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Abstract
In this paper, we investigate the value distribution of difference polynomials
f (z)nf (qz + c) and f n(z) + a[f (qz + c) – f (z)] related to two well-known differential
polynomials, where f (z) is a meromorphic function with finite logarithmic order.
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1 Introduction
In this paper, we shall assume that the reader is familiar with the fundamental results and
the standard notation of the Nevanlinna value distribution theory of meromorphic func-
tions (see [, ]). The term ‘meromorphic function’ will mean meromorphic in the whole
complex plane C. In addition, we will use notations ρ(f ) to denote the order of growth of
a meromorphic function f (z), λ(f ) to denote the exponents of convergence of the zero-
sequence of a meromorphic function f (z), λ( f ) to denote the exponents of convergence of
the sequence of distinct poles of f (z).
The non-autonomous Schröder q-difference equation

f (qz) = R
(
z, f (z)

)
, (.)

where the right-hand side is rational in both arguments, has been widely studied during
the last decades (see, e.g., [–]). There is a variety of methods which can be used to study
the value distribution of meromorphic solutions of (.).
Recently, the Nevanlinna theory involving q-difference has been developed to study

q-difference equations and q-difference polynomials. Many papers have focused on com-
plex difference, giving many difference analogues in value distribution theory of mero-
morphic functions (see [–]).
Hayman [] posed the following famous conjecture.

TheoremA If f is a transcendental meromorphic function and n ≥ , then f nf ′ takes every
finite nonzero value b ∈C infinitely often.

This conjecture has been solved by Hayman [] for n ≥ , by Mues [] for n = , by
Bergweiler and Eremenko [] for n = .
Hayman [] also proved the following famous result.

© 2012 Xu and Zhang; licensee Springer. This is an Open Access article distributed under the terms of the Creative Commons
Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction
in any medium, provided the original work is properly cited.

http://www.advancesindifferenceequations.com/content/2012/1/200
mailto:xujunf@gmail.com
http://creativecommons.org/licenses/by/2.0


Xu and Zhang Advances in Difference Equations 2012, 2012:200 Page 2 of 10
http://www.advancesindifferenceequations.com/content/2012/1/200

Theorem B If f (z) is a transcendental meromorphic function, n ≥  is an integer, and a
( �= ) is a constant, then f ′(z) – af (z)n assumes all finite values b ∈C infinitely often.

He also conjectured in [] that the same result holds for n =  and . However, Mues
[] proved that the conjecture is not true by providing a counterexample and proved that
f ′ – af  has infinitely many zeros.
Liu and Qi proved two theorems which considered q-shift difference polynomials (see

[]), which can be seen as difference versions of the above classical results.

Theorem C Let f be a zero-order transcendental meromorphic function and q be a
nonzero complex constant. Then, for n ≥ , f n(z)f (qz + c) assumes every nonzero value
b ∈C infinitely often.

Theorem D Let f be a zero-order transcendental meromorphic function and a, q be
nonzero complex constants.Then, for n≥ , f n(z)+a[f (qz+c)– f (z)] assumes every nonzero
value b ∈C infinitely often.

Remark  They also conjectured the numbers n ≥  and n ≥  can be reduced in The-
orems C and D. But they could not deal with it. In fact, Zhang and Korhonen [] also
proved a result similar to Theorem C under the condition n ≥ . Obviously, it is an inter-
esting question to reduce the number n. In this paper, our results give some answers in
some sense.

2 Main results
In order to express our results, we need to introduce some definitions (see [, ]).
A positive increasing function S(r), defined for r > , is said to be of finite logarithmic

order λ if

lim sup
r→∞

logS(r)
log log r

= λ. (.)

S(r) is said to be of infinite logarithmic order if the limit superior above is infinite.

Definition  If f (z) is a function meromorphic in the complex plane C, the logarithmic
order of f is the logarithmic order of its characteristic function T(r, f ).

It is clear that the logarithmic order of a non-constant rational function is , but there
exist infinitely many transcendental entire functions of logarithmic order  from Theo-
rem . []. Hence, the transcendental meromorphic function is of the logarithmic or-
der ≥.
Let f (z) be a meromorphic function of finite positive logarithmic order λ. A non-

negative continuous function λ(r) defined in (,+∞) is said to be proximate logarithmic
order of T(r, f ), if λ(r) satisfies the following three conditions:
() limr→+∞ λ(r) = λ.
() λ′(r) exists everywhere in (,+∞) except possibly in a countable set where λ′(r+) and

λ′(r–) exist. Moreover, if we use the one-sided derivative λ′(r+) or λ′(r–) instead of λ′(r) of
r in the exceptional set, then

lim
r→+∞ r(log r)λ′(r) log log r = . (.)
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() Let U(r, f ) = (log r)λ(r), we have T(r, f ) ≤ U(r, f ) for sufficiently large r and

T(r, f )
U(r, f )

= . (.)

The above functionU(r, f ) is called a logarithmic-type function of T(r, f ). If f (z) is a mero-
morphic function of finite positive logarithmic order λ, then T(r, f ) has proximate loga-
rithmic order λ(r).
Let f (z) be a meromorphic function, for each a ∈ Ĉ =C∪{∞}, an a-point of f (z) means

a root of the equation f (z) = a. Let {zj(a)} be the sequence of a-points of f (z) with rj(a) ≤
rj+(a), where rj(a) = |zj(a)|. The logarithmic exponent of convergence of a-points of f (z) is
a number ρlog(a) which is defined by

ρlog(a) = inf

{
μ

∣∣∣μ > ,
∑
j

/
∣∣log rj(a)∣∣μ < +∞

}
. (.)

This quantity plays an important role in measuring the value distribution of a-points of
f (z).
Throughout this paper, we denote the logarithmic order of n(r, f = a) by λlog(a), where

n(r, f = a) is the number of roots of the equation f (z) = a in |z| ≤ r. It is well known that
if a meromorphic function f (z) is of finite order, then the order of n(r, f = a) equals the
exponent of convergence of a-points of f (z). The corresponding result for meromorphic
functions of finite logarithmic order also holds. That is, if f (z) is a non-constant meromor-
phic function and of finite logarithmic order, then for each a ∈ Ĉ, the logarithmic order
of n(r, f = a) equals the logarithmic exponent of convergence of a-points of f (z).
Although for any given meromorphic function f (z) with finite positive order and for

any a ∈ Ĉ, the counting functions N(r, f = a) and n(r, f = a) both have the same order,
the situation is different for functions of finite logarithmic order. That is, if f (z) is a non-
constant meromorphic function in C, for each a ∈ Ĉ, N(r, f = a) is of logarithmic order
λlog(a) +  where λlog(a) is the logarithmic order of n(r, f = a).

Theorem . If f (z) is a transcendental meromorphic function of finite logarithmic order
λ,with the logarithmic exponent of convergence of poles less than λ– and q, c are nonzero
complex constants, then for n ≥ , f n(z)f (qz + c) assumes every value b ∈C infinitely often.

Remark  The following examples show that the hypothesis the logarithmic exponent of
convergence of poles λlog(∞) is less than λ –  is sharp.

Example  Let f (z) =
∏∞

j=( – qjz)–,  < |p| < . Then f (qz) = ( – z)f (z). But f n(z)f (qz)
have only one zero. We know (see [, ])

T(r, f ) =N(r, f ) =O
(
(log r)

)
.

Thus, λ = , and the logarithmic exponent of convergence of poles λlog(∞) is equal to
λ –  = . Hence, the condition the logarithmic exponent of convergence of poles is less
than λ –  cannot be omitted.
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Example  Let f (z) =
∏∞

j=( – z/qj)–, |p| > . Then f (qz) = f (z)
–qz and f n(z)f (qz) = f (z)n+

–qz
have no zeros. Note that T(r, f ) = N(r, f ) = O((log r)) (see [–]), then λ = , and the
logarithmic exponent of convergence of poles λlog(∞) is equal to λ –  = . Hence, our
condition the logarithmic exponent of convergence of poles is less than λ –  cannot be
omitted.

Remark  We note that the authors claimed b is nonzero in Theorem C. But b can be
zero in Theorem ..

Theorem . If f (z) is a transcendental meromorphic function of finite logarithmic order
λ,with the logarithmic exponent of convergence of poles less than λ–, and a, q are nonzero
complex constants, then for n ≥ , f n(z) + a[f (qz + c) – f (z)] assumes every value b ∈ C

infinitely often.

Remark  The authors also claimed b is nonzero in Theorem D. In fact, b can take the
zeros in Theorem D from their proof.

In the following, we consider the difference polynomials similar to Theorem . and
Theorem . in [].

Theorem . If f (z) is a transcendental meromorphic function of finite logarithmic order
λ,with the logarithmic exponent of convergence of poles less than λ–, and a, q are nonzero
constants, then for n ≥ , f n(z) – af (qz + c) assumes every value b ∈C infinitely often.

3 Proof of Theorem 2.1
We need the following lemmas for the proof of Theorem ..
For a transcendental meromorphic function f (z), T(r, f ) is usually dominated by three

integrated counting functions. However, when f (z) is of finite logarithmic order, T(r, f )
can be dominated by two integrated counting functions as the following shows.

Lemma . ([]) If f (z) is a transcendental meromorphic function of finite logarithmic
order λ, then for any two distinct extended complex values a and b, we have

T(r, f )≤ N(r, f = a) +N(r, f = b) + o
(
U(r, f )

)
, (.)

where U(r, f ) = (log r)λ(r) is a logarithmic-type function of T(r, f ). Furthermore, if T(r, f )
has a finite lower logarithmic order

μ = lim inf
r→+∞

logT(r, f )
log log r

, (.)

with λ –μ < , then

T(r, f )≤ N(r, f = a) +N(r, f = b) + o
(
T(r, f )

)
. (.)

Lemma. If f (z) is a non-constant zero-ordermeromorphic function and q ∈C\{}, then

T
(
r, f (qz)

)
=

(
 + o()

)
T

(
r, f (z)

)
(.)

on a set of lower logarithmic density .
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Lemma . ([]) Let f (z) be a meromorphic function of finite order ρ , and let c ∈C\{}.
Then, for each ε > , one has

T
(
r, f (z + c)

)
= T(r, f ) +O

(
rρ–+ε

)
+O(log r). (.)

From the proof of Theorem . in [], we know if f (z) is of zero order, then (.) can be
written into

T
(
r, f (z + c)

)
= T(r, f ) +O(log r). (.)

From Lemma . and (.), we can obtain

Lemma. If f (z) is a non-constant zero-ordermeromorphic function and q ∈C\{}, then

T
(
r, f (qz + c)

)
=

(
 + o()

)
T

(
r, f (z)

)
+O(log r) (.)

on a set of lower logarithmic density .

Remark  If f (z) is a transcendental meromorphic function of finite logarithmic order λ,
then (.) can be rewritten into

T
(
r, f (qz + c)

)
=

(
 + o()

)
T

(
r, f (z)

)
. (.)

Lemma . ([]) Let f be a non-constant meromorphic function, n be a positive integer.
P(f ) = anf n + an–f n– + · · · + af where ai is a meromorphic function satisfying T(r,ai) =
S(r, f ) (i = , , . . . ,n). Then

T
(
r,P(f )

)
= nT(r, f ) + S(r, f ).

Lemma. If f (z) is a non-constant zero-ordermeromorphic function and q ∈C\{}, then

N
(
r, f (qz + c)

)
=

(
 + o()

)
N

(
r, f (z)

)
+O(log r) (.)

on a set of lower logarithmic density .

From the proofs of Theorem . [] and Theorem . [], we can obtain the lemma
easily. If f (z) is a transcendental meromorphic function of finite logarithmic order λ, then
(.) can be rewritten into

N
(
r, f (qz + c)

)
=

(
 + o()

)
N

(
r, f (z)

)
. (.)

Lemma . ([, ]) Let f (z) be a non-constant meromorphic function of zero order, and
let q, c ∈C\{}. Then

m
(
r,
f (qz + c)
f (z)

)
= o

{
T(r, f )

}

on a set of logarithmic density .
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Lemma . If f (z) is a transcendental meromorphic function of finite logarithmic order λ

and c ∈ C\{}, and n≥  is an integer, set G(z) = f n(z)f (qz + c), then T(r,G) =O(T(r, f )).

Proof We can rewrite G(z) in the form

G(z) = f (z)n+
f (qz + c)
f (z)

. (.)

For each ε > , by Lemma . and (.), we get that

m(r,G) ≤ (n + )m(r, f ) +m
(
r,
f (qz + c)
f (z)

)
= (n + )m(r, f ) + o

{
T(r, f )

}
. (.)

From Lemma ., we have

N(r,G)≤ nN(r, f ) +N
(
r, f (qz + c)

) ≤ (
n +  + o()

)
N(r, f ). (.)

By (.) and (.), we have

T(r,G) ≤ O
(
T(r, f )

)
. (.)

By Lemma . and (.), we have

nT
(
r, f (z)

)
= T

(
r, f n(z)

)
= T

(
r,

G(z)
f (qz + c)

)
≤ T(r,G) + T

(
r, f (qz + c)

)
= T

(
r,G(z)

)
+

(
 + o()

)
T

(
r, f (z)

)
. (.)

Thus, from (.) we have

(
n –  – o()

)
T(r, f ) ≤ T(r,G). (.)

That is, T(r, f ) ≤ O(T(r,G)) from n ≥ .
Thus, (.) and (.) give that T(r,G) =O(T(r, f )). �

Proof of Theorem . Denote G(z) = f (z)nf (qz + c).
We claim that G(z) is transcendental if n≥ .
Suppose that G(z) is a rational function R(z). Then f (z)n = R(z)/f (qz + c). Therefore,

by Lemma . and (.), nT(r, f (z)) = T(r, f (z)n) = T(r,R(z)/f (qz + c)) ≤ T(r, f (qz + c)) +
O(log r) = ( + o())T(r, f (z)), which contradicts n≥ .
Hence, the claim holds.
By Lemma ., Lemmas .-., Lemma ., and (.), we have

nT
(
r, f (z)

)
= T

(
r, f (z)n

)
= T

(
r,G(z)/f (qz + c)

)
≤ T

(
r,F(z)

)
+ T

(
r, f (qz + c)

)
+O()

=
(
 + o()

)
T

(
r, f (z)

)
+ T(r,G)

=
(
 + o()

)
T

(
r, f (z)

)
+N(r,G) +N

(
r,


G – b

)
+ o

(
U(r,G)

)
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≤ (
 + o()

)
T

(
r, f (z)

)
+

(
n +  + o()

)
N

(
r, f (z)

)
+N

(
r,


G – b

)
+ o

(
U(r, f )

)
, (.)

where U(r, f ) = (log r)λ(r) is a logarithmic-type function of T(r, f ).
Note that for the logarithmic exponent of convergence of poles less than λ – , we have

lim sup
r→∞

logN(r, f (z))
log log r

< λ. (.)

Suppose that

N
(
r,


G – b

)
= o

(
T(r,G)

)
. (.)

By Lemma ., we know (.) can be written into

N
(
r,


G – b

)
= o

(
T(r, f )

)
. (.)

From (.) and (.), we have

(
n –  – o()

)
T

(
r, f (z)

) ≤ (
n +  + o()

)
N

(
r, f (z)

)
+ o

(
U(r, f )

)
(.)

for sufficiently large r.
By (.), (.), and n ≥ , we have

lim sup
r→∞

logT(r, f )
log log r

< λ. (.)

This contradicts the fact that T(r, f ) has logarithmic order λ. Hence,

N
(
r,


G – b

)
�= o

(
T(r,G)

)
.

That is, G – b has infinitely many zeros, then f n(z)f (qz + c) – b has infinitely many zeros.
This completes the proof of Theorem .. �

4 Proof of Theorems 2.2 and 2.3
Let

ϕ =
b – af (z) – af (qz + c)

f n(z)
. (.)

By Lemma . and (.), we obtain

nT
(
r, f (z)

)
= T

(
r, f (z)n

)
= T

(
r,ϕ(z)/

(
b – af (z) – af (qz + c)

))
+O()

≤ T
(
r,ϕ(z)

)
+ T

(
r, f (qz + c)

)
+ T

(
r, f (z)

)
+O()

= T
(
r,ϕ(z)

)
+

(
 + o()

)
T

(
r, f (z)

)
+O(),
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which implies that

T
(
r,ϕ(z)

) ≥ (
n –  – o()

)
T(r, f ) +O(). (.)

From (.), we can easily get

T
(
r,ϕ(z)

) ≤ (
n +  + o()

)
T(r, f ) +O(). (.)

By (.)-(.) and n≥ , we have

T
(
r,ϕ(z)

)
=O

(
T(r, f )

)
. (.)

We claim that ϕ(z) is transcendental. Suppose that ϕ(z) is rational, it contradicts (.) if
n≥ . The claim holds.
Suppose thatN(r, 

ϕ– ) = o{T(r,ϕ)}. In the following, wewill get a contradiction. By (.),
we have

N
(
r,


ϕ – 

)
= o

{
T(r, f )

}
. (.)

Note that for the logarithmic exponent of convergence of poles less than λ – , we have

lim sup
r→∞

logN(r, f (z))
log log r

< λ. (.)

By Lemma . and (.)-(.), we obtain

T
(
r,ϕ(z)

) ≤ N
(
r,

ϕ

)
+N

(
r,


ϕ – 

)
+ o

(
U(r,ϕ)

)

≤ N
(
r,


b – af (z) – af (qz + c)

)
+ nN(r, f ) +N

(
r,


ϕ – 

)
+ o

(
U(r, f )

)

≤ T
(
r, f (qz)

)
+ T

(
r, f (z)

)
+ nN(r, f ) +N

(
r,


ϕ – 

)
+ o

(
U(r, f )

)

≤ (
 + o()

)
T

(
r, f (z)

)
+ nN(r, f ) +N

(
r,


ϕ – 

)
+ o

(
U(r, f )

)
≤ (

 + o()
)
T

(
r, f (z)

)
+ nN(r, f ) + o

(
T(r, f )

)
+ o

(
U(r, f )

)
, (.)

where U(r, f ) = (log r)λ(r) is a logarithmic-type function of T(r, f ).
By (.) and (.), we have

(
n –  – o()

)
T(r, f ) ≤ nN(r, f ) + o

(
T(r, f )

)
+ o

(
U(r, f )

)
,

for sufficiently large r. Hence, by (.) we have

lim sup
r→∞

logT(r, f )
log log r

< λ. (.)
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This contradicts the fact that T(r, f ) has logarithmic order λ. Hence,

N
(
r,


ϕ – 

)
�= o

(
T(r,F)

)
.

That is, ϕ –  has infinitely many zeros, then f n(z) + a[f (qz + c) – f (z)] – b has infinitely
many zeros.
This completes the proof of Theorem ..
The proof of Theorem . is similar to the proof of Theorem ., we omit it here.
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