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Abstract
This paper is a short description of our recent results on an important class of the
so-called Mittag-Leffler functions, which became important as solutions of fractional
order differential and integral equations, control systems and refined mathematical
models of various physical, chemical, economical, management and bioengineering
phenomena. We have studied the Mittag-Leffler functions as their typical
representatives, including many interesting special cases that have already proven
their usefulness in fractional calculus and its applications. We obtained a number of
useful relationships between the Mittag-Leffler functions and the Wright functions.
The Wright function plays an important role in the solution of a linear partial
differential equation. The Wright function, which we denote byW(z;α,β), is so
named in honor of Wright who introduced and investigated this function in a series
of notes starting from 1933 in the framework of the asymptotic theory of partitions.
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1 Introduction
1.1 The Mittag-Leffler function
The Mittag-Leffler function is an important function that finds widespread use in the
world of fractional calculus. Just as the exponential naturally arises out of the solution to
integer order differential equations, the Mittag-Leffler function plays an analogous role in
the solution of non-integer order differential equations. In fact, the exponential function
itself is a very special form, one of an infinite set of these seemingly ubiquitous functions.
The standard definition of Mittag-Leffler [] is given as follows:

Eα(z) =
∞∑
k=

zk

�(αk + )
, α ∈ C,R(α) > , z ∈ C. ()

A two-parameter function of the M-L (Mittag-Leffler) type is defined by the series ex-
pansion []

Eα,β (z) =
∞∑
k=

zk

�(αk + β)
(
α,β ∈ C,R(α) > ,R(β) > , z ∈ C

)
. ()
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TheM-L function provides a simple generalization of the exponential function because
of the substitution of n! = �(n + )n! with (nα)! = �(nα + ). Particular cases of () recover
elementary functions are recovered

E, =
ez – 
z

, E,
(
z

)
=
sinh(z)

z
,

and

E/, = ez

erfc(–z),

where erf (erfc) denotes the (complementary) error function defined as []

erfc(z) =
√
π

∫ ∞

z
e–t


dt.

By means of the series representation, a generalization of () and () is introduced by
Prabhakar [] as

Eγ

α,β (z) =
∞∑
k=

(γ )n
�(αk + β)

.
zk

k!
(
α,β ,γ ∈ C,R(α) > ,R(β),R(γ ) > , z ∈ C

)
, ()

where (γ )n is the Pochhammer symbol [] given by

(λ)n =
�(λ + n)

�(λ)
=

⎧⎨
⎩ (n = ;λ �= ),

(γ )n = γ (γ + )(γ + ) · · · (γ + n – ) (n ∈N ;λ ∈ C).

Note that

E
,(z) = ez, E

α,(z) = Eα(z), E
α,β (z) = Eα,β(z).

Some new properties of the Mittag-Leffler function, including a definite integral and
recurrence relation, were investigated in [, ].

1.2 TheWright function
TheWright function plays an important role in the solution of a linear partial differential
equation. The Wright function, which we denote by W (z;α,β), is so named in honor of
Wright, who introduced and investigated this function in a series of notes starting from
 in the framework of the asymptotic theory of partitions. This function was intro-
duced that related Mittag-Leffler [–]. We obtained a number of useful relationships
between the Mittag-Leffler functions and the Wright functions.

.. Definition
The Wright function is defined by the series representation, convergent in the whole z-
complex plane []

W (z;α,β) =
∞∑
k=

zk

k!�(αk + β)
.
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.. The integral representation of the Wright function

W (z;α,β) =


π i

∫
Ha

exp
{
u + zu–α

}
u–β du,

where Ha denotes the Hankel path. To prove the Hankel path, let us write the integrated
function in the form of a power series in z and perform term-by-term integration using
the integral representation formula for the reciprocal gamma function


�(z)

=
∫
Ha

eζ ζ z dζ .

In fact,

W (z;α,β) =


π i

∫
Ha

exp
{
u + zu–α

}
u–β du =


π i

∫
Ha

eu
[ ∞∑

n=

zn

n!
u–αn

]
u–β du

=
∞∑
n=

zn

n!

[


π i

∫
Ha

euu–αn–β du
]
=

∞∑
n=

zn

n!�(αn + β)
.

.. The Laplace transform of the Wright function
We recall that the Mittag-Leffler function plays fundamental roles in applications of frac-
tional calculus like fractional relaxation and fractional oscillation [–]. Kiryakova in-
troduced and studied the multi-indexMittag-Leffler functions as their typical representa-
tives, includingmany interesting special cases that have already proven their usefulness in
FC and its applications []. Srivatava and Tomovski introduced and investigated the frac-
tional calculuswith an integral operatorwhich contains the following family of generalized
Mittag-Leffler functions []. Haubold, Mathaian and Saxena studied the Mittag-Leffler
functions and their applications []. There is an interesting link between theWright func-
tion and theMittag-Leffler function.We now point out that theWright function is related
to the Mittag-Leffler function through the following Laplace transform pair:

L
{
W (t;α,β); s

}
= L

{ ∞∑
k=

tk

k!�(αk + β)
; s

}

=
∞∑
k=


k!�(αk + β)

.


sk+

= s–Eα,β
(
s
–)

.

2 Some properties of the Mittag-Leffler functions
Theorem  (Derivative of the Mittag-Leffler function) If α,β ,γ ∈ C, R(α) > , R(β) > ,
R(γ ) > , z ∈ C and r,n ∈N , then

dn

dxn
[
zβ–Eγ

α,β+rα(z)
]
= zβ–n–Eγ

α,β+rα–n(z).

Proof Using definition (), we have that

dn

dxn
[
zβ–Eγ

α,β+rα(z)
]
=

∞∑
k=

(γ )k
�(α(k + r) + β – n)

zk+β––n

k!
= zβ–n–Eγ

α,β+rα–n(z).
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The Wright function is expressed with help of the Mittag-Leffler function:

dn

dxn
[
zβ–Eγ

α,β+rα(z)
]
=

∞∑
k=

zβ––n(γ )kW (z;α,β + rα – n). �

Theorem  (Integration of the Mittag-Leffler function) If α,β ,γ ∈ C, R(α) > , R(β) > ,
R(γ ) > , z ∈ C and r ∈N , then

∫ z


zβ+rα–Eγ

α,β+rα(z)dz = zβ+rαEγ

α,β+rα+(z).

Proof According to the Mittag-Leffler function, we have

zβ+rα–Eγ

α,β+rα(z) =
∞∑
k=

(γ )k
�(α(k + r) + β)

.
zk+rα+β–

k!
.

Integrating both sides gives

∫ z


zβ+rα–Eγ

α,β+rα(z)dz =
∫ z



∞∑
k=

(γ )k
�(α(k + r) + β)

.
zk+rα+β–

k!
dz

=
∞∑
k=

(γ )k
�(α(k + r) + β + )

.
zk+rα+β

k!

= zβ+rαEγ

α,β+rα+(z).

Relation with the Wright functions is as follows:

∫ z


zβ+rα–Eγ

α,β+rα(z)dz =
∫ z



∞∑
k=

(γ )k
�(α(k + r) + β)

.
zk+rα+β–

k!
dz

=
∞∑
k=

zβ+rα(γ )kW (z;α,β + rα + ). �

Theorem  Let α,β ,γ ∈ C, R(α) > , R(β) > , R(γ ) > , z ∈ C, r ∈ N , then

Eγ

α,β (z) = βEγ

α,β+(z) + αz
d
dz

Eγ

α,β+(z).

Proof By definition (), we have that

βEγ

α,β+(z) + αz
d
dz

Eγ

α,β+(z) = βEγ

α,β+(z) + αz
d
dz

∞∑
n=

(γ )n
�(αn + β + )

.
zn

n!

=
∞∑
n=

β(γ )n
�(αn + β + )

.
zn

n!
+

∞∑
n=

αn(γ )n
�(αn + β + )

.
zn

n!

= Eγ

α,β (z).
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Relation with the Wright functions is as follows:

βEγ

α,β+(z) + αz
d
dz

Eγ

α,β+(z) = βEγ

α,β+(z) + αz
d
dz

∞∑
n=

(γ )n
�(αn + β + )

.
zn

n!

=
∞∑
n=

β(γ )n
�(αn + β + )

.
zn

n!
+

∞∑
n=

αn(γ )n
�(αn + β + )

.
zn

n!

=
∞∑
n=

(γ )nW (z;α,β). �

Theorem  For α,β ,γ ∈ C, R(α) > , R(β) > , R(γ ) > , z ∈ C, r ∈N . ‘Note that’

Eγ

α,β+rα+(z) – Eγ

α,β+rα+(z)

= (β + rα)(β + rα + )Eγ

α,β+rα+(z) + αz
d

dz
Eγ

α,β+rα+(z)

+ α
{
α +  + (β + rα)

}
z
d
dz

Eγ

α,β+rα+(z). ()

Proof We have

Eγ

α,β+rα+(z) =
∞∑
k=

(γ )k
(α(k + r) + β)�(α(k + r) + β)

.
zk

k!
, ()

Eγ

α,β+rα+(z) =
∞∑
k=

(γ )k
(α(k + r) + β)(α(k + r) + β + )�(α(k + r) + β)

.
zk

k!
. ()

Equation () can be written as follows:

Eγ

α,β+rα+(z) =
∞∑
k=

[


α(k + r) + β
–


α(k + r) + β + 

]
zk(γ )k

�(α(k + r) + β)k!

= Eγ

α,β+rα+(z) –
∞∑
k=

zk(γ )k
(α(k + r) + β + )�(α(k + r) + β)k!

. ()

We find from equation () that

Eγ

α,β+rα+(z) – Eγ

α,β+rα+(z) =
∞∑
k=

zk(γ )k
(α(k + r) + β + )�(α(k + r) + β)k!

=
zk(γ )k
k!

(


(α(k + r) + β + )(α(k + r) + β + )�(α(k + r) + β)

+


(α(k + r) + β + )�(α(k + r) + β)

)
()

or

∞∑
k=

zk(γ )k
(α(k + r) + β + )�(α(k + r) + β)k!

=
∞∑
k=

(α(k + r) + β)zk(γ )k
�(α(k + r) + β + )k!

+
∞∑
k=

(α(k + r) + β)(α(k + r) + β + )zk(γ )k
�(α(k + r) + β + )k!
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=
∞∑
k=

{
zk(γ )k
k!

(
αk

�(α(k + r) + β + )
+

(β + rα)
�(α(k + r) + β + )

)}

+
∞∑
k=

{
zk(γ )k
k!

(
(kα)

�(α(k + r) + β + )

+
kα(β + rα + )

�(α(k + r) + β + )
+

(β + r) + (β + r)
�(α(k + r) + β + )

)}
. ()

We now say each summation on the right-hand side of equation () is as follows:

d

dz
{
zEγ

α,β+rα+(z)
}
=

∞∑
k=

(k + )(k + )(γ )k
�(α(k + r) + β + )

.
zk

k!

=
∞∑
k=

k(γ )k
�(α(k + r) + β + )

.
zk

k!

+ 
∞∑
k=

k(γ )k
�(α(k + r) + β + )

.
zk

k!
+ Eγ

α,β+rα+(z) ()

or

∞∑
k=

k(γ )k
�(α(k + r) + β + )

.
zk

k!

= z
d
dz

Eγ

α,β+rα+(z)

+ z
d

dz
Eγ

α,β+rα+(z) – 
∞∑
k=

k(γ )k
�(α(k + r) + β + )

.
zk

k!
. ()

We find from equation () that

∞∑
k=

k(γ )k
�(α(k + r) + β + )

.
zk

k!
= z

d
dz

Eγ

α,β+rα+(z) + z
d

dz
Eγ

α,β+rα+(z). ()

Using equations (), (), and (), we get

Eγ

α,β+rα+(z) – Eγ

α,β+rα+(z)

= (β + rα)(β + rα + )Eγ

α,β+rα+(z) + αz
d

dz
Eγ

α,β+rα+(z)

+ α
{
α +  + (β + rα)

}
z
d
dz

Eγ

α,β+rα+(z).

Relation with the Wright functions is as follows:

Eγ

α,β+rα+(z) – Eγ

α,β+rα+(z)

=
∞∑
k=

(β + rα)(β + rα + )(γ )kW (z;α,β + rα + )
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+
∞∑
k=

αz(γ )k
d

dz
W (z;α,β + rα + )

+
∞∑
k=

α
{
α +  + (β + rα)

}
(γ )kz

d
dz

W (z;α,β + rα + ). �

Theorem  If α,β ,γ ∈ C, R(α) > , R(β) > , R(γ ) > , z ∈ C, r ∈N , then

zrEγ

α,β+rα(z) = Eγ

α,β (z) –
r–∑
k=

(γ )k
�(kα + β)

zk

k!
. ()

Proof We have from ()

∞∑
k=r

(γ )k
�(kα + β)

zk

k!
= Eγ

α,β(z) –
r–∑
k=o

(γ )k
�(kα + β)

zk

k!
.

For r = , , , . . . , we obtain

zEγ

α,β+α(z) = Eγ

α,β(z) –


�(β)
–

(γ )z
�(α + β)

,

zEγ

α,β+α(z) = Eγ

α,β (z) –


�(β)
–

(γ )z
�(α + β)

–
(γ )z

�(α + β)
,

zEγ

α,β+α(z) = Eγ

α,β (z) –


�(β)
–

(γ )z
�(α + β)

–
(γ )z

�(α + β)
–

(γ )z

�(α + β)
,

...

∞∑
k=r

(γ )k
�(kα + β)

zk

k!
= Eγ

α,β(z) –
r–∑
k=o

(γ )k
�(kα + β)

zk

k!
.

Relation with the Wright functions is as follows:

∞∑
k=r

(γ )k
�(kα + β)

zk

k!
=

∞∑
k=

(γ )kW (z;α,β) –
r–∑
k=

(γ )kW (z;α,β). �
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