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Abstract
Firstly, sufficient conditions for nonexistence of an ω-periodic solution of the
equation x(n + 1) + a0(n)x(n) = b(n) are presented. Then, sufficient conditions under
which every solution of the above equation is asymptotically ω-periodic are given.
Next, the results obtained for the first-order difference equation are generalized for
the higher-order nonhomogeneous linear difference equation

k∑
i=0

ai(n)x(n + i) = b(n).

Finally, the periodic and asymptotically periodic solutions of this equation are
investigated. Many examples illustrate the results given.
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1 Introduction
We consider a class of k-order linear difference equations of the form

k∑
i=

ai(n)x(n + i) = b(n), n ∈N = {, , , . . .}, ()

where a(n) �= , ak(n) �=  for each n ∈N.
For the reader’s convenience, we note that the background for difference equations the-

ory can be found, e.g., in the well-known monograph by Agarwal [] as well as in those by
Elaydi [], Kelley and Peterson [] or Kocić and Ladas [].
The investigation of linear difference equations attracted the attention of many math-

ematicians. Agarwal and Popenda, in [], set together various basic statements on the
periodicity of the solutions of first-order linear difference equations. In [], the same au-
thors studied periodic oscillation of solutions of nonhomogeneous higher-order differ-
ence equations. Popenda and Schmeidel (see []) considered the linear difference equation
crnyn+r + · · · + cnyn+ + cnyn = dn and presented sufficient conditions for the existence of an
asymptotically constant solution of the above equation. In [], the conditions which guar-
antee that the linear difference equation xn+ – anxn =

∑r
i= a

(i)
n xn+i possesses an asymp-

totically periodic solution were given by the same authors. In [], Popenda and Schmeidel
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studied the linear difference equation, where one of the coefficients is periodic or con-
stant and the others asymptotically approach zero, and obtained sufficient conditions for
the existence of asymptotically periodic solutions. Smith (see []) investigated oscilla-
tory and asymptotic behavior of solutions of linear third-order difference equations. In
[], asymptotic behavior of solutions of a linear second-order difference equation was
studied by Trench.
For convenience, we adopt the notation for sequences b = (b(n)) and ai = (ai(n)), where

i = , , , . . . ,k. Throughout this paper, we assume that
∑l

n=k a(n) =  and
∏l

n=k a(n) = 
for l < k.
We begin with the following basic well-known definition.

Definition  The sequence y :N → R is called ω-periodic if y(n + ω) = y(n) for all n ∈ N.
The sequence y is called asymptotically ω-periodic if there exist two sequences u, v :N →
R such that u is ω-periodic, limn→∞ v(n) = , and y(n) = u(n) + v(n) for all n ∈N.

It is clear that every constant function is -periodic.
If a sequence a is ω-periodic and b is ω-periodic in (), then throughout this paper, ω

is the least common multiple of ω and ω (ω = lcm(ω,ω)).
In the paper, we are looking for the periodic solutions of () with the period less than

or equal to ω. We are not interested in the solutions of () with the period greater than ω,
but such solutions can exist.

Example  The general solution of

x(n + ) – x(n) = 

is given by

x(n) = c* + c**(–)n +C* cos

(
n

π



)
+C** sin

(
n

π



)
.

Here, sequences a ≡  and b ≡  are -periodic, but there are -periodic solutions.

2 First-order difference equations
Periodicity of solutions of first-order linear nonhomogeneous difference equations was
considered byAgarwal and Popenda in []. The authors contemplate the class of equations
which have the same periodic solutions.
Let k =  in equation () and a ≡ . Hence, equation () takes the following form:

x(n + ) + a(n)x(n) = b(n). ()

If a ≡ –, b ≡ , then the general solution of () is a constant function, then it is -
periodic.
If a ≡ –, b �≡ , then the general solution of () is

x(n) = c +
n–∑
j=

b(j), ()
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where c is an arbitrary constant. From () we see that a necessary and sufficient condition
for the existence of ω-periodic solutions of () is b being anω-periodic sequence such that

ω–∑
j=

b(j) = .

The general solution of the associated homogeneous equation of () is

x(n) = c(–)n
n–∏
i=

a(i).

If a(n) �=  for any n ∈ N, then the necessary and sufficient condition for the existence of
a nontrivial ω-periodic solution of the homogeneous equation is that a is an ω-periodic
sequence and

(–)ω
ω–∏
i=

a(i) = .

If these conditions are satisfied, then all the solutions of the homogeneous equation are
ω-periodic. We also note that if a(n) = , for some n ∈ N, then x ≡  for large enough n,
and this solution is eventually a -periodic solution.
From () we see that if a is ω-periodic, then the necessary condition for the existence

of an ω-periodic solution is ω-periodicity of the sequence b.

Example  Consider the equation

x(n + ) +
(
 + (–)n

)
x(n) =  + (–)n.

Sequences a(n) =  + (–)n and b(n) =  + (–)n are -periodic. The solution x(n) =
 + (–)n+ of the above equation is -periodic, too. Notice that there are not -periodic
solutions of the associated homogeneous equation.

The following example shows us that in the case a is ω-periodic, ω-periodicity of the
sequence b is not sufficient for the existence of an ω-periodic solution of ().

Example  Take in ()

a(n – ) = , a(n) =


, b(n – ) = –, b(n) = .

Sequences a and b are -periodic sequences. The general solution of the above equation

⎧⎨
⎩x(n – ) = c –  + n,

x(n) = –c +  – n,

is not a periodic sequence.
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Theorem  Let a and b be ω-periodic in (). The following statements then hold true:
(i) If

(–)ω
ω–∏
i=

a(i) �= , ()

then () has an ω-periodic solution with the initial condition

x() =

(
 – (–)ω

ω–∏
i=

a(i)

)–[ω–∑
j=

(
(–)ω–j–

ω–∏
i=j+

a(i)

)
b(j)

]
. ()

(ii) If

(–)ω
ω–∏
i=

a(i) = ,
ω–∑
j=

(
(–)ω–j–

ω–∏
i=j+

a(i)

)
b(j) = ,

then every solution of () is ω-periodic.
(iii) If

(–)ω
ω–∏
i=

a(i) = ,
ω–∑
j=

(
(–)ω–j–

ω–∏
i=j+

a(i)

)
b(j) �= ,

then there is no ω-periodic solution of ().

Proof The solution of equation () is given by

x(n) =

(
(–)n

n–∏
i=

a(i)

)
x() +

n–∑
j=

(
(–)n–j–

n–∏
i=j+

a(i)

)
b(j). ()

From the above, the result follows immediately. �

Assume that condition () holds. It follows from (i) that equation () has a unique ω-
periodic solution if and only if the homogeneous equation

x(n + ) + a(n)x(n) = 

has not any nontrivial ω-periodic solution.
In [] Agarwal and Popenda proved that if a is not periodic, then equation () can have

at most one periodic solution.

Example  The equation

x(n + ) +

n

x(n) = (–)n+
(
 –


n

)

has a unique periodic solution x(n) = (–)n. Here, the general solution

x(n) = c(–)n––
n(n–)



of the associated homogeneous equation has not any nontrivial periodic solution.
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The following example shows us that there exists a class of equations () which have the
same ω-periodic solutions (each of them differs on the subsequence (a(n – ))).

Example  Let a = (,–,a, , –,a, . . .) = (,–,a), b = (, , ). It is easy to check that
the sequence x = (,–, ) is a -periodic solution of () independently of the values taken
for a.

This leads to the problemof defining the class of equationswhich have the same periodic
solutions.
Let a* be an ω-periodic sequence which fulfills condition () and p ∈ {, , , . . . ,ω – }.

We define the set Sp as follows:

Sp =
{
a* =

{
a*(n)

}
: a*(i) = a(i) for i �= p,a*(i) �= a(i) for i = p

}
.

Theorem  Assume that in equation () sequences a and b are ω-periodic and condition
() holds.
If

(
 – (–)ω

ω–∏
i=

a(i)

)(
 – (–)ω

ω–∏
i=

a*(i)

)–

=

[
ω–∑
j=

(
(–)ω–j–

ω–∏
i=j+

a(i)

)
b(j)

][
ω–∑
j=

(
(–)ω–j–

ω–∏
i=j+

a*(i)

)
b(j)

]–

()

and

(–)p
p–∏
i=

a(i)

[
ω–∑
j=

(
(–)ω–j–

ω–∏
i=j+

a(i)

)
b(j)

](
 – (–)ω

ω–∏
i=

a(i)

)–

+
p–∑
j=

(
(–)ω–j–

p–∏
i=j+

a(i)

)
b(j) = , ()

then every equation of the form

x(n + ) + a*(n)x(n) = b(n), a* ∈ Sp, ()

has the same ω-periodic solution x as equation () independently on a*(p) term.

Proof Let x and x* be the solutions of equations () and () respectively. The assumptions
of Theorem  hold for equations () and (), then by () and (), we get that x() = x*().
Because a(i) = a*(i) for i = , , , . . . ,p – , we get x(i) = x*(i) for i = , , , . . . ,p – . From
(), (), and x() = x*(), we have x(p) = x*(p) = . So, x(i) = x*(i) for i = p,p + , . . . ,ω – .
By ω-periodicity of x and x*, x = x*. �

Now, we turn our attention to asymptotical periodicity of the solutions of ().
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Assume that a isω-periodic, b(n) = c(n)+d(n), where c isω-periodic and limn→∞ d(n) =
. Let y be a solution of the equation

y(n + ) + a(n)y(n) = c(n)

and z be a solution of the equation

z(n + ) + a(n)z(n) = d(n). ()

Hence, x = y + z is a solution of

x(n + ) + a(n)x(n) = c(n) + d(n).

Set a(n) = –α(n). Multiplying both sides of equation () by
∏n–ω[ nω ]

i=


α(i)
, we obtain

n–ω[ nω ]∏
i=


α(i)

z(n + ) –
n––ω[ n–ω ]∏

i=


α(i)

z(n) =
n–ω[ nω ]∏
i=


α(i)

d(n).

Summing the above equality from j =  to n – , we obtain

n–∑
j=

(j–ω[ j
ω ]∏

i=


α(i)

z(j + ) –
j––ω[ j–ω ]∏

i=


α(i)

z(j)

)

=
n–∑
j=

(j–ω[ j
ω ]∏

i=


α(i)

d(j)

)
,

and

n–∑
j=

[
�

(j––ω[ j–ω ]∏
i=


α(i)

z(j)

)]
=

n–∑
j=

(j–ω[ j
ω ]∏

i=


α(i)

d(j)

)
.

Hence,

(n––ω[ n–ω ]∏
i=


α(i)

)
z(n) = z()

––ω[ –ω ]∏
i=


α(i)

+
n–∑
j=

(j–ω[ j
ω ]∏

i=


α(i)

)
d(j).

Assuming

∞∑
j=

(j–ω[ j
ω ]∏

i=


α(i)

)
d(j) + z()

––ω[ –ω ]∏
i=


α(i)

= S

and letting n→ ∞, the right side of the above equality tends to some constant c = z()+S,
then the left one does too. Utilizing little-o notation, we obtain

(n––ω[ n–ω ]∏
i=


α(i)

)
z(n) = c + o().
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Hence,

x(n) = y(n) + c

(n––ω[ n–ω ]∏
i=

(
–a(i)

))
+ o()

(n––ω[ n–ω ]∏
i=

(
–a(i)

))
.

From above, we get sufficient conditions for asymptotical periodicity of the solutions of
() which are presented in the following theorem.

Theorem  Let the sequence a be ω-periodic and b(n) = c(n) +d(n),where c is ω-periodic
and the series

∞∑
j=

(j–ω[ j
ω ]∏

i=

–
a(i)

)
d(j)

converges, then there exists an asymptoticallyω-periodic solution of equation ().Moreover,
if conditions

(–)ω
ω–∏
i=

a(i) = ,
ω–∑
j=

(
(–)ω–j

ω–∏
i=j+

a(i)

)
c(j) = 

hold, then every solution of equation () is asymptotically ω-periodic.

The following three examples illustrate the result presented in Theorem :
- in the first one sequence a is constant;
- in the second sequence a is -periodic;
- in the third sequence a is not periodic.

Example  Consider the equation

x(n + ) – x(n) = (–)n.

The assumptions of Theorem  hold (c(n) = (–)n, d(n) = ). The general solution of the
equation x(n) = c + (–)n+ is an asymptotically -periodic sequence.

Example  Assume that

a(n – ) = , a(n – ) =


, a(n) = –,

in () and b(n) = c(n) + d(n), where

c(n – ) = , c(n – ) = , c(n) = ,

d(n – ) = –n, d(n – ) =


–n, d(n) = –




–n.

Furthermore,

n∑
j=

∣∣∣∣∣
j∏

i=


a(i)

d(j)

∣∣∣∣∣ ≤ 


n∑
j=

–j.
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Hence,

∞∑
j=

∣∣∣∣∣
j∏

i=


a(i)

d(j)

∣∣∣∣∣ < ∞.

All the assumptions of Theorem  are satisfied. Therefore, all the solutions of equation
() are asymptotically -periodic. This can be easily seen from the general solution of the
considered equation, which is given below.

⎧⎪⎪⎨
⎪⎪⎩
x(n – ) = c +  + 

 · –n,
x(n – ) = –c –  + 

 · –n,
x(n) = c +  + –n.

Example  Let us put a(n) = – 
n+ , b(n – ) = n–

n– , b(n – ) = n–
n , b(n) = n–

n+ in ().
Hence, the general solution of the associated homogeneous equation

x(n) =
c

(n – )!

tends to zero. The -periodic solution of () is x = ((, , )). Therefore, every solution of
() is asymptotically -periodic.

3 Some results for higher-order equations
In this part, we study equation (). In the following theorem, sufficient conditions under
which equation () has no asymptotically periodic solution are given.

Theorem  Assume that there exists i ∈ {, , , . . . ,k} such that supn∈N |ai (n)| = ∞ and
supn∈N |aj(n)| < ∞ for j �= i, j ∈ {, , , . . . ,k}. Let the sequence b be bounded, too. Then
equation () has not any asymptotically periodic solution x :N→ R \ {}.

Proof Suppose to the contrary that () has such an asymptotically periodic solution x. It
implies that the sequence x is bounded. Choose i ∈ {, , , . . . ,k} such that the sequence
(ai (n)) is unbounded. Therefore,

ai (n)x(n + i)

is also unbounded. Hence,

k∑
i=

ai(n)x(n + i)

is unbounded, while b is bounded. This contradiction completes the proof. �

The sufficient conditions for the existence of an asymptotically ω-periodic solution of
equation () are given in the following theorem.

http://www.advancesindifferenceequations.com/content/2012/1/195
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Theorem  Assume that a :N→ R \ {}, the condition

lim
n→∞

ai(n)
a(n)

=  ()

holds for each i ∈ {, , . . . ,k} and the sequence ( b(n)
a(n)

) is asymptotically ω-periodic. Then
there exists an asymptotically ω-periodic solution of equation ().

Proof From the periodicity of the sequence ( b(n)
a(n)

), there exists a positive constant C such
that

∣∣∣∣ b(n)a(n)

∣∣∣∣ < C.

From condition (), for any ε > , there exists a positive integer N such that

k∑
i=

∣∣∣∣ ai(n)a(n)

∣∣∣∣ < ε for n≥ N .

Set c = C + ε. We define the sequence α as follows:

α(n) =
k∑
i=

∣∣∣∣ ai(n)a(n)

∣∣∣∣.
Let BN be the Banach space of all real bounded sequences x defined for n≥ N , with usually
‘sup’ norm. Set

S =
{
x(n) ∈ BN :

b(n)
a(n)

– cα(n)≤ x(n)≤ b(n)
a(n)

+ cα(n) for n≥ N
}
. ()

It is not difficult to prove that S is a nonempty, closed, convex, and compact subset of
BN . For example, to show that the set S is convex, let us take sequences x, y ∈ S and a real
constant β ∈ [, ]. Thus, multiplying () by β , we obtain

β
b(n)
a(n)

– cβα(n)≤ βx(n) ≤ β
b(n)
a(n)

+ cβα(n).

Analogously, for the sequence y, we have

( – β)
b(n)
a(n)

– c( – β)α(n)≤ ( – β)y(n) ≤ ( – β)
b(n)
a(n)

+ c( – β)α(n).

Summing the above inequalities, we get

b(n)
a(n)

– cα(n) ≤ βx(n) + ( – β)y(n) ≤ b(n)
a(n)

+ cα(n) for n≥ N .

It means that the set S is convex.

http://www.advancesindifferenceequations.com/content/2012/1/195
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Let us define a mapping T : S → BN as follows:

(Tx)(n) =
b(n)
a(n)

–
k∑
i=

ai(n)
a(n)

x(n + i) for n≥ N .

We show that T(S)⊂ S. Indeed, if x ∈ S, then |x(i)| < c for large n >N , and

∣∣∣∣(Tx)(n) – b(n)
a(n)

∣∣∣∣ ≤ c
k∑
i=

∣∣∣∣ ai(n)a(n)

∣∣∣∣ = cα(n).

We see that T is continuous. Hence, by the Schauder fixed point theorem, there exists
x ∈ S such that x(n) = (Tx)(n) for n≥ N , so

x(n) =
b(n)
a(n)

–
k∑
i=

ai(n)
a(n)

x(n + i) for n≥ N ,

hence it is a solution of equation (). Because x ∈ S, then x is an asymptotically periodic
sequence. This completes the proof. �

Example  Consider the equation


(n + )(n + )

x(n + ) +


n + 
x(n + ) +


n + 

x(n + ) + x(n)

= (–)n + (–)n
n + n + 
n(n + )

+ (–)n+
n + n + n + n + 

(n + )(n + )(n + )
.

By Theorem , we get that there exists an asymptotically periodic solution of the above
equation. In fact, the asymptotically -periodic sequence

x(n) = (–)n + (–)n

n

is such a solution.
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