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Abstract
In this paper, the homotopy analysis method is applied to obtain the solution of
nonlinear fractional partial differential equations. The method has been successively
provided for finding approximate analytical solutions of the fractional nonlinear
Klein-Gordon equation. Different from all other analytic methods, it provides us with a
simple way to adjust and control the convergence region of solution series by
introducing an auxiliary parameter �. The analysis is accompanied by numerical
examples. The algorithm described in this paper is expected to be further employed
to solve similar nonlinear problems in fractional calculus.
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1 Introduction
In this paper, we consider the fractional nonlinear Klein-Gordon equation

∂αu
∂tα

–
∂u
∂x

+ au + bg(u) = f (x, t),  ≤ x, t < ,  ≤ α < ,

u(x, ) = f (x),
∂

∂t
u(x, ) = g(x),

where u is a function of x and t, a and b are real, g is a nonlinear function, and f is a known
analytic function. The Klein-Gordon equation plays an important role in mathematical
physics.
The homotopy perturbation method (HPM) has been successively applied for finding

approximate analytical solutions of the fractional nonlinear Klein-Gordon equationwhich
can be used as a numerical algorithm []. Analytical approach that can be applied to
solve nonlinear differential equations is to employ the homotopy analysis method (HAM)
[–]. Chowdhury and Hashim have employed HPM for solving Klein-Gordon equations
[]. The main aim of this work is to apply the HPM to solve the nonlinear Klein-Gordon
equations of fractional order. An account of the recent developments ofHAMwas given by
Liao []. HAM has been successfully applied in engineering fields. The method has been
applied to give an explicit solution for the Riemann problem of the nonlinear shallow-
water equations []. The homotopy analysis method is applied to solve linear and nonlin-
ear fractional partial differential equations (fPDEs) []. The obtained Riemann solver has
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been implemented into a numerical model to simulate long waves, such as storm surge or
tsunami, propagation and run-up. Differential equations and nonlinear mechanics very
recently, Song and Zhang [] solved the fractional KdV-Burgers-Kuramoto equation us-
ing HAM. Cang et al. [] solved nonlinear Riccati differential equations of fractional or-
der using HAM. Hashim et al. [] employed HAM to solve fractional initial value prob-
lems (fIVPs) for ordinary differential equations. In [] the applicability of HAM was ex-
tended to construct a numerical solution for the fractional BBM-Burgers equation. The
homotopy analysis method is implemented to give approximate and analytical solutions
for the Klein-Gordon equation []. The HAM solutions for systems of nonlinear frac-
tional differential equations were presented by Bataineh et al. []. A specific linear, non-
homogeneous time fractional partial differential equation (fPDE)with variable coefficients
was first transformed into two fractional ordinary differential equations, which were then
solved by HAM in []. Recently, Xu et al. [] applied HAM to linear, homogeneous one-
and two-dimensional fractional heat-like PDEs subject to the Neumann boundary con-
ditions. They implemented relatively new, exact series method of solution known as the
differential transform method for solving linear and nonlinear Klein-Gordon equations
[]. Jafari and Seifi [] applied HAM to linear and nonlinear homogeneous fractional
diffusion-wave equations. Very recently, HAM was shown to be capable of solving linear
and nonlinear systems of fPDEs [].

2 Definitions
2.1 The Mittag-Leffler function
The Mittag-Leffler function is an important function that finds widespread use in the
world of fractional calculus. Just as the exponential naturally arises out of the solution to
integer order differential equations, the Mittag-Leffler function plays an analogous role in
the solution of non-integer order differential equations. In fact, the exponential function
itself is a very special form, one of an infinite set, of this seemingly ubiquitous function.
Here,mth derivatives of Mittag-Leffler functions [] are given

E(m)
α (z) =

∞∑
k=

(k +m)!zk

k!�(αk + αm + )
, z,α ∈ C,m ∈N ,R(α) > .

A two-parameter function of the M-L (Mittag-Leffler) type is defined by the series ex-
pansion [],

E(m)
α (z) =

∞∑
k=

(k +m)!zk

k!�(αk + αm + β)
, α,β ∈ C,R(α) > ,R(β) > , z ∈ C,m ∈N .

2.2 Laplace’s transform of fractional order
The Laplace transform of a function f (t), denoted by F(s), is defined by the equation

F(s) = L
{
f (t), s

}
=

∫ ∞


e–stf (t)dt,

∫ ∞


e–tezt dt =


 – z

.
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If n ∈N , then by the theory of the Laplace transform, we know that

L
{

d
dxn

; f ; s
}
= snF(s) –

n–∑
k=

sn–k–f (k)(+)

or

L
{
Dα ; f ; s

}
= sαF(s) –

n–∑
k=

sα–k–f (k)(+) (n –  ≤ α < n).

In this section several integrals associated with Mittag-Leffler functions are presented,
which can be easily established by the application of beta and gamma function formulas
and other techniques [],

∫ ∞


e–ttkezt dt =

(k + )!
( – z)k

and
∫ ∞


e–pttkeat dt =

k!
(p – a)k+

(
Re(p) > a

)
.

We obtain, from the equation, a pair of Laplace transforms of the function

∫ ∞


e–xtβ–Eα,β

(
xαz

)
dz =


 – z

, |z| < ,α,β ∈ C,R(α) > ,

∫ ∞


e–sξ ξmα+β–E(m)

α,β
(±aξα

)
dξ =

m!sα–β

(sα ± a)m+ , R(s) > |a| 
α .

2.3 Fractional calculus
We have well-known definitions of a fractional derivative of order α >  such as Riemann-
Liouville, Grunwald-Letnikow, Caputo, and generalized functions approach [, ]. The
most commonly used definitions are those of Riemann-Liouville and Caputo. We give
some basic definitions and properties of the fractional calculus theory, which are used
throughout the paper.

Definition . A real function f (x), x > , is said to be in the space Cμ, μ ∈ R, if there
exists a real number (p > μ) such that f (x) = xpf(x), where f(x) ∈ C[,∞), and it is said to
be in the space Cm

μ iff f m ∈ Cμ,m ∈N .

Definition . The Riemann-Liouville fractional integral operator of order α ≥  of a
function f ∈ Cμ, μ ≥ –, is defined as

Jvf (x) =


�(v)

∫ x


(x – t)v–f (t)dt, v > ,

Jf (x) = f (x).

It has the following properties. For f ∈ Cμ, μ ≥ –, α,β ≥ , and γ > ,
. JαJβ f (x) = Jα+β f (x),
. JαJβ f (x) = Jβ Jαf (x),
. Jαxγ = �(γ+)

�(α+γ+)x
α+γ .
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The Riemann-Liouville fractional derivative is mostly used by mathematicians, but this
approach is not suitable for physical problems of the real world since it requires the defini-
tion of fractional order initial conditions which have no physicallymeaningful explanation
yet. Caputo introduced an alternative definition which has the advantage of defining inte-
ger order initial conditions for fractional order differential equations.

Definition . The fractional derivative of f (x) in the Caputo sense is defined as

Dv
* f (x) = Jm–v

a Dmf (x) =


�(m – v)

∫ x


(x – t)m–v–f (m)(t)dt

form –  < v <m,m ∈N , x > , f ∈ Cm
–.

Lemma . If m –  < α <m,m ∈N , and f ∈ Cm
μ , μ ≥ –, then

Dα
* J

αf (x) = f (x),

JαDv
* f (x) = f (x) –

m–∑
k=

f k
(
+

)xk
k!
, x > .

The Caputo fractional derivative is used here because it allows traditional initial and
boundary conditions to be included in the formulation of the problem.

Definition . Form to be the smallest integer that exceeds α, the Caputo time-fractional
derivative operator of order α >  is defined as

Dα
*tu(x, t) =

∂αu(x, t)
∂tα

=

⎧⎨
⎩


�(m–α)

∫ t
 (t – ξ )m–α– ∂mu(x,ξ )

∂ξm dξ , form –  < α <m,
∂mu(x,t)

∂tm , for α =m ∈N .

3 Homotopy analysis method
We apply the homotopy analysis method to the discussed problem. Let us consider the
fractional differential equation,

FD
(
u(x, t)

)
= .

Based on the constructed zero-order deformation equation by Liao (), we give the
following zero-order deformation equation in the similar way:

( – q)L
(
U(x, t;q) – u(x, t)

)
= q�FD

(
U(x, t;q)

)
, q ∈ [, ],� �= ,

L is an auxiliary linear integer order operator and it possesses the property L(C) = , U is
an unknown function.
Expanding U in Taylor series with respect to q, one has

U(x, t;q) = u(x, t) +
∞∑
m=

um(x, t)qm,
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where

um(x, t) =
∂U(x, t;q)

∂qm

∣∣∣∣
q=

.

Differentiating the equation m times with respect to the embedding parameter q, then
setting q = , and finally dividing thembym!, we have themth-order deformation equation

L
[
um(x, t) – χmum–(x, t)

]
= �Rm

[�um–(x, t)
]
,

where

Rm
[�um–(x, t)

]
=


(m – )!

∂m–FD(U(x, t;q))
∂qm–

∣∣∣∣
q=

and

χm =

⎧⎨
⎩, m ≤ ,

, m > .

These equations can be easily solved using software such as Maple, Mathlab and so on.

4 Application

∂αu
∂tα

–
∂u
∂x

= –u,  ≤ x, t < ,  ≤ α < ,

u(x, ) = f (x),
∂

∂t
u(x, ) = g(x).

We rewrite the equation in an operator form,

Dα
t =

∂u
∂t

– u,

Jαt D
α
t = Jαt

[
∂u
∂x

– u
]
,

which gives, according to Caputo, that

u =
n–∑
k=

u(k)(, t)
xk

k!
+ Jαt

[
∂u
∂x

– u
]
, n = ,

u = f (x) + tg(x) + Jαt

[
∂u
∂x

– u
]
.

We define, according to the equation, the linear and nonlinear operator,

L(	) =Dα
t 	 ,

N(	) =Dα
t –

[
∂u
∂t

– u
]
.
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According to the equation (Klein-Gordon equation), using the homotopy analysis
method,

Jαt D
α
t
[
um(x, t) – xm–um–(x, t)

]
= �Jαt

{
Rm

[�um–(x, t)
]}
,

where

Rm
[�um–(x, t)

]
=Dα

t um– –

[
∂u
∂x

–
m–∑
j=

ujum––j

]
,

we find

u = –�Jαt

[
∂u
∂x

– u

]
.

Now, the solution of themth-order deformation equation form ≥  becomes

um = (� + )um–(x, t) – �Jαt

[
∂u
∂x

–
m–∑
j=

ujum––j

]
.

Consider the fractional nonlinear partial differential equation:

∂αu
∂tα

–
∂u
∂x

= –u,  ≤ x, t < ,  ≤ α < ,

u(x, ) = u(x, ) =  + sin(x),
∂

∂t
u(x, ) = .

We now successively obtain

u(x, t) =
tα

�(α + )
�
(
 sin(x) +  – cos(x)

)
,

u(x, t) = –
tα+

�(α + )
�
 sin(x)

(
– +  cos(x)

)
–

tα

�(α)
�
 sin(x) –

tα

�(α)
�
 sin(x)

–
tα

�(α)
� +

tα+

�(α + )
�
 cos(x)

+
tα

�(α)
�
 cos(x) +

tα

�(α)
� cos(x) –

tα

�(α)
�
 –

tα

�(α)
�
,

so

u(x, )∼= u(x, ) + u(x, ) + u(x, ).

For the special case h = –, we obtain from

u(x, t) =  +
(
x –

x

!
+
x

!
, . . . ,

)
+

tα

�(α + )

(
– – x – x +

x

!
+
x


–
x

!
, . . . ,

)

+
tα+

�(α + )

(
x + x –

x

!
– x, . . . ,

)
+ · · · .
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Figure 1 The figures show the 3rd-order approximation solution u(x, t) to Eq. when (left) α = 2, (right)
α = 1.75.

Figure 2 The figures show the 3rd-order approximation solution u(x, t) to Eq. when (left) α = 1.5,
(right) α = 1.

We have given the solution simulations in Figure  and Figure  according to different
α values.

5 Conclusion
In this study, the homotopy analysis method with new strategies has been employed to
obtain an approximate analytical solution of fractional nonlinear Klein-Gordon equations.
It is quite important to notice that a higher number of iteration and higher order of p are
needed to gain more accuracy.
This work illustrates the validity and great potential of the homotopy analysis method

for nonlinear fractional partial differential equations. The basic ideas of this approach are
expected to be further employed to solve other nonlinear problems in fractional calculus.
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