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Abstract
This paper introduces several mathematical image registration models. Image
registration, an ill-posed optimization problem, is formulated as the minimization of
the sum of an image similarity metric and a regularization term. Curvature-driven
diffusion-based techniques, in particular Perona-Malik, anisotropic diffusion, mean
curvature motion (MCM), affine invariant MCM (AIMCM), are employed as a
regularization term in this optimal control formulation. Adopting the
steepest-descent marching with an artificial time t, Euler-Lagrange (EL) equations
with homogeneous Neumann boundary conditions are obtained. These EL equations
are approximately solved by the explicit Petrov-Galerkin scheme. The method is
applied to the registration of brain MR images of size 257× 257. Computational
results indicate that all these regularization terms produce similarly good registration
quality but that the cost associated with the AIMCM approach is, on average, less
than that for the others.
MSC: 68U10; 65D18; 65J05; 97N40
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1 Introduction
The purpose of image registration is to align two or more images of the same scene ob-
tained at different times, perspectives or sensors such asMRI, X-ray, CT, PET, SPECT, and
tomography. Given a reference image R(x) and a template image T(x), the main idea be-
hind an image registration paradigm is to find a reasonable transformation such that the
transformed image becomes similar to the reference image. Image registration has a broad
range of applications such as object or motion tracking, detecting tumors, image fusion
among many others; see, for example, []. Image registration is a significant and challeng-
ing subject which usually involves high storage requirements, high CPU costs and mostly
deals with noisy, distorted, and occluded data. In literature several different types of image
registration techniques (see, for instance, [, ] and references therein) were developed.
Each of these algorithms was generated based on a specific application, disease or image
modality. There is still no general image registration technique which could be used in
every sort of data. Based on these facts, finding fast and efficient image registration tech-
niques is a quite useful and still significantly important area of research.
In this paper, we express the image registration algorithm as a variational optimization

problem which consists of the sum of a similarity measure and a regularization term. Our
method incorporates L-norm sense similarity measures with several different curvature-
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driven diffusion-based regularization terms such as anisotropic diffusion, mean curvature
motion (MCM), and affine invariant MCM.We are mostly motivated by the efficient per-
formance of these regularization terms in image denoising and restoration problems (for
instance, [] applies these regularization terms to image processing problems). It is signif-
icantly important to explore the utility of these geometrically derived regularization terms
in the field of image deformation.
Organization of the paper is as follows. In the Section , we present an optimal control

formulation of the image registration problem. We use the sum of squared differences in
the L-norm sense as the similarity measure and introduce four different regularization
terms. In the same section, we solve the existing optimization problem in a systematic
manner by the techniques in variational calculus such as gradient-descent based meth-
ods. Computational results given in the last section indicate that new regularization terms
provide fast, stable, and efficient image registration models.

2 Optimal control formulation of image registration problem
The state-of-the-art image registration problem can be expressed in the following way.
Assume that both template T and reference R images are defined on the same domain �.
Then the image registration problem can be formulated as the optimization problem

min
φ∈�

J [R,T;φu] ()

for the functional

J [R,T;φu] = Csim[R,T;φu] + λCreg[u], ()

where Csim[R,T;φu] denotes a similarity measure between the template image T and the
reference image R, φu(x) := x+ u(x) is the deformation field, u is the displacement field, �
is the set of all possible admissible transformations, Creg[u] is a regularization term, and
λ is a regularization constant. Because reference and template images are obtained from
different distances, angles, times, and sometimes even by different individuals, a deforma-
tion field may occur between these images. A deformation field is a vector field that maps
pixels of the reference image to the corresponding ones of the template image. One of the
major goals of this paper is to compute the deformation field in a systematic way.
We choose the L-norm type similarity measure defined as

Csim
[
R(x),T(x);φ(x)

]
=



∫
�

(
T

(
x + u(x)

)
–R(x)

) dx. ()

This similarity measure is often referred to as the ‘sum of squared differences’ (SSD) mea-
sure. Note that other similarity measures can be selected depending on the problem. We
choose the similarity measure () due to its well-known effectiveness (for example, see
[]), the convenience in computations, and easy adaptation of the regularization terms in
numerical computations.
Image registration is an ill-posed optimal control problem. In order to overcome the ill-

posedness of the optimization problem () and to assure smooth solutions, we introduce
additional regularization terms. The main idea behind adding a regularization term is to
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smoothen the problem with respect to both the functional and the solution so that well-
posedness is assured and efficient computational methods can be developed to determine
minimizers. In this paper, we use some curvature-driven diffusion-based techniques, in
particular Perona-Malik, anisotropic diffusion, mean curvature motion, affine invariant
mean curvature motion regularization terms. Next, we present each of these regulariza-
tion terms:

Perona-Malik: –
∫

�

∇ ·
(


 + |∇u(x)| ∇u(x)

)
dx,

anisotropic diffusion: –
∫

�

∇ ·
(
D

(∣∣∇u(x)
∣∣) 

|∇u(x)|∇u(x)
)
dx,

mean curvature motion: –
∫

�

∣∣∇u(x)
∣∣∇ ·

(


|∇u(x)|∇u(x)
)
dx,

affine invariant MCM: –
∫

�

∣∣∇u(x)
∣∣∇ ·

(


|∇u(x)|∇u(x)
)/

dx.

For the convenience of computations, we define Tu(x) := Toφu(x) = T(x + u(x)). Writing
these regularization terms in the functional () and taking into account the boundary con-
ditions, for each of these regularization terms, we can express the functional () as

J [R,T;φu] =



∫
�

(
T

(
x + u(x)

)
–R(x)

) dx – λ

∫
�

∇ ·
(


 + |∇u(x)| ∇u(x)

)
dx

+
∫

∂�


|∇u(x)|

∂u(x)
∂n

dH,

J [R,T;φu] =



∫
�

(
T

(
x + u(x)

)
–R(x)

) dx

– λ

∫
�

∇ ·
(
D

(∣∣∇u(x)
∣∣) 

|∇u(x)|∇u(x)
)
dx

+
∫

∂�


|∇u(x)|

∂u(x)
∂n

dH,

J [R,T;φu] =



∫
�

(
T

(
x + u(x)

)
–R(x)

) dx – λ

∫
�

∣∣∇u(x)
∣∣∇ ·

(


|∇u(x)|∇u(x)
)
dx

+
∫

∂�


|∇u(x)|

∂u(x)
∂n

dH,

J [R,T;φu] =



∫
�

(
T

(
x + u(x)

)
–R(x)

) dx – λ

∫
�

∣∣∇u(x)
∣∣∇ ·

(


|∇u(x)|∇u(x)
)/

dx

+
∫

∂�


|∇u(x)|

∂u(x)
∂n

dH,

where n denotes the outer normal along the boundary ∂�, and dH is the one-dimensional
Hausdorff measure supported on ∂�. Here, the divergence in the regularization terms
is understood in the distributional meaning. In [] we studied the same optimal con-
trol formulation of the image registration problemwith different regularization terms and
showed the existence and uniqueness of this optimization problem using appropriate the-
orems. Similar sorts of optimal control problemswith their computational solutionsmight
be seen in [, ].
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From these equations, by adopting the steepest-descent marching with an artificial
time t, we get

∂u(x)
∂t

= ∇Tu(x)
(
Tu(x) –R(x)

)
–∇ ·

(


 + |∇u(x)| ∇u(x)
)
dx,

∂u(x)
∂t

= ∇Tu(x)
(
Tu(x) –R(x)

)
–∇ ·

(
D

(∣∣∇u(x)
∣∣) 

|∇u(x)|∇u(x)
)
dx,

∂u(x)
∂t

= ∇Tu(x)
(
Tu(x) –R(x)

)
–

∣∣∇u(x)
∣∣∇ ·

(


|∇u(x)|∇u(x)
)
dx,

∂u(x)
∂t

= ∇Tu(x)
(
Tu(x) –R(x)

)
–

∣∣∇u(x)
∣∣∇ ·

(


|∇u(x)|∇u(x)
)/

dx,

with homogeneous Neumann boundary conditions along ∂�.
Sethian [] developed a good number of efficient schemes for the numerical solution of

these types of equations, some ofwhich are the fastmarching scheme, the explicit positive-
coefficient scheme, the explicit Petrov-Galerkin scheme, and some other schemes for so-
called curvature type flows. Aubert et al. [] also developed some efficient numerical solu-
tionmethods for these sorts of equations.We adopted the explicit Petrov-Galerkin scheme
and implemented the corresponding algorithm in Matlab computer algebra system. Next
section shows the experimental results.

Computational results
In this section, we present an illustrative example where we demonstrate the registration
of brainMR images in the size of × as an application of the proposedmodels. The
template, reference, and registered images with AIMCM are shown in Figure . Computa-
tional examples indicate that all regularization terms produce similarly good registration
quality, but the cost associated with affine invariant MCM approach is, on average, less
than that for others. It could be said that the quality of the registration is correlated with
the size of the SSD in an opposite way. In other words, the smaller the size of SSD, the
better registered images. Table  shows the changes in SSD for each model used versus
the number of iterations. The duration of the registration with the AIMCM and MCM
models is almost  minute and the one with Perona-Malik and anisotropic diffusion (AD)
is almost . minutes. We applied the presented method to some other brain MR images

Figure 1 Left: template image, middle: reference image, right: registered image.
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Table 1 The similarity measure Csim and the cost in computational time

Iterations AIMCM PM
Csim cost Csim cost

1 1674.6 1 sec 1674.6 2 sec
2 908.5 1.1 sec 1102.5 2 sec
15 160.7 2 sec 209.9 4 sec
30 40.7 7 sec 63.5 16 sec
80 15.8 15 sec 26.5 34 sec
160 10.7 20 sec 16.5 55 sec
240 6.4 38 sec 12.5 2mins
400 3.9 55 sec 7.5 3mins

and obtained similar results. Because the registered image is similar to other regulariza-
tion terms, we omit to present them inhere for the sake of brevity.

Concluding remarks
Medical image registration is quite an important and challenging branch of image pro-
cessing world. It has broad applications in medical and non-medical imaging.
In this paper, we presented a number of curvature-driven diffusion-based image regis-

tration techniques. Our method incorporates the sum of a squared differences similarity
measure with several different regularization terms such as Perona-Malik, anisotropic dif-
fusion, mean curvature motion, and affine invariant MCM. To the best of our knowledge,
nobody in the literature associated these regularization termswith the SSD similaritymea-
sure and applied them to the nonrigid registration of medical images. By using gradient-
descent based optimization techniques, we solve the existing optimization problem and
obtain the corresponding optimality system in a systematicmanner. Exploiting the explicit
Petrov-Galerkin scheme, we implemented the corresponding algorithm in Matlab.
In future work, we will investigate the applications of these image registration tech-

niques to the registration of noisy and blurred images. Furthermore, we plan to compare
the strength of these registration techniques with some well-known image registration
methods in terms of speed, quality, and effectiveness in detail.
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