x by x
 in (.), we obtain

N
(
f (x) – f

(
x


)
, t

)
≥ t

t + ϕ( x ,x,
x
 )

≥ t
t + L

ϕ(x, x,x)
. (.)

Consider the set S := {g : X → Y } and the generalized metric d in S defined by

d(f , g) = inf

{
μ ∈R

+ :N
(
g(x) – h(x),μt

) ≥ t
t + ϕ(x, x,x)

,∀x ∈ X, t > 
}
,

where inf∅ = +∞. It is easy to show that (S,d) is complete (see []). Now, we consider
a linear mapping J : S → S such that Jg(x) := g( x ) for all x ∈ X. Let g,h ∈ S be such that
d(g,h) = ε. Then N(g(x) – h(x), εt)≥ t

t+ϕ(x,x,x) for all x ∈ X and t > . Hence

N
(
Jg(x) – Jh(x),Lεt

)
= N

(
g

(
x


)
– h

(
x


)
,Lεt

)
=N

(
g
(
x


)
– h

(
x


)
,
Lεt


)

≥
Lt


Lt
 + ϕ( x ,x,

x
 )

≥
Lt


Lt
 + Lϕ(x,x,x)



=
t

t + ϕ(x, x,x)
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for all x ∈ X and t > . Thus d(g,h) = ε implies that d(Jg, Jh) ≤ Lε. This means that
d(Jg, Jh) ≤ Ld(g,h) for all g,h ∈ S. It follows from (.) that

N
(
f

(
x


)
– f (x),

Lt


)
≥ t

t + ϕ(x, x,x)

for all x ∈ X and all t > . This implies that d(f , Jf ) ≤ L
 . By Theorem ., there exists a

mapping H : X → Y satisfying the following:
() H is a fixed point of J , that is,

H
(
x


)
=
H(x)


(.)

for all x ∈ X. ThemappingH is a unique fixed point of J in the set� = {h ∈ S : d(g,h) < ∞}.
This implies that H is a unique mapping satisfying (.) such that there exists μ ∈ (,∞)
satisfying N(f (x) –H(x),μt)≥ t

t+ϕ(x,x,x) for all x ∈ X and t > .
() d(Jnf ,H) →  as n→ ∞. This implies the equality

N- lim
n→∞nf

(
x
n

)
=H(x) (.)

for all x ∈ X.
() d(f ,H) ≤ d(f ,Jf )

–L with f ∈ �, which implies the inequality d(f ,H) ≤ L
–L . This implies

that the inequality (.) holds. Furthermore, it follows from (.) and (.) that

N
(

μH
(
x + y + z



)
+μH

(
x – y + z



)
–H(μx) –H(μz), t

)

=N- lim
n→∞

(
nμf

(
x + y + z
n+

)
+ nμf

(
x – y + z
n+

)
– nf

(
μx
n

)
– nf

(
μz
n

)
, t

)

≥ lim
n→∞

t
n

t
n + ϕ( x

n ,
y
n ,

z
n )

≥ lim
n→∞

t
n

t
n +

Ln
n ϕ(x, y, z)

→ 

for all x, y, z ∈ X, all t >  and all μ ∈C. Hence

μH
(
x + y + z



)
+μH

(
x – y + z



)
–H(μx) –H(μz) = 

for all x, y, z ∈ X. So the mapping H : X → Y is additive and C-linear. By (.),

N
(
nf

(
xy
n

)
– nf

(
x
n

)
· nf

(
y
n

)
, nt

)
≥ t

t + ϕ( x
n ,

y
n , )

for all x, y ∈ X and all t > . Then

N
(
nf

(
xy
n

)
– nf

(
x
n

)
· nf

(
y
n

)
, t

)
≥

t
n

t
n + ϕ( x

n ,
y
n , )

≥
t
n

t
n +

Lnϕ(x,y,)
n

→  when n→ +∞

http://www.advancesindifferenceequations.com/content/2012/1/147


Azadi Kenary et al. Advances in Difference Equations 2012, 2012:147 Page 6 of 10
http://www.advancesindifferenceequations.com/content/2012/1/147

for all x, y ∈ X and all t > . So N(H(xy) –H(x)H(y), t) =  for all x, y ∈ X and all t > . By
(.)

N
(
nf

(
x*

n

)
– nf

(
x
n

)*

, nt
)

≥ t
t + ϕ( x

n , , )

for all x ∈ X and all t > . So

N
(
nf

(
x*

n

)
– nf

(
x
n

)*

, t
)

≥
t
n

t
n + ϕ( x

n , , )
≥

t
n

t
n +

Ln
n ϕ(x, , )

for all x ∈ X and all t > . Since limn→+∞
t
n

t
n +

Ln
n ϕ(x,,)

= , for all x ∈ X and t > , we get

N(H(x*) –H(x)*, t) =  for all x ∈ X and all t > . Thus H(x*) =H(x)* for all x ∈ X. �

Theorem . Let ϕ : X → [,∞) be a function such that there exists an L <  with
ϕ(x, y, z) ≤ Lϕ( x ,

y
 ,

z
 ) for all x, y, z ∈ X. Let f : X → Y be a mapping satisfying (.)-

(.). Then the limit H(x) := N- limn→∞ f (nx)
n exists for each x ∈ X and defines a fuzzy

∗-homomorphism H : X → Y such that

N
(
f (x) –H(x), t

) ≥ ( – L)t
( – L)t + ϕ(x, x,x)

(.)

for all x ∈ X and all t > .

Proof Let (S,d) be a generalized metric space defined as in the proof of Theorem ..
Consider the linear mapping J : S → S such that Jg(x) := g(x)

 for all x ∈ X. Let g,h ∈ S be
such that d(g,h) = ε. Then N(g(x) – h(x), εt)≥ t

t+ϕ(x,x,x) for all x ∈ X and t > . Hence

N
(
Jg(x) – Jh(x),Lεt

)
= N

(
g(x)


–
h(x)


,Lεt
)
=N

(
g(x) – h(x), Lεt

)

≥ Lt
Lt + ϕ(x, , x, x)

≥ Lt
Lt + Lϕ(x, , x,x)

=
t

t + ϕ(x, x,x)

for all x ∈ X and t > . Thus d(g,h) = ε implies that d(Jg, Jh) ≤ Lε. This means that
d(Jg, Jh) ≤ Ld(g,h) for all g,h ∈ S. It follows from (.) that

N
(
f (x)


– f (x),
t


)
≥ t

t + ϕ(x, x,x)
(.)

for all x ∈ X and t > . So d(f , Jf ) ≤ 
 . By Theorem ., there exists a mapping H : X → Y

satisfying the following:
() H is a fixed point of J , that is,

H(x) =H(x) (.)

http://www.advancesindifferenceequations.com/content/2012/1/147
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for all x ∈ X. ThemappingH is a unique fixed point of J in the set� = {h ∈ S : d(g,h) < ∞}.
This implies that H is a unique mapping satisfying (.) such that there exists μ ∈ (,∞)
satisfying N(f (x) –H(x),μt)≥ t

t+ϕ(x,x,x) for all x ∈ X and t > .
() d(Jnf ,H) →  as n → ∞. This implies the equality H(x) = N- limn→∞ f (nx)

n for all
x ∈ X.
() d(f ,H) ≤ d(f ,Jf )

–L with f ∈ �, which implies the inequality d(f ,H) ≤ 
–L . This implies

that the inequality (.) holds. The rest of the proof is similar to that of the proof of The-
orem .. �

4 Hyers-Ulam-Rassias stability of CJA functional equation (1.1) in induced
fuzzy C*-algebras

Throughout this section, assume thatX is a unitalC*-algebrawith unit e and unitary group
U (X) := {u ∈ X : u*u = uu* = e} and that Y is a unital C*-algebra.
Using the fixed pointmethod, we prove the Hyers-Ulam-Rassias stability of the Cauchy-

Jensen additive functional equation (.) in induced fuzzy C*-algebras.

Theorem . Let ϕ : X → [,∞) be a function such that there exists an L < 
 with

ϕ( x ,
y
 ,

z
 )≤ Lϕ(x,y,z)

 for all x, y, z ∈ X. Let f : X → Y be a mapping satisfying (.) and

N
(
f (uv) – f (u)f (v), t

) ≥ t
t + ϕ(u, v, )

, (.)

N
(
f
(
u*

)
– f (u)*, t

) ≥ t
t + ϕ(u, , )

(.)

for all u, v ∈ U (X) and all t > . Then there exists a fuzzy ∗-homomorphism H : X → Y
satisfying (.).

Proof By the same reasoning as in the proof of Theorem ., there is a C-linear mapping
H : X → Y satisfying (.). The mapping H : X → Y is given by

N- lim
p→∞nf

(
x
n

)
=H(x)

for all x ∈ X. By (.),

N
(
nf

(
uv
n

)
– nf

(
u
n

)
· nf

(
v
n

)
, nt

)
≥ t

t + ϕ( u
n ,

v
n , )

for all u, v ∈ U (X) and all t > . Then

N
(
nf

(
uv
n

)
– nf

(
u
n

)
· nf

(
v
n

)
, t

)
≥

t
n

t
n + ϕ( u

n ,
v
n , )

≥
t
n

t
n +

Lnϕ(u,v,)
n

→  when n→ +∞

for all x, y ∈ U (X) and all t > . So N(H(uv) – H(u)H(v), t) =  for all u, v ∈ U (X) and all
t > . Therefore

H(uv) =H(u)H(v), (.)
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for all u, v ∈ U (X). Since H is C-linear and each x ∈ X is a finite linear combination of
unitary elements, i.e.,

x =
m∑
j=

λjuj
(
λj ∈C,uj ∈U(X)

)
,

it follows from (.) that

H(xv) =H

( m∑
j=

λjujv

)
=

n∑
j=

λjH(ujv) =
n∑
j=

λjH(uj)H(v) =H

( m∑
j=

λjuj

)
H(v)

for all v ∈ U (X). So H(xv) =H(x)H(v). Similarly, one can obtain that H(xy) =H(x)H(y) for
all x, y ∈ X. By (.)

N
(
nf

(
u*

n

)
– nf

(
u
n

)*

, nt
)

≥ t
t + ϕ( u

n , , )

for all u ∈ U (X) and all t > . So

N
(
nf

(
u*

n

)
– nf

(
u
n

)*

, t
)

≥
t
n

t
n + ϕ( u

n , , )
≥

t
n

t
n +

Ln
n ϕ(u, , )

for all u ∈ U (X) and all t > . Since limn→+∞
t
n

t
n +

Ln
n ϕ(u,,)

= , for all u ∈ U (X) and t >  , we

get N(H(u*) –H(u)*, t) =  for all u ∈ U (X) and all t > . Thus

H
(
u*

)
=H(u)* (.)

for all u ∈ U (X). Since H is C-linear, i.e., x ∈ X is a finite linear combination of unitary
elements, i.e., x =

∑m
j= λjuj (λj ∈C, uj ∈ U (X)), it follows from (.) that

H
(
x*

)
=H

( m∑
j=

λju*j

)
=

n∑
j=

λjH
(
u*j

)
=

n∑
j=

λjH(uj)* =H

( m∑
j=

λjuj

)*

=H(x)*

for all x ∈ X. So H(x*) = H(x)* for all x ∈ X. Therefore, the mapping H : X → Y is a
∗-homomorphism. �

Similarly, we have the following. We will omit the proof.

Theorem . Let ϕ : X → [,∞) be a function such that there exists an L <  with
ϕ(x, y, z) ≤ Lϕ( x ,

y
 ,

z
 ) for all x, y, z ∈ X. Let f : X → Y be a mapping satisfying (.), (.)

and (.). Then the limit H(x) :=N- limn→∞ f (nx)
n exists for each x ∈ X and defines a fuzzy

∗-homomorphism H : X → Y such that

N
(
f (x) –H(x), t

) ≥ ( – L)t
( – L)t + ϕ(x, x,x)

(.)

for all x ∈ X and all t > .
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5 Hyers-Ulam-Rassias stability of fuzzy ∗-derivations in fuzzy Banach
∗-algebras and in induced fuzzy C*-algebras

In this section, assume that (X,NX) is a fuzzy Banach ∗-algebra. Using the fixed point
method, we prove theHyers-Ulam-Rassias stability of fuzzy ∗-derivations in fuzzy Banach
∗-algebras.

Theorem . Let ϕ : X → [,∞) be a function such that there exists an L < 
 with

ϕ( x ,
y
 ,

z
 )≤ Lϕ(x,y,z)

 for all x, y, z ∈ X. Let f : X → X be a mapping satisfying (.), (.) and

NX
(
f (xy) – xf (y) – yf (x), t

) ≥ t
t + ϕ(x, y, )

(.)

for all x, y ∈ X and all t > . Then δ(x) := N- limn→∞ nf ( x
n ) exists for each x ∈ X and

defines a fuzzy ∗-derivation δ : X → X such that

N
(
f (x) – δ(x), t

) ≥ ( – L)t
( – L)t + Lϕ(x, x,x)

(.)

for all x ∈ X and all t > .

Proof The proof is similar to the proof of Theorem .. �

Theorem . Let ϕ : X → [,∞) be a function such that there exists an L <  with
ϕ(x, y, z) ≤ Lϕ( x ,

y
 ,

z
 ) for all x, y, z ∈ X. Let f : X → Y be a mapping satisfying (.) and

(.). Then the limit δ(x) := N- limp→∞ f (nx)
n exists for each x ∈ X and defines a fuzzy

∗-derivation δ : X → Y such that

N
(
f (x) – δ(x), t

) ≥ ( – L)t
( – L)t + ϕ(x, x,x)

(.)

for all x ∈ X and all t > .
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