RESEARCH Open Access

Some identities of Frobenius-Euler polynomials arising from umbral calculus

Dae San Kim¹ and Taekyun Kim^{2*}

*Correspondence: tkkim@kw.ac.kr ²Department of Mathematics, Kwangwoon University, Seoul, 139-701, Republic of Korea Full list of author information is available at the end of the article

Abstract

In this paper, we study some interesting identities of Frobenius-Euler polynomials arising from umbral calculus.

1 Introduction

Let **C** be the complex number field, and let **F** be the set of all formal power series in the variable *t* over **C** with

$$\mathbf{F} = \left\{ f(t) = \sum_{k=0}^{\infty} \frac{a_k}{k!} t^k \middle| a_k \in \mathbf{C} \right\}.$$

We use notation $\mathbb{P} = \mathbb{C}[x]$ and \mathbb{P}^* denotes the vector space of all linear functional on \mathbb{P} . Also, $\langle L|p(x)\rangle$ denotes the action of the linear functional L on the polynomial p(x), and we remind that the vector space operations on \mathbb{P}^* is defined by

$$\langle L + M | p(x) \rangle = \langle L | p(x) \rangle + \langle M | p(x) \rangle,$$

 $\langle cL | p(x) \rangle = c \langle L | p(x) \rangle$ (see [1]),

where c is any constant in \mathbb{C} .

The formal power series

$$f(t) = \sum_{k=0}^{\infty} \frac{a_k}{k!} t^k \in \mathbf{F} \quad \text{(see [1, 2])},\tag{1}$$

defines a linear functional on \mathbb{P} by setting

$$\langle f(t)|x^n\rangle = a_n, \quad \text{for all } n \ge 0.$$
 (2)

In particular,

$$\langle t^k | x^n \rangle = n! \delta_{n,k}, \tag{3}$$

where $\delta_{n,k}$ is the Kronecker symbol. If $f_L(t) = \sum_{k=0}^{\infty} \frac{\langle L|x^k \rangle}{k!} t^k$, then we get $\langle f_L(t)|x^n \rangle = \langle L|x^n \rangle$ and so as linear functionals $L = f_L(t)$ (see [1, 2]).

In addition, the map $L \mapsto f_L(t)$ is a vector space isomorphism from \mathbb{P}^* onto \mathbf{F} (see [1, 2]). Henceforth, \mathbf{F} will denote both the algebra of formal power series in t and the vector space of all linear functionals on \mathbb{P} , and so an element f(t) of \mathbf{F} will be thought of as both a formal power series and a linear functional. We shall call \mathbf{F} the umbral algebra (see [1, 2]).

Let us give an example. For y in \mathbb{C} the evaluation functional is defined to be the power series e^{yt} . From (2), we have $\langle e^{yt}|x^n\rangle = y^n$ and so $\langle e^{yt}|p(x)\rangle = p(y)$ (see [1, 2]). Notice that for all f(t) in \mathbb{F} ,

$$f(t) = \sum_{k=0}^{\infty} \frac{\langle f(t)|x^k \rangle}{k!} t^k \tag{4}$$

and for all polynomial p(x)

$$p(x) = \sum_{k>0} \frac{\langle t^k | p(x) \rangle}{k!} x^k \quad (\text{see } [1, 2]).$$
 (5)

For $f_1(t), f_2(t), \dots, f_m(t) \in \mathbf{F}$, we have

$$\begin{aligned} & \langle f_1(t)f_2(t)\cdots f_m(t)|x^n \rangle \\ &= \sum \binom{n}{i_1,\ldots,i_m} \langle f_1(t)|x^{i_1} \rangle \cdots \langle f_n(t)|x^{i_m} \rangle, \end{aligned}$$

where the sum is over all nonnegative integers i_1, i_2, \ldots, i_m such that $i_1 + \cdots + i_m = n$ (see [1, 2]). The order o(f(t)) of the power series $f(t) \neq 0$ is the smallest integer k for which a_k does not vanish. We define $o(f(t)) = \infty$ if f(t) = 0. We see that o(f(t)g(t)) = o(f(t)) + o(g(t)) and $o(f(t) + g(t)) \geq \min\{o(f(t)), o(g(t))\}$. The series f(t) has a multiplicative inverse, denoted by $f(t)^{-1}$ or $\frac{1}{f(t)}$, if and only if o(f(t)) = 0. Such series is called an invertible series. A series f(t) for which o(f(t)) = 1 is called a delta series (see [1, 2]). For $f(t), g(t) \in \mathbb{F}$, we have $\langle f(t)g(t)|p(x)\rangle = \langle f(t)|g(t)p(x)\rangle$.

A delta series f(t) has a compositional inverse $\bar{f}(t)$ such that $f(\bar{f}(t)) = \bar{f}(f(t)) = t$. For $f(t), g(t) \in \mathbf{F}$, we have $\langle f(t)g(t)|p(x)\rangle = \langle f(t)|g(t)p(x)\rangle$. From (5), we have

$$p^{(k)}(x) = \frac{d^k p(x)}{dx^k} = \sum_{l=k}^{\infty} \frac{\langle t^l | p(x) \rangle}{l!} l(l-1) \cdots (l-k+1) x^{l-k}.$$

Thus, we see that

$$p^{(k)}(0) = \langle t^k | p(x) \rangle = \langle 1 | p^{(k)}(x) \rangle. \tag{6}$$

By (6), we get

$$t^{k}p(x) = p^{(k)}(x) = \frac{d^{k}(p(x))}{dx^{k}}$$
 (see [1, 2]). (7)

By (7), we have

$$e^{yt}p(x) = p(x+y)$$
 (see [1, 2]). (8)

Let $S_n(x)$ be a polynomial with deg $S_n(x) = n$.

Let f(t) be a delta series, and let g(t) be an invertible series. Then there exists a unique sequence $S_n(x)$ of polynomials such that $\langle g(t)f(t)^k|S_n(x)\rangle = n!\delta_{n,k}$ for all $n,k \geq 0$. The sequence $S_n(x)$ is called the Sheffer sequence for (g(t),f(t)) or that $S_n(t)$ is Sheffer for (g(t),f(t)).

The Sheffer sequence for (1, f(t)) is called the associated sequence for f(t) or $S_n(x)$ is associated to f(t). The Sheffer sequence for (g(t), t) is called the Appell sequence for g(t) or $S_n(x)$ is Appell for g(t) (see [1, 2]). The umbral calculus is the study of umbral algebra and the modern classical umbral calculus can be described as a systemic study of the class of Sheffer sequences. Let $p(x) \in \mathbb{P}$. Then we have

$$\left\langle \frac{e^{yt} - 1}{t} \middle| p(x) \right\rangle = \int_0^y p(u) \, du,\tag{9}$$

$$\langle f(t)|xp(x)\rangle = \langle \partial_t f(t)|p(x)\rangle = \langle f'(t)|p(x)\rangle,\tag{10}$$

and

$$\langle e^{yt} - 1|p(x)\rangle = p(y) - p(0)$$
 (see [1, 2]). (11)

Let $S_n(x)$ be Sheffer for (g(t), f(t)). Then

$$h(t) = \sum_{k=0}^{\infty} \frac{\langle h(t)|S_k(x)\rangle}{k!} g(t)f(t)^k, \quad h(t) \in \mathbf{F},$$
(12)

$$p(x) = \sum_{k \ge 0} \frac{\langle g(t)f(t)^k | p(x) \rangle}{k!} S_k(x), \quad p(x) \in \mathbb{P},$$
(13)

$$\frac{1}{g(\bar{f}(t))}e^{y\bar{f}(t)} = \sum_{k=0}^{\infty} \frac{S_k(y)}{k!} t^k, \quad \text{for all } y \in \mathbf{C},$$
(14)

$$f(t)S_n(x) = nS_{n-1}(x).$$
 (15)

For λ (\neq 1) \in **C**, we recall that the Frobenius-Euler polynomials are defined by the generating function to be

$$\frac{1-\lambda}{e^t-\lambda}e^{xt} = e^{H(x|\lambda)t} = \sum_{n=0}^{\infty} H_n(x|\lambda)\frac{t^n}{n!},\tag{16}$$

with the usual convention about replacing $H^n(x|\lambda)$ by $H_n(x|\lambda)$ (see [3]). In the special case, x = 0, $H_n(0|\lambda) = H_n(\lambda)$ are called the nth Frobenius-Euler numbers. By (16), we get

$$H_n(x|\lambda) = \left(H(\lambda) + x\right)^n = \sum_{l=0}^n \binom{n}{l} H_{n-l}^{(\lambda)} x^l, \tag{17}$$

and

$$(H(\lambda) + 1)^n - \lambda H_n(\lambda) = (1 - \lambda)\delta_{0,n}$$
 (see [1, 4–13]). (18)

From (17), we note that the leading coefficient of $H_n(x|\lambda)$ is $H_0(\lambda) = 1$. So, $H_n(x|\lambda)$ is a monic polynomial of degree n with coefficients in $\mathbf{Q}(\lambda)$.

In this paper, we derive some new identities of Frobenius-Euler polynomials arising from umbral calculus.

2 Applications of umbral calculus to Frobenius-Euler polynomials

Let $S_n(x)$ be an Appell sequence for g(t). From (14), we have

$$\frac{1}{g(t)}x^n = S_n(x) \quad \text{if and only if} \quad x^n = g(t)S_n(x) \quad (n \ge 0). \tag{19}$$

For λ $(\neq 1) \in \mathbb{C}$, let us take $g_{\lambda}(t) = \frac{e^t - \lambda}{1 - \lambda} \in \mathbb{F}$.

Then we see that $g_{\lambda}(t)$ is an invertible series.

From (16), we have

$$\sum_{k=0}^{\infty} \frac{H_k(x|\lambda)}{k!} t^k = \frac{1}{g_{\lambda}(t)} e^{xt}.$$
 (20)

By (20), we get

$$\frac{1}{g_{\lambda}(t)}x^{n} = H_{n}(x|\lambda) \quad (\lambda \ (\neq 1) \in \mathbf{C}, n \ge 0), \tag{21}$$

and by (17), we get

$$tH_n(x|\lambda) = H'_n(x|\lambda) = nH_{n-1}(x|\lambda). \tag{22}$$

Therefore, by (21) and (22), we obtain the following proposition.

Proposition 1 For λ (\neq 1) \in **C**, $n \ge 0$, we see that $H_n(x|\lambda)$ is the Appell sequence for $g_{\lambda}(t) = \frac{e^t - \lambda}{1 - \lambda}$.

From (20), we have

$$\sum_{k=1}^{\infty} \frac{H_k(x|\lambda)}{k!} k t^{k-1} = \frac{xg_{\lambda}(t)e^{xt} - g'_{\lambda}(t)e^{xt}}{g_{\lambda}(t)^2}$$

$$= \sum_{k=0}^{\infty} \left\{ x \frac{1}{g_{\lambda}(t)} x^k - \frac{g'_{\lambda}(t)}{g_{\lambda}(t)} \frac{1}{g_{\lambda}(t)} x^k \right\} \frac{t^k}{k!}.$$
(23)

By (21) and (23), we get

$$H_{k+1}(x|\lambda) = xH_k(x|\lambda) - \frac{g_{\lambda}'(t)}{g_{\lambda}(t)}H_k(x|\lambda). \tag{24}$$

Therefore, by (24) we obtain the following theorem.

Theorem 2 Let $g_{\lambda}(t) = \frac{e^t - \lambda}{1 - \lambda} \in \mathbf{F}$. Then we have

$$H_{k+1}(x|\lambda) = \left(x - \frac{g_{\lambda}'(t)}{g_{\lambda}(t)}\right) H_k(x|\lambda) \quad (k \ge 0).$$

From (16), we have

$$\sum_{n=0}^{\infty} \left(H_n(x+1|\lambda) - \lambda H_n(x|\lambda) \right) \frac{t^n}{n!} = \frac{1-\lambda}{e^t - \lambda} e^{(x+1)t} - \lambda \frac{1-\lambda}{e^t - \lambda} e^{xt} = (1-\lambda)e^{xt}. \tag{25}$$

By (25), we get

$$H_n(x+1|\lambda) - \lambda H_n(x|\lambda) = (1-\lambda)x^n. \tag{26}$$

From Theorem 2, we can derive the following equation (27):

$$g_{\lambda}(t)H_{k+1}(x|\lambda) = (g_{\lambda}(t)x - g_{\lambda}'(t))H_{k}(x|\lambda). \tag{27}$$

By (27), we get

$$\left(\frac{e^t - \lambda}{1 - \lambda}\right) H_{k+1}(x|\lambda) = \frac{e^t - \lambda}{1 - \lambda} x H_k(x|\lambda) - \frac{e^t}{1 - \lambda} H_k(x|\lambda). \tag{28}$$

From (8) and (28), we have

$$H_{k+1}(x+1|\lambda) - \lambda H_{k+1}(x|\lambda) = (x+1)H_k(x+1|\lambda) - \lambda x H_k(x|\lambda) - H_k(x+1|\lambda)$$
$$= x H_k(x+1|\lambda) - \lambda x H_k(x|\lambda).$$

Therefore, by (26), we obtain the following theorem.

Theorem 3 *For* $k \ge 0$, *we have*

$$H_{k+1}(x+1|\lambda) = \lambda H_{k+1}(x|\lambda) + (1-\lambda)x^{k+1}$$
.

From (16), (17), and (18), we note that

$$\int_{x}^{x+y} H_{n}(u|\lambda) du = \frac{1}{n+1} \left\{ H_{n+1}(x+y|\lambda) - H_{n+1}(x|\lambda) \right\}
= \frac{1}{n+1} \sum_{k=1}^{\infty} {n+1 \choose k} H_{n+1-k}(x|\lambda) y^{k}
= \sum_{k=1}^{\infty} \frac{n(n-1)\cdots(n-k+2)}{k!} H_{n+1-k}(x|\lambda) y^{k}
= \sum_{k=1}^{\infty} \frac{y^{k}}{k!} t^{k-1} H_{n}(x|\lambda)
= \frac{1}{t} \left(\sum_{k=0}^{\infty} \frac{y^{k}}{k!} t^{k} - 1 \right) H_{n}(x|\lambda)
= \frac{e^{yt} - 1}{t} H_{n}(x|\lambda).$$
(29)

Therefore, by (29), we obtain the following theorem.

Theorem 4 For λ ($\neq 1$) \in **C**, $n \geq 0$, we have

$$\int_{x}^{x+y} H_n(u|\lambda) du = \frac{e^{yt} - 1}{t} H_n(x|\lambda).$$

By (15) and Proposition 1, we get

$$t\left\{\frac{1}{n+1}H_{n+1}(x|\lambda)\right\} = H_n(x|\lambda). \tag{30}$$

From (30), we can derive equation (31):

$$\left\langle e^{yt} - 1 \left| \frac{H_{n+1}(x|\lambda)}{n+1} \right\rangle = \left\langle \frac{e^{yt} - 1}{t} \left| t \left\{ \frac{H_{n+1}(x|\lambda)}{n+1} \right\} \right\rangle$$

$$= \left\langle \frac{e^{yt} - 1}{t} \left| H_n(x|\lambda) \right\rangle. \tag{31}$$

By (11) and (31), we get

$$\left\langle \frac{e^{yt} - 1}{t} \middle| H_n(x|\lambda) \right\rangle = \left\langle e^{yt} - 1 \middle| \frac{H_{n+1}(x|\lambda)}{n+1} \right\rangle$$

$$= \frac{1}{n+1} \left\{ H_{n+1}(y|\lambda) - H_{n+1}(\lambda) \right\} = \int_0^y H_n(u|\lambda) \, du. \tag{32}$$

Therefore, by (32), we obtain the following corollary.

Corollary 5 *For* $n \ge 0$, *we have*

$$\left\langle \frac{e^{yt}-1}{t} \middle| H_n(x|\lambda) \right\rangle = \int_0^y H_n(u|\lambda) \, du.$$

Let $\mathbb{P}(\lambda) = \{p(x) \in \mathbf{Q}(\lambda)[x] | \deg p(x) \le n\}$ be a vector space over $\mathbf{Q}(\lambda)$. For $p(x) \in \mathbb{P}_n(\lambda)$, let us take

$$p(x) = \sum_{k=0}^{n} b_k H_k(x|\lambda). \tag{33}$$

By Proposition 1, $H_n(x|\lambda)$ is an Appell sequence for $g_{\lambda}(t) = \frac{e^t - \lambda}{1 - \lambda}$ where λ $(\neq 1) \in \mathbb{C}$. Thus, we have

$$\left\langle \frac{e^t - \lambda}{1 - \lambda} t^k \middle| H_n(x|\lambda) \right\rangle = n! \delta_{n,k}. \tag{34}$$

From (33) and (34), we can derive

$$\left\langle \frac{e^{t} - \lambda}{1 - \lambda} t^{k} \middle| p(x) \right\rangle = \sum_{l=0}^{n} b_{l} \left\langle \frac{e^{t} - \lambda}{1 - \lambda} t^{k} \middle| H_{l}(x|\lambda) \right\rangle$$

$$= \sum_{l=0}^{n} b_{l} l! \delta_{l,k} = k! b_{k}. \tag{35}$$

Thus, by (35), we get

$$b_{k} = \frac{1}{k!} \left\langle \frac{e^{t} - \lambda}{1 - \lambda} t^{k} \middle| p(x) \right\rangle$$

$$= \frac{1}{k!(1 - \lambda)} \left\langle \left(e^{t} - \lambda \right) t^{k} \middle| p(x) \right\rangle$$

$$= \frac{1}{k!(1 - \lambda)} \left\langle e^{t} - \lambda \middle| p^{(k)}(x) \right\rangle. \tag{36}$$

From (11) and (36), we have

$$b_k = \frac{1}{k!(1-\lambda)} \{ p^{(k)}(1) - \lambda p^{(k)}(0) \}, \tag{37}$$

where $p^{(k)}(x) = \frac{d^k p(x)}{dx^k}$.

Therefore, by (37), we obtain the following theorem.

Theorem 6 For $p(x) \in \mathbb{P}_n(\lambda)$, let us assume that $p(x) = \sum_{k=0}^n b_k H_k(x|\lambda)$. Then we have

$$b_k = \frac{1}{k!(1-\lambda)} \{ p^{(k)}(1) - \lambda p^{(k)}(0) \},\,$$

where $p^{(k)}(1) = \frac{d^k p(x)}{dx^k}|_{x=1}$.

The higher-order Frobenius-Euler polynomials are defined by

$$\left(\frac{1-\lambda}{e^t-\lambda}\right)^r e^{xt} = \sum_{n=0}^{\infty} H_n^{(r)}(x|\lambda) \frac{t^n}{n!},\tag{38}$$

where λ (\neq 1) \in **C** and $r \in$ **N** (see [4, 11]).

In the special case, x = 0, $H_n^{(r)}(0|\lambda) = H_n^{(r)}(\lambda)$ are called the nth Frobenius-Euler numbers of order r. From (38), we have

$$H_{n}^{(r)}(x) = \sum_{l=0}^{n} \binom{n}{l} H_{n-l}^{(r)}(\lambda) x^{l}$$

$$= \sum_{n_{1}+\dots+n_{r}=n} \binom{n}{n_{1},\dots,n_{r}} H_{n_{1}}(x|\lambda) \cdots H_{n_{r}}(x|\lambda). \tag{39}$$

Note that $H_n^{(r)}(x|\lambda)$ is a monic polynomial of degree n with coefficients in $\mathbf{Q}(\lambda)$.

For $r \in \mathbb{N}$, λ $(\neq 1) \in \mathbb{C}$, let $g_{\lambda}^{r}(t) = (\frac{e^{t} - \lambda}{1 - \lambda})^{r}$. Then we easily see that $g_{\lambda}^{r}(t)$ is an invertible series.

From (38) and (39), we have

$$\frac{1}{g_{\lambda}^{r}(t)}e^{xt} = \sum_{n=0}^{\infty} H_{n}^{(r)}(x|\lambda)\frac{t^{n}}{n!},\tag{40}$$

and

$$tH_n^{(r)}(x|\lambda) = nH_{n-1}^{(r)}(x|\lambda).$$
 (41)

By (40), we get

$$\frac{1}{g_{\star}^{r}(t)}x^{n} = H_{n}^{(r)}(x|\lambda) \quad (n \in \mathbf{Z}_{+}, r \in \mathbf{N}). \tag{42}$$

Therefore, by (41) and (42), we obtain the following proposition.

Proposition 7 For $n \in \mathbb{Z}_+$, $H_n^{(r)}(x|\lambda)$ is an Appell sequence for

$$g_{\lambda}^{r}(t) = \left(\frac{e^{t} - \lambda}{1 - \lambda}\right)^{r}.$$

Moreover,

$$\frac{1}{g_1^r(t)}x^n = H_n^{(r)}(x|\lambda) \quad and \quad tH_n^{(r)}(x|\lambda) = nH_{n-1}^{(r)}(x|\lambda).$$

Remark Note that

$$\left\langle \frac{1-\lambda}{e^t-\lambda} \middle| x^n \right\rangle = H_n(\lambda). \tag{43}$$

From (43), we have

$$\left\langle \left(\frac{1-\lambda}{e^t - \lambda} \right)^r \middle| x^n \right\rangle = \sum_{n=n_1+\dots+n_r} \binom{n}{n_1, \dots, n_r} \left\langle \frac{1-\lambda}{e^t - \lambda} \middle| x^{n_1} \right\rangle \cdots \left\langle \frac{1-\lambda}{e^t - \lambda} \middle| x^{n_r} \right\rangle, \tag{44}$$

$$\left\langle \left(\frac{1-\lambda}{e^t-\lambda}\right)^r \middle| x^n \right\rangle = H_n^{(r)}(\lambda). \tag{45}$$

By (43), (44), and (45), we get

$$\sum_{n=i_1+\cdots+i_r} \binom{n}{i_1,\ldots,i_r} H_{i_1}(\lambda)\cdots H_{i_r}(\lambda) = H_n^{(r)}(\lambda).$$

Let us take $p(x) \in \mathbb{P}_n(\lambda)$ with

$$p(x) = \sum_{k=0}^{n} C_k^{(r)} H_k^{(r)}(x|\lambda). \tag{46}$$

From the definition of Appell sequences, we have

$$\left\langle \left(\frac{e^t - \lambda}{1 - \lambda} \right)^r \middle| H_n^{(r)}(x|\lambda) \right\rangle = n! \delta_{n,k}. \tag{47}$$

By (46) and (47), we get

$$\left\langle \left(\frac{e^t - \lambda}{1 - \lambda} \right)^r t^k \middle| p(x) \right\rangle = \sum_{l=0}^n C_l^{(r)} \left\langle \left(\frac{e^t - \lambda}{1 - \lambda} \right)^r t^k \middle| H_l(x|\lambda) \right\rangle$$

$$= \sum_{l=0}^n C_l^{(r)} l! \delta_{l,k} = k! C_k^{(r)}. \tag{48}$$

Thus, from (48), we have

$$C_k^{(r)} = \frac{1}{k!} \left\langle \left(\frac{e^t - \lambda}{1 - \lambda} \right)^r t^k \middle| p(x) \right\rangle$$

$$= \frac{1}{k!(1 - \lambda)^r} \left\langle \left(e^t - \lambda \right)^r t^k \middle| p(x) \right\rangle$$

$$= \frac{1}{k!(1 - \lambda)^r} \sum_{l=0}^r \binom{r}{l} (-\lambda)^{r-l} \left\langle e^{lt} \middle| p^{(k)}(x) \right\rangle$$

$$= \frac{1}{k!(1 - \lambda)^r} \sum_{l=0}^r \binom{r}{l} (-\lambda)^{r-l} p^{(k)}(l). \tag{49}$$

Therefore, by (46) and (49), we obtain the following theorem.

Theorem 8 For $p(x) \in \mathbb{P}_n(\lambda)$, let

$$p(x) = \sum_{k=0}^{n} C_k^{(r)} H_k^{(r)}(x|\lambda).$$

Then we have

$$C_k^{(r)} = \frac{1}{k!(1-\lambda)^r} \sum_{l=0}^r \binom{r}{l} (-\lambda)^{r-l} p^{(k)}(l),$$

where $r \in \mathbf{N}$ and $p^{(k)}(l) = \frac{d^k p(x)}{dx^k}|_{x=l}$.

Remark Let $S_n(x)$ be a Sheffer sequence for (g(t), f(t)). Then Sheffer identity is given by

$$S_n(x+y) = \sum_{k=0}^n \binom{n}{k} P_k(y) S_{n-k}(x) = \sum_{k=0}^n \binom{n}{k} P_k(x) S_{n-k}(y), \tag{50}$$

where $P_k(y) = g(t)S_k(y)$ is associated to f(t) (see [1, 2]).

From (21), Proposition 1, and (50), we have

$$H_n(x+y|\lambda) = \sum_{k=0}^n \binom{n}{k} P_k(y) S_{n-k}(x)$$
$$= \sum_{k=0}^n \binom{n}{k} H_{n-k}(y|\lambda) x^k.$$

By Proposition 7 and (50), we get

$$H_n^{(r)}(x+y|\lambda) = \sum_{k=0}^n \binom{n}{k} H_{n-k}^{(r)}(y|\lambda) x^k.$$

Let $\alpha \neq 0 \in \mathbb{C}$. Then we have

$$H_n(\alpha x|\lambda) = \alpha^n \frac{g_{\lambda}(t)}{g_{\lambda}(\frac{t}{\alpha})} H_n(x|\lambda).$$

Competing interests

The authors declare that they have no competing interests.

Authors' contributions

All authors contributed equally to the manuscript and typed, read, and approved the final manuscript.

Author details

¹Department of Mathematics, Sogang University, Seoul, 121-742, Republic of Korea. ²Department of Mathematics, Kwangwoon University, Seoul, 139-701, Republic of Korea.

Acknowledgements

This research was supported by the Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education, Science and Technology 2012R1A1A2003786.

Received: 18 October 2012 Accepted: 5 November 2012 Published: 14 November 2012

References

- 1. Roman, S: The Umbral Calculus. Dover, New York (2005)
- Dere, R, Simsek, Y: Applications of umbral algebra to some special polynomials. Adv. Stud. Contemp. Math. 22(3), 433-438 (2012)
- 3. Araci, S, Acikgoz, M: A note on the Frobenius-Euler numbers and polynomials associated with Bernstein polynomials. Adv. Stud. Contemp. Math. 22(3), 399-406 (2012)
- 4. Kim, T: Identities involving Frobenius-Euler polynomials arising from non-linear differential equations. J. Number Theory 132(12), 2854-2865 (2012)
- Kim, T, Choi, J: A note on the product of Frobenius-Euler polynomials arising from the p-adic integral on Z_p. Adv. Stud. Contemp. Math. 22(2), 215-223 (2012)
- 6. Kim, T: Symmetry of power sum polynomials and multivariate fermionic p-adic invariant integral on \mathbb{Z}_p . Russ. J. Math. Phys. **16**(1), 93-96 (2009)
- Rim, S-H, Jeong, J: On the modified q-Euler numbers of higher order with weight. Adv. Stud. Contemp. Math. 22(1), 93-98 (2012)
- 8. Rim, S-H, Lee, J: Some identities on the twisted (*h,q*)-Geonocchi numbers and polynomials associated with *q*-Bernstein polynomials. Int. J. Math. Math. Sci. **2011**, Article ID 482840 (2011)
- Simsek, Y, Yurekli, O, Kurt, V: On interpolation functions of the twisted generalized Frobenius-Euler numbers. Adv. Stud. Contemp. Math. 15(2), 187-194 (2007)
- 10. Ryoo, CS: A note on the Frobenius-Euler polynomials. Proc. Jangjeon Math. Soc. 14(4), 495-501 (2011)
- 11. Simsek, Y, Bayad, A, Lokesha, V: *q*-Bernstein polynomials related to *q*-Frobenius-Euler polynomials, *l*-functions, and *q*-Stirling numbers. Math. Methods Appl. Sci. **35**(8), 877-884 (2012)
- 12. Shiratani, K: On the Euler numbers. Mem. Fac. Sci., Kyushu Univ., Ser. A, Math. 27, 1-5 (1973)
- 13. Shiratani, K, Yamamoto, S: On a *p*-adic interpolation function for the Euler numbers and its derivatives. Mem. Fac. Sci., Kyushu Univ., Ser. A, Math. **39**(1), 113-125 (1985)

doi:10.1186/1687-1847-2012-196

Cite this article as: Kim and Kim: Some identities of Frobenius-Euler polynomials arising from umbral calculus. Advances in Difference Equations 2012 2012:196.

Submit your manuscript to a SpringerOpen journal and benefit from:

- ► Convenient online submission
- ► Rigorous peer review
- ► Immediate publication on acceptance
- ► Open access: articles freely available online
- ► High visibility within the field
- ► Retaining the copyright to your article

Submit your next manuscript at ▶ springeropen.com