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Abstract
A method for analyzing discrete processes based on consideration of their higher
difference structure is presented. Two kinds of processes, deterministic systems
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1 Introduction
This paper presents some results on difference analysis, which is a method for studying
irregular time series and orbits of discrete dynamical systems. Such an analysis, suggested
in [–], is based on consideration of higher absolute differences taken from successive
terms of a given time series or orbits of a given system. This is motivated by an observa-
tion that some natural systems (e.g., the visual cortex, []) process the information con-
tained in signals difference structure. The difference analysis reveals some new aspects of
nonlinearity; for instance, a difference analog for Lyapunov exponent [], used for chaos
discrimination, is introduced [].
The content of this paper is as follows. In Section  deterministic processes are con-

sidered, Section  deals with random independent binary processes. In both cases, we are
interested in computation of higher order absolute differences, recovering the original by a
given difference image as well as in the limiting behavior of difference processes. Section 
contains the proofs of results presented.

2 Deterministic processes
This section considers higher absolute differences taken from successive terms of discrete
deterministic systems. Twomain problems, computation of higher differences and restor-
ing the original, are studied. Some applications to discrete dynamical systems are given.

2.1 Higher absolute differences of deterministic processes
In difference analysis, a given time series or an orbit X is decomposed into two con-
stituents: the sign component S and the magnitude (or height) component H. The
S-component reflects the alternation in monotony (increase/decrease) of higher order
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absolute differences taken from successive terms of X. The component S does not depend
on the very exact values of these differences, while the component H consists of these ab-
solute differences and does not depend on their sign distribution. At every step (associated
with the order of differences) of the decomposition process, the orbit X can be completely
restored by first terms of X and the two components. Since the behavior of X at infinity
is determined by the limiting behavior of its S- and H-components, such an analysis can
also be useful in dynamical systems (see, e.g., []).
Let us present some formal definitions. Let X be some infinite numerical sequence

X = (f, f, . . . , fn, . . .). ()

This can be some time series, experimental data, or an orbit of iterates of some one-
dimensional map. We consider the consecutive absolute differences,

H ()
n = fn, H (m+)

n =
∣∣H (m)

n+ –H (m)
n

∣∣ (m ≥ ,n≥ ), ()

define (mth order) difference sequence, H (m) (=H (m)
 ), and consider binary sequences

Sm =
(
δ
(m)
 , δ(m)

 , . . . , δ(m)
n , . . .

)
, δ(m)

n =

⎧⎨
⎩
+, H (m)

n+ ≥ H (m)
n ,

–, H (m)
n+ <H (m)

n .
()

In this way, a given time series X is decomposed into two other, the sign and magnitude
components (Sm)∞m= and (H (m))∞m=. We call Sm and H (m) the mth S- and H-components
of X, respectively, and denote Sm = Sm(X), H (m) =H (m)(X), and Hm(X) = (H (m)

n )∞n=.
In this paper, we are mostly interested in behavior of H-components. Equation () is

the basic one for studying the H-component: due to this equation, for most cases, any
property of seriesH (m)

 (=H (m)) implies the same property of every seriesH (m)
n with n≥ .

For instance, it follows that if for some n≥  (for somem≥ ) the limit

H (∞)
n = lim

m→+∞H (m)
n

(
H (m)

∞ = lim
n→+∞H (m)

n

)

exists, then for every n′ ≥ n (for everym′ >m) the limit H (∞)
n′ (H (m′)∞ ) also exists.

The following theorem asserts that every absolute difference H (m)
n (X) is a linear form of

the original X and presents a formula for its computation. The rule () below is a general-
ization of the well-known additive scheme for constructing the Pascal triangle of binomial
coefficients. This theorem is a consequence of relations (); the proof (conducted by in-
duction) is straightforward and is omitted.

Theorem . For every time series () the H (m)
n can be computed by the formula

H (m)
n = k()m,nfn + k()m,nfn+ + · · · + k(m)

m,nfn+m, ()

where the coefficients k(i)m,n ∈ Z are constructed recurrently: for p≥ 

k(),n = –k(),n = –δ()n , k(i)p+,n =

⎧⎪⎪⎨
⎪⎪⎩
–δ

(p)
n k(i)p,n, i = ,

δ
(p)
n (k(i–)p,n+ – k(i)p,n),  ≤ i≤ p,

δ
(p)
n k(i–)p,n+, i = p + .

()
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2.2 Restoring the original by difference image
At every mth step (associated with the order m of differences) of the decomposition pro-
cess, the original time series can be completely restored by its first m entries and the two
components S and H. Indeed, the following theorem provides us with analytical expres-
sions for computation of the original X by the components S,S, . . . ,Sm, H (m) and firstm
terms f, . . . fm (below, it is denoted [f, . . . , fk] =H (k)):

Theorem . Let m≥  be given, H = (hn)∞n= be some infinite numerical sequence, hn ≥ 
and Sk = (sk,n)∞n=, sk,n = ±,  ≤ k ≤ m be some infinite binary sequences. Let X = (fn)∞n= be
defined as follows: f, . . . , fm are arbitrary and for every natural n≥ 

fn = f +
m∑
k=

[f, . . . , fk]
n–k+∑
i=

Bn,i,k– +
n–m∑
i=

hiBn,i,m–, ()

where
∑j

i =  if j < i and Bn,i,p ∈ Z are constructed recurrently: for p≥ 

Bn,i, = s,i, Bn,i,p = sp,i
n–p∑
j=i+

Bn,j,p–.

Then for all  ≤ n≤ m the relations

Sn(X) = Sn and Hm(X) =H ()

hold.

We note that Eq. () represents a countable infinite system of higher order difference
equations (which are nonlinear since we deal with absolute differences) and its solution
by Eq. () is given. The proof of this theorem is straightforward (by induction) and is
omitted.

2.3 Application to dynamical systems
We consider the orbits of themaps f defined on the unit segment I = [, ] and the limiting
(as the order m of differences tends to +∞) behavior of their difference series H (m). We
claim that this behavior ismainly due to some functionH (=Hf ) which can be determined
as a solution to some difference-functional equation.
Let f : I → I be a map defined on the numerical segment I and X be an orbit,

X =
(
f ()(x), f ()(x), . . . , f (n)(x), . . .

)
,

that is, we put in () fn = f (n)(x), where f (n) (f ()(x) ≡ x, f (n+) = f ◦ f (n)), n ≥  denote the
iterates of the map f . Theorem . yields that H (m) is some ‘iterate polynomial’,

H (m)(x) =
m∑
n=

k(n)m f (n)(x), ()

where k(n)m ∈ Z and k()m + · · · + k(m)
m = . Let Df denote the collection of such x ∈ I , for

each of whichH (m)(x) is convergent asm → ∞. Therefore, one can consider the following
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limiting functionH (=Hf ) defined on Df :

H(x) = lim
m→∞H (m)(x). ()

H, being defined through the magnitude orbit H (m), reflects also the behavior at infin-
ity of every nth series (H (m)

n )∞m=. Indeed, it follows from () that, for x ∈ Df and every
n ≥ , f (n)(x) is also found in Df (i.e., f (n)(Df ) ⊆ Df for all n ≥ ). Then since H (m)

n (x) =
H (m)

 (f (n)(x)), it follows that

lim
m→∞H (m)

n (x) =H
(
f (n)(x)

)
.

The next statement presents a difference equation for computation of the limiting func-
tion H and establishes the special property of such functions: once vanished, H remains
zero on all the further orbit of the map f . In the following two statements, [a] denotes the
entire part of number a (maximal integer which does not exceed a) and {a} = a– [a] is its
fractional part.

Theorem . For functionsH defined by Eq. (), the following statements are true:
() The functionH satisfies the following functional equation:

∣∣H(x) –H
(
f (x)

)∣∣ =H(x). ()

() If for some x ∈Df we haveH(x) = , thenH(f (n)(x)) =  for all n≥ .
() If for some x ∈Df we haveH(x) �= , then there is a number N ,  ≤ N ≤ log[/H(x)]

such that

H
(
f (n)(x)

)
=

⎧⎨
⎩
nH(x),  ≤ n≤ N ,

, n >N .

The proof of this theorem is straightforward: the point () of theorem is a consequence
of Eq. () and points () and () follow directly from the point ().
Particularly, this theorem immediately implies the following.

Corollary . Let, for some x ∈ I , the semi-orbit

. . . , f (–)(x), f (–)(x), f (–)(x), f (x) ()

be infinite. ThenH(f (n)(x)) =  for all large enough n ∈ Z.

For instance, if f is such that f (I) = I (e.g., this can be the so-called -logistic map f (x) =
x( – x) or Bernoulli shift f (x) = {x} studied in deterministic chaos [, ]) and Df = I ,
then for every x ∈ I the semi-orbit () is infinite and hence, by Corollary ., for such
f , H is identically zero on every periodic orbit: if x ∈ Per(f ), then H(f n(x)) =  for every
n ∈ Z. Particularly, it follows that if f : I → I is such that f (I) = I and Per(f ) is dense on I ,
then the null-set {x ∈ I :Hf (x) = } is also dense on I .
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3 Random independent discrete processes
This section considers the higher absolute differences taken from successive terms of ran-
dom independent binary sequences (see also []). The same two problems as in Section ,
computation of higher order absolute differences and restoring the original, are stud-
ied. When proving Theorem ., we underline some connections of difference analysis
with discrete models of self-organized criticality (SOC), a physics-originated theory (e.g.,
[, ]) which studies the large systems of interacting microsystems.

3.1 Higher absolute differences of random binary processes
Let ξ be a discrete binary random independent process

ξ = (ξ, ξ, . . . , ξn, . . .) ()

(the variables ξn are independent and take binary values  and  with some positive prob-
abilities). The absolute differences

ξ ()
n = ξn, ξ (k+)

n =
∣∣ξ (k)

n+ – ξ (k)
n

∣∣ (k ≥ ,n≥ )

also take binary values with some positive probabilities, and hence one can consider the
randomdifference processes ξ (k) = (ξ (k)

 , ξ (k)
 , . . . , ξ (k)

n , . . .) assuming their independence. For
a binary variable ξ , we assign the distribution of probabilities in the form P(ξ = λ) = 

 ( +
(–)λπ ), where λ ∈ {, } and π ∈ (, ). We denote π = π (ξ ) and characterize a variable ξ

by the corresponding number π (ξ ). We notice that since π (ξ ) = π ( – ξ ), π (ξ ) determines
a variable ξ uniquely only when ξ is equidistributed, i.e., π (ξ ) = . In the following, we
consider the binary version P of the Pascal triangle of binomial coefficients, P = 〈αi,k〉i,k
(≤ i ≤ k; k ≥ ), where every kth line (k ≥ ) of P is defined by relations

α,k = αk,k =  and αi,k = |αi–,k– – αi,k–| for  ≤ i≤ k – .

The following Theorem . is an analog for Theorem .. To demonstrate the anal-
ogy, instead of π (ξ ), we use ϕ(ξ ) = – lnπ (ξ ) and denote ϕn = ϕ(ξn) and ϕ

(k)
n = ϕ(ξ (k)

n )
(= – lnπ (ξ (k)

n )).

Theorem . For every process (), ϕ(k)
n can be computed by the formula

ϕ(k)
n = α,kϕn + α,kϕn+ + · · · + αk,kϕn+k , ()

where the coefficients αi,k are the terms of kth line of the triangle P.

3.2 Restoring the original by difference image
The following problem is studied: given natural k ≥  and a random sequence η = (ηn)∞n=
to determine a random process ξ = (ξn)∞n= for which the relation ξ (k) = η holds. We give
a solution assuming that processes ξ and ξ (i),  ≤ i ≤ k are independent. Based on Theo-
rem . and defining random sequences (ξn)∞n= by their distributions (ϕn)∞n=, our task is
reduced to the following: given k ≥  and a numerical sequence (βn)∞n=, βn >  to deter-
mine the positive numbers (ϕn)∞n= for which the relations

α,kϕn + α,kϕn+ + · · · + αk,kϕn+k = βn ()

http://www.advancesindifferenceequations.com/content/2012/1/202
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for n = , , . . . hold. The solution to this task is given by Theorem . which is an analog for
Theorem .. The proof of Theorem . is conducted by involving some physics-related
notions such as particles, energy, etc. Particularly, this allows us to demonstrate some con-
nections of the difference analysis with a modification of some SOC-related models.
Let q = q(k) denote the number of nonzero αi,k on kth line of the triangle P. We assume

that such αi,k are numbered in increasing order of the index i: αsi ,k = , where  = s < s <
· · · < sq = k and let us denote hi = k +  – si. Thus, a number q = q(k) and two ordered
samples,

s = (s, s, . . . , sq), h = (h,h, . . . ,hq), ()

correspond to a given k. Equation () means that our task is reduced to solving some
countable system of linear algebraic equations; since, for every i which is not contained in
the sample s from Eq. (), we have αi,k = , the system of equations () coincides with
the system () below.
In the next formulation, for a positive number a, [a] denotes the entire part of a (maxi-

mal integer which does not exceed a), and for natural a and b, we denote {a/b} =
{
r, r �= 
b, r =  ,

where r is residual from dividing a by b (and r = a if a < b).

Theorem . Let k ≥  be given, q = q(k), and s = (si)
q
i= and h = (hi)

q
i= be defined by

Eq. (). Let us consider the system of linear algebraic equations

ϕn+s + ϕn+s + · · · + ϕn+sq = βn ()

(where n = , , . . . and βn are free terms) and define the numbers ϕn as follows:
() ϕ,ϕ, . . . ,ϕk are positive and arbitrary, and for  ≤ T ≤ k – sq–, ϕk+T is equal to

ϕk+T = βT –
q–∑
i=

ϕT+si– ; ()

() for T ≥ k – sq– + , ϕk+T is equal to

ϕk+T =
T∑

m=

(–)mβ+[ T–m ] +
q–∑
i=

q–∑
s=

[T/hs]∑
n=

(–)[
T––nhs

hi
]
ϕ+{ T––nhshi

}. ()

Then, for every n ∈N, the sample (ϕn+s ,ϕn+s , . . . ,ϕn+sq ) satisfies Eq. ().

It can be noticed from formulation of this theorem that the sought ϕm (whose index m
is given as m = n + si) are such that ϕ,ϕ, . . . ,ϕk are positive and arbitrary, while for m ≥
k + , we have ϕm = ϕm(β,β, . . . ,βm;ϕ,ϕ, . . . ,ϕk); that is, the above-mentioned restored
process ξ is not unique but depends on k arbitrary positive numerical parameters.
To prove Theorem ., we use the following physics-relatedmodel, which can be treated

as amodification of some latticemodels (e.g., the BTW-model, []) of SOC. Let us describe
the model that we use. Let, for k ≥ , Lk = [,k]× [,k] be a lattice from N

. At every mo-
ment of discrete time t = , , . . . at the vertices of Lk , which are found above the diagonal

http://www.advancesindifferenceequations.com/content/2012/1/202
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L connecting the vertices (, ) and (k,k), somematerial particles with positive or negative
mass (or charge) are situated. Each particle performs uniform rectilinear motion with the
unit speed on the vertical segments Li connecting the vertices (si, si) and (si,k) ( ≤ i ≤ q)
of Lk . At the (initial) moment t = , all the particles are found on L and possess the unit
mass. Each moment t, when a number (= p) of particles reach simultaneously the upper
side {(k, i) :  ≤ i ≤ k} of the lattice (one can see that such particles should possess the
same mass m), these particles disappear, and at the next moment t + , at every position
on L a new particle of the mass –pm emerges (and the motion of particles continues).
In SOC terminology, the p particles hit the threshold (the upper side of the square Lk),
and an avalanche of intensity p at the moment t in the system S of the moving particles
occurs.
We consider a function (a potential) U = U(y) defined on the upper triangle {(x, y) ∈

Lk : x ≤ y} which depends only on the coordinate y,  ≤ y ≤ k. Our task related to the
above-presented model is to compute the potential energy

E(t) =
∑
i,s

mi,s(t)U
(
yi,s(t)

)
()

of the system S of particles on Lk for every moment t; here, yi,s and mi,s denote the
y-coordinate and mass of the particle which at the moment t is found at the vertex
(i, s) ∈ Lk . The proof of Theorem . is based on the following lemma.

Lemma . For every t = , , . . . , the total (potential) energy of the system S can be com-
puted by the formula

E(t) = –
q–∑
i=

q–∑
s=

[t/hs]∑
n=

(–)[
t––nhs

hi
]U

(
 +

{
t –  – nhs

hi

})
. ()

4 Proof of results

Proof of Theorem . Letm ≥ , x = (x,x, . . . ,xm) ∈R
m, and we consider the polynomials

Pm(x) = ( + x)( + x) · · · ( + xm)
(
=

∑
xε
 x

ε
 · · ·xεm

m

)
,

where summation is extended over all binary samples (ε, . . . , εm) of length m. If for λ ∈
{, } one considers the polynomials (the sum of binary variables is understood as the sum
by mod())

P(λ)
m (x) =

∑
ε+···+εm=λ

xε
 x

ε
 · · ·xεm

m ,

then denoting –x = (–x, . . . , –xm) it follows that for λ ∈ {, },

P(λ)
m (x) =



[
Pm(x) + (–)λPm(–x)

]
. ()

http://www.advancesindifferenceequations.com/content/2012/1/202
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Indeed, we have P(λ)
m (–x) = (–)λP(λ)

m (x), which yields Eq. (). This implies that, for λ ∈
{, } and x ∈R

m, the identity

∑
ε+···+εm=λ

xε
 x

ε
 · · ·xεm

m =



(
 + (–)λ

 – x
 + x

 – x
 + x

· · ·  – xm
 + xm

) m∏
i=

( + xi) ()

(it is assumed that xi �= –) holds.
On the other hand, one can prove (we omit the proof which can be conducted by the

induction method) that for k ≥  and λ ∈ {, },
(
ξ (k)
n = λ

)
=

⋃
〈ε,...,εk〉=λ

(ξn+k = εk , ξn+k– = εk–, . . . , ξn = ε),

where it is denoted 〈ε, . . . , εk〉 = ∑k
i= εiαi,k mod(). Then the independence of the pro-

cesses ξ i that we assumed implies

P
(
ξ (k)
n = λ

)
=

∑
〈ε,...,εk〉=λ

P(ξn = ε)P(ξn+ = ε) · · ·P(ξn+k = εk).

Denoting pn = P(ξn = ), p̄n = P(ξn = ) (pn + p̄n = ) and δi = εsi (see Eq. ()), one obtains

P
(
ξ (k)
n = λ

)
=

∑
δ+···+δq=λ

p–δ
n+s p̄

δ
n+s · · ·p–δq

n+sq p̄
δq
n+sq

= p̄n+s p̄n+s · · · p̄n+sq
∑

δ+···+δq=λ

(
pn+s
p̄n+s

)δ(pn+s
p̄n+s

)δ

· · ·
(pn+sq
p̄n+sq

)δq

.

Now, by applying Eq. (), one obtains Eq. (). Theorem . is proved. �

Proof of Lemma . For the case of a single particle with the (initial) mass equal to –
moving on a vertical segment Li connecting the vertices (si, si) and (si,k) (≤ i ≤ q) of Lk ,
one can compute that

U(t) =  +
{
t – 
hi

}
, m(t) = (–)+[

t–
hi

]. ()

That is, for every t, the energy of a single particle moving on Li is equal to

Ei(t) = (–)+[
t–
hi

]U
(
 +

{
t – 
hi

})
. ()

Considering the case of many particles, we note that on any segment Li a new particle
in the system at a moment t emerges if and only if t is of the form t = nhs +  (for some
n ≥  and some  ≤ s ≤ q – ). For particles that emerged as a result of attainment of the
threshold during the motion on Li, the coordinate and mass are computed by (); for
particles that emerged on Li as a result of attainment of the threshold during the motion
on some Ls, s �= i, the coordinate and mass are computed by the same formula () but in

http://www.advancesindifferenceequations.com/content/2012/1/202
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a ‘shifted’ time: t → t – nhs. Therefore, for the total energy E(i) of the particles situated on
a given vertical segment Li, one obtains

E(i)(t) = Ei(t) +
q–∑
s=

[t/hs]∑
n=

Ei(t – nhs). ()

Hence, for every t, the total energy of all the particles in the system S is equal to

E(t) =
q–∑
i=

q–∑
s=

[t/hs]∑
n=

Ei(t – nhs),

which due to Eq. () coincides with Eq. (). Lemma . is proved. �

Proof of Theorem . Since sq = k, Eq. () can be re-written as

ϕk+n = βn – ϕn+s – ϕn+s – · · · – ϕn+sq– (n≥ ). ()

Let us denote p = k – sq–. One can see that  ≤ p ≤ k –  and ϕp+sq– = ϕk and then Eq. ()
can be re-written as follows:

ϕk+ = β – ϕ+s – ϕ+s – · · · – ϕ+sq– ,

ϕk+ = β – ϕ+s – ϕ+s – · · · – ϕ+sq– ,

· · ·
ϕk+p = βp – ϕp+s – ϕp+s – · · · – ϕk

()

and (for T ≥ )

ϕk+p+ = βp+ – ϕp++s – ϕp++s – · · · – ϕk+,

ϕk+p+ = βp+ – ϕp++s – ϕp++s – · · · – ϕk+,

· · ·
ϕk+p+T = βp+T – ϕp++s – ϕp++s – · · · – ϕk+T ,

· · ·

()

One can see that () coincides with the point () of the theorem, and this point of the
theorem is proved.
We base the proof of the point () of the theorem on the above-defined lattice model

and use the Gauss substitution method for solving linear systems. With each variable of
the form ϕn+sm , where  ≤ n ≤ p and  ≤ m ≤ q –  (cf. Eq. ()), we associate a particle
which is found on mth vertical segment Lm of length hm in the upper triangle of Lk (and
ifm is fixed, the index n enumerates a particle’s position on this segment). Equations ()
and () and the substitution method assign the following dynamics of index p +  + sm
(and the corresponding particles) with respect to variable p: if this index does not exceed
k (that is, the corresponding particle is found in the lattice Lk) then p increases, and if
in some equation from the system () it appears that for some p and m the inequality

http://www.advancesindifferenceequations.com/content/2012/1/202
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p+ + sm ≥ k +  holds, then the variable ϕp++sm in this equation is replaced (according to
the corresponding equation in ()) by the sum

βs–p – ϕs–p+s – ϕs–p+s – · · · – ϕs–p+sq– (= ϕk+(s–p)).

In terms of the latticemodel, the inequality p++ sm ≥ k+ is interpreted as the threshold
attainment and the substitution of ϕp++sm is interpreted as an event of emergence of q– 
new particles on each of q –  positions of the diagonal L. One can see that if this variable
substitution procedure is sequently applied to all the equations in the system (), we
obtain the above-defined lattice model of moving particles. Then, by applying Lemma .
(where the time variable t coincides with the variable T in Eq. ()) and assuming that
the potential U (Section .) is assigned as U(y) = ϕ+y, we obtain the sought Eq. ().
Theorem . is proved. �
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