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Abstract
In this paper, we investigate the oscillation of a class of second-order linear impulsive
differential equations of the form

{
(a(t)[x′(t) + λx(t)])′ + p(t)x(t) = 0, t ≥ t0, t �= tk ,

x(t+k ) = bkx(tk), x′(t+k ) = ckx′(tk), k = 1, 2, . . . .

By using the equivalence transformation and the associated Riccati techniques, some
interesting results are obtained.
MSC: 34A37; 34C10
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1 Introduction
Impulsive differential equations are recognized as adequate mathematical models for
studying evolution processes that are subject to abrupt changes in their states at certain
moments. Many applications in physics, biology, control theory, economics, applied sci-
ences and engineering exhibit impulse effects (see [–]). In recent years, the study of
the oscillation of all solutions of impulsive differential equations have been the subject of
many research works. See, for example, [–] and the references cited therein.
In this article, we consider the second-order linear impulsive differential equation of the

form

⎧⎨
⎩(a(t)[x′(t) + λx(t)])′ + p(t)x(t) = , t ≥ t, t �= tk ,

x(t+k ) = bkx(tk), x′(t+k ) = ckx′(tk), k = , , . . . ,
(.)

where  ≤ t < t < · · · < tk → ∞, limk→∞ tk = +∞, a(t) ∈ C([t,∞), (,∞)) and p(t) ∈
C([t,∞),R), {bk} and {ck} are two known sequences of positive real numbers, λ is a real
number, and

x′(tk) = x′(t–k )
= lim

h→–
x(tk + h) – x(tk)

h
,

x′(t+k ) = lim
h→+

x(tk + h) – x(t+k )
h

.
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Let J ⊂ R be an interval and PC(J ,R) = {x : J → R : x(t) be continuous everywhere except
at some tk at which x(t+k ) and x(t–k ) exist and x(t–k ) = x(tk)}.
A function x ∈ PC([t,∞),R) is said to be a solution of Eq. (.) if
(i) x(t) satisfies (a(t)[x′(t) + λx(t)])′ + p(t)x(t) =  for t ∈ [t,∞) and t �= tk ,
(ii) x(t+k ) = bkx(tk), x′(t+k ) = ckx′(tk) for each tk , and x(t) and x′(t) are left continuous for

each tk , k = , , . . . .

Definition . A nontrivial solution of Eq. (.) is said to be nonoscillatory if the solution
is eventually positive or eventually negative. Otherwise, it is said to be oscillatory. Eq. (.)
is said to be oscillatory if all solutions are oscillatory.

If λ = , then Eq. (.) reduces to the second-order linear differential equation with im-
pulses

⎧⎨
⎩(a(t)x′(t))′ + p(t)x(t) = , t ≥ t, t �= tk ,

x(t+k ) = bkx(tk), x′(t+k ) = ckx′(tk), k = , , . . . .
(.)

In [] Luo et al. and [] Guo et al. gave some excellent results on the oscillation and
nonoscillation of Eq. (.) by using associated Riccati techniques and an equivalence trans-
formation. Moreover, Luo et al. showed that the oscillation of Eq. (.) can be caused by
impulsive perturbations, though the corresponding equation without impulses admits a
nonoscillatory solution.
If a(t) ≡  and λ �= , then Eq. (.) reduces to the impulsive Langevin equation of the

form⎧⎨
⎩

d
dt (

d
dt + λ)x(t) + p(t)x(t) = , t ≥ t, t �= tk ,

x(t+k ) = bkx(tk), x′(t+k ) = ckx′(tk), k = , , . . . .
(.)

The Langevin equation (first formulated by Langevin in ) is found to be an effective
tool to describe the evolution of physical phenomena in fluctuating environments. For
more details of the Langevin equation without impulses and its applications, we refer the
reader to [].
If λ =  and bk = ck =  for all k = , , . . . , then Eq. (.) reduces to the self-adjoint second-

order differential equation

(
a(t)x(t)

)′ + p(t)x(t) = , t > t. (.)

There are many good results on the oscillation and nonoscillation of Eq. (.); see, for
example, [–].

2 Main results
Now we are in the position to establish the main result.

Lemma . If the second-order differential equation

[( ∏
T≤tk<t

d–
k

)
a(t)

{
y′(t) + λ

(
 –


a(t)

∑
T≤tk<t

∏
tk<tj<t

dj( – dk)a(tk)
)
y(t)

}]′
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+
( ∏
T≤tk<t

d–
k

)[
p(t) +

λ

a(t)

( ∑
T≤tk<t

∏
tk<tj<t

dj( – dk)a(tk)
)

– λ
∑

T≤tk<t

∏
tk<tj<t

dj( – dk)a(tk)
]
y(t) = , t > T , (.)

is oscillatory, then Eq. (.) is oscillatory, where dk = ck/bk , k = , , . . . .

Proof For the sake of contradiction, suppose that Eq. (.) has an eventually positive solu-
tion x(t). Then there exists a constant T ≥ t such that x(t) >  for t ≥ T .
We let

u(t) =
a(t)(eλtx(t))′

eλtx(t)
=
a(t)(x′(t) + λx(t))

x(t)
, t ≥ T .

Then

u′(t) =
eλtx(t)[a(t)(eλtx(t))′]′ – a(t)[(eλtx(t))′]

(eλtx(t))

=
[a(t)(eλtx(t))′]′

eλtx(t)
–
a(t)[(eλtx(t))′]

(eλtx(t))

=
(eλt[a(t)(x′(t) + λx(t))])′

eλtx(t)
–
a(t)[(eλtx(t))′]

(eλtx(t))

=
(a(t)(x′(t) + λx(t)))′

x(t)
+ λ

a(t)(x′(t) + λx(t))
x(t)

–
a(t)[(eλtx(t))′]

(eλtx(t))

= –p(t) + λu(t) –
u(t)
a(t)

can be obtained. Therefore,

u′(t) – λu(t) +
u(t)
a(t)

+ p(t) = , t ≥ T , t �= tk . (.)

On the other hand, we have

u
(
t+k

)
=
a(t+k )(x′(t+k ) + λx(t+k ))

x(t+k )
=
a(tk)(ckx′(tk) + λbkx(tk))

bkx(tk)
.

Let ek = λ( – dk)a(tk), then we get

u
(
t+k

)
= dku(tk) + ek , tk ≥ T ,k = , , . . . . (.)

Now, we define

v(t) =
∏

T≤tk<t

d–
k

[
u(t) –

∑
T≤tk<t

∏
tk<tj<t

djek
]
, t > T . (.)
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Then, for tn > T , we get that

v
(
t+n

)
=

∏
T≤tk≤tn

d–
k

[
u
(
t+n

)
–

∑
T≤tk≤tn

∏
tk<tj≤tn

djek
]

=
∏

T≤tk≤tn

d–
k

[
dnu(tn) + en –

∑
T≤tk<tn

∏
tk<tj<tn

djdnek – en
]

=
∏

T≤tk<tn

d–
k

[
u(tn) –

∑
T≤tk<tn

∏
tk<tj<tn

djek
]

= v(tn).

Therefore, v(t) is continuous on (T ,∞).
We have

( ∏
T≤tk<t

d–
k

)
×

( ∑
T≤tk<t

∏
tk<tj<t

djek
)
=

∑
T≤tk<t

∏
T≤tj≤tk

d–
j ek .

Then, for t > T , t �= tn and from (.), we get that

v′(t) = lim
h→

( ∏
T≤tk<t+h

d–
k

[
u(t + h) –

∑
T≤tk<t+h

∏
tk<tj<t+h

djek
]

–
∏

T≤tk<t

d–
k

[
u(t) –

∑
T≤tk<t

∏
tk<tj<t

djek
])/

h

= lim
h→

∏
T≤tk<t+h d

–
k u(t + h) –

∏
T≤tk<t d

–
k u(t)

h

=
( ∏
T≤tk<t

d–
k

)
lim
h→

u(t + h) – u(t)
h

=
( ∏
T≤tk<t

d–
k

)
u′(t) =

( ∏
T≤tk<t

d–
k

)[
λu(t) –

u(t)
a(t)

– p(t)
]

=
( ∏
T≤tk<t

d–
k

){
λ

[
v(t)

( ∏
T≤tk<t

dk
)
+

∑
T≤tk<t

∏
tk<tj<t

djek
]

–


a(t)

[
v(t)

( ∏
T≤tk<t

dk
)
+

∑
T≤tk<t

∏
tk<tj<t

djek
]

– p(t)
}

= λv(t) + λ
∑

T≤tk<t

∏
T≤tj≤tk

d–
j ek –

( ∏
T≤tk<t

dk
)
v(t)
a(t)

– 
v(t)
a(t)

∑
T≤tk<t

∏
tk<tj<t

djek –


a(t)

( ∏
T≤tk<t

d–
k

)

×
( ∑
T≤tk<t

∏
tk<tj<t

djek
)

–
( ∏
T≤tk<t

d–
k

)
p(t).
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The left-hand and the right-hand derivatives of v(t) at t = tn are given by

v′(t–n )
=

( ∏
T≤tk<tn

d–
k

)
u′(t–n )

=
( ∏
T≤tk<tn

d–
k

)
u′(tn),

v′(t+n) =
( ∏
T≤tk≤tn

d–
k

)
u′(t+n) =

( ∏
T≤tk≤tn

d–
k

)
dnu′(tn) =

( ∏
T≤tk<tn

d–
k

)
u′(tn).

Hence, for t = tn, we have

v′(tn) =
( ∏
T≤tk<tn

d–
k

)
u′(tn) =

( ∏
T≤tk<tn

d–
k

)
lim
t→t–n

u′(t)

=
( ∏
T≤tk<tn

d–
k

)
lim
t→t–n

[
λu(t) –

u(t)
a(t)

– p(t)
]

=
( ∏
T≤tk<tn

d–
k

)[
λu(tn) –

u(tn)
a(tn)

– p(tn)
]

=
( ∏
T≤tk<tn

d–
k

){
λ

[
v(tn)

( ∏
T≤tk<tn

dk
)
+

∑
T≤tk<tn

∏
tk<tj<tn

djek
]

–


a(tn)

[
v(tn)

( ∏
T≤tk<tn

dk
)
+

∑
T≤tk<tn

∏
tk<tj<tn

djek
]

– p(tn)
}

= λv(tn) + λ
∑

T≤tk<tn

∏
T≤tj≤tk

d–
j ek –

( ∏
T≤tk<tn

dk
)
v(tn)
a(tn)

– 
v(tn)
a(tn)

∑
T≤tk<tn

∏
tk<tj<tn

djek –


a(tn)

( ∏
T≤tk<tn

d–
k

)

×
( ∑
T≤tk<tn

∏
tk<tj<tn

djek
)

–
( ∏
T≤tk<tn

d–
k

)
p(tn).

Thus,

v′(t) +
( ∏
T≤tk<t

dk
)
v(t)
a(t)

– λv(t) + 
v(t)
a(t)

∑
T≤tk<t

∏
tk<tj<t

djek

– λ
∑

T≤tk<t

∏
T≤tj≤tk

d–
j ek +


a(t)

( ∏
T≤tk<t

d–
k

)( ∑
T≤tk<t

∏
tk<tj<t

djek
)

+
( ∏
T≤tk<t

d–
k

)
p(t) = , t > T . (.)

We set

w(t) = exp

{∫ t

T

[( ∏
T≤tk<s

dk
)
v(s)
a(s)

– λ +


a(s)
∑

T≤tk<s

∏
tk<tj<s

djek
]
ds

}
, t > T .
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Then, w(t) >  for t > T and

w′(t) = w(t)
[( ∏

T≤tk<t

dk
)
v(t)
a(t)

– λ +


a(t)
∑

T≤tk<t

∏
tk<tj<t

djek
]
.

From (.), we obtain

[( ∏
T≤tk<t

d–
k

)
a(t)w′(t) + λ

( ∏
T≤tk<t

d–
k

)
a(t)w(t) – 

∑
T≤tk<t

∏
T≤tj≤tk

d–
j ekw(t)

]′

= w(t)v′(t) + v(t)w′(t)

= w(t)
[
v′(t) +

( ∏
T≤tk<t

dk
)
v(t)
a(t)

– λv(t) + 
v(t)
a(t)

∑
T≤tk<t

∏
tk<tj<t

djek
]

= w(t)
[
λ

∑
T≤tk<t

∏
T≤tj≤tk

d–
j ek –


a(t)

( ∏
T≤tk<t

d–
k

)

×
( ∑
T≤tk<t

∏
tk<tj<t

djek
)

–
( ∏
T≤tk<t

d–
k

)
p(t)

]
.

Therefore,

[( ∏
T≤tk<t

d–
k

)
a(t)

{
w′(t) + λ

(
 –


a(t)

∑
T≤tk<t

∏
tk<tj<t

dj( – dk)a(tk)
)
w(t)

}]′

+
( ∏
T≤tk<t

d–
k

)[
p(t) +

λ

a(t)

( ∑
T≤tk<t

∏
tk<tj<t

dj( – dk)a(tk)
)

– λ
∑

T≤tk<t

∏
tk<tj<t

dj( – dk)a(tk)
]
w(t) = , t > T .

This implies thatw(t) is an eventually positive solution of Eq. (.) which is a contradiction.
A similar argument can be used to prove that Eq. (.) cannot have an eventually negative
solution. Therefore, from Definition ., the solution of Eq. (.) is oscillatory. The proof
is complete. �

Lemma . (Leighton type oscillation criteria) Assume that the functions g(t),q(t) ∈
PC([t,∞),R) and h(t) ∈ PC([t,∞), (,∞)).
If

∫ ∞

T
g(s)e–

∫ s
T q(σ )dσ ds = ∞ and

∫ ∞

T


h(s)

e
∫ s
T q(σ )dσ ds = ∞,

then

(
h(t)

[
y′(t) + q(t)y(t)

])′ + g(t)y(t) =  (.)

is oscillatory.

http://www.advancesindifferenceequations.com/content/2012/1/205
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Proof Let y(t) be a nonoscillatory solution of the Eq. (.). Without loss of generality, we
assume that there exists a T ≥ t such that y(t) >  for t ≥ T . We define

u(t) =
h(t)(e

∫ t
T q(σ )dσ y(t))′

e
∫ t
T q(σ )dσ y(t)

, t ≥ T .

Then the equation

u′(t) – q(t)u(t) +
u(t)
h(t)

+ g(t) =  (.)

has a solution u(t) on [T ,∞). It is easy to see that the solution of Eq. (.) satisfies the
following equation:

u(t) = e
∫ t
T q(σ )dσu(T) – e

∫ t
T q(σ )dσ

∫ t

T

u(s)
h(s)

e–
∫ s
T q(σ )dσ ds

– e
∫ t
T q(σ )dσ

∫ t

T
g(s)e–

∫ s
T q(σ )dσ ds. (.)

Since
∫ ∞
T g(s)e–

∫ s
T q(σ )dσ ds = ∞, then there exists τ > T such that

u(T) –
∫ t

T
g(s)e–

∫ s
T q(σ )dσ ds < 

for all t in [τ ,∞). Hence, from (.), it follows that

u(t) < –e
∫ t
T q(s)ds

∫ t

T

u(s)
h(s)

e–
∫ s
T q(σ )dσ ds, t ∈ [τ ,∞).

Let

r(t) =
∫ t

T

u(s)
h(s)

e–
∫ s
T q(σ )dσ ds, t ∈ [τ ,∞).

Then u(t) < –r(t)e
∫ t
T q(σ )dσ and

r′(t) =
u(t)
h(t)

e–
∫ t
T q(σ )dσ >

r(t)
h(t)

e
∫ t
T q(σ )dσ , t ∈ [τ ,∞). (.)

Integrating (.) from τ > T to ∞, we obtain

–


r(∞)
+


r(τ )

>
∫ ∞

τ


h(s)

e
∫ s
T q(σ )dσ ds.

Hence,

∫ ∞

τ


h(s)

e
∫ s
T q(σ )dσ ds <


r(τ )

<∞,

which is a contradiction. Thus, the solution y(t) is oscillatory. The proof is complete. �
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Theorem . Assume that

∫ ∞

T

( ∏
T≤tk<t

d–
k

)[
p(t) +

λ

a(t)

( ∑
T≤tk<t

∏
tk<tj<t

dj( – dk)a(tk)
)

– λ
∑

T≤tk<t

∏
tk<tj<t

dj( – dk)a(tk)
]
exp

{
–λ

∫ t

T

(
 –


a(s)

×
∑

T≤tk<s

∏
tk<tj<s

dj( – dk)a(tk)
)
ds

}
dt = ∞ (.)

and
∫ ∞

T

( ∏
T≤tk<t

dk
)


a(t)

× exp

{
λ

∫ t

T

(
 –


a(s)

×
∑

T≤tk<s

∏
tk<tj<s

dj( – dk)a(tk)
)
ds

}
dt = ∞, (.)

where dk = ck/bk , k = , , . . . . Then Eq. (.) is oscillatory.

If bk = ck , k = , , . . . , then dk = , k = , , . . . and (.) becomes

⎧⎨
⎩(a(t)[x′(t) + λx(t)])′ + p(t)x(t) = , t ≥ t, t �= tk ,

x(t+k ) = bkx(tk), x′(t+k ) = bkx′(tk), k = , , . . . .
(.)

Theorem . Eq. (.) is oscillatory if and only if

(
a(t)

[
y′(t) + λy(t)

])′ + p(t)y(t) = , t ≥ t, (.)

is oscillatory.

Proof From Lemma ., we only need to prove that if Eq. (.) is oscillatory, then Eq.
(.) is oscillatory.
Without loss of generality, we suppose that y(t) is an eventually positive solution of (.)

such that y(t) >  for t ≥ T ≥ t. Set

x(t) =
( ∏
T≤tk<t

bk
)
y(t), t > T .

Then, for t > T , we have x(t) > , and for tn > T ,

x
(
t+n

)
=

( ∏
T≤tk≤tn

bk
)
y
(
t+n

)
= bn

( ∏
T≤tk<tn

bk
)
y(tn) = bnx(tn).

Moreover, for t �= tn > T , we have

x′(t) =
( ∏
T≤tk<t

bk
)
y′(t),

http://www.advancesindifferenceequations.com/content/2012/1/205
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and

x′(t+n) =
( ∏
T≤tk≤tn

bk
)
y′(t+n) = bn

( ∏
T≤tk<tn

bk
)
y′(tn) = bnx′(tn) = cnx′(tn).

Now we have for t �= tn

(
a(t)

[
x′(t) + λx(t)

])′ =
(
a(t)

[( ∏
T≤tk<t

bk
)
y′(t) + λ

( ∏
T≤tk<t

bk
)
y(t)

])′

=
( ∏
T≤tk<t

bk
)(

a(t)
[
y′(t) + λy(t)

])′

= –
( ∏
T≤tk<t

bk
)
p(t)y(t) = –p(t)x(t).

Therefore,

(
a(t)

[
x′(t) + λx(t)

])′ + p(t)x(t) = , t �= tn, t > T .

We get that x(t) is an eventually positive solution of (.), a contradiction, and so the
proof is complete. �

Corollary . Assume that

∫ ∞

T
p(t)e–λt dt = ∞ (.)

and

∫ ∞

T

eλt

a(t)
dt = ∞. (.)

Then Eq. (.) is oscillatory.

3 Some examples
In this section, we illustrate our results with two examples.

Example . Consider the following impulsive Langevin equation:

⎧⎨
⎩

d
dt (

d
dt +


 )x(t) + tx(t) = , t > , t �= k,

x(k+) = k
k+x(k), x′(k+) = x′(k), k = , , . . . .

(.)

Set dk = k+
k , λ = 

 , a(t) = a(tk) ≡  and p(t) = t . If T ∈ (m,m+ ] for some integerm ≥ ,
then we get

( ∏
T≤tk<[t]+

k
k + 

)
=
m + 
m + 

· m + 
m + 

· · · [t]
[t] + 

=
m + 
[t] + 

,
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and

∑
T≤tk<[t]

∏
tk<tj<[t]

(
j + 
j

)(

k

)

=


m + 
· m + 
m + 

· m + 
m + 

· · · [t]
[t] – 

+


m + 
· m + 
m + 

· m + 
m + 

· · · [t]
[t] – 

+ · · · + 
[t] – 

· [t]
[t] – 

+


[t] – 

= [t]
(


m + 

· 
m + 

+


m + 
· 
m + 

+ · · · + 
[t] – 

· 
[t] – 

)
+


[t] – 

= [t]
(


m + 

–


[t] – 

)
+


[t] – 

=
[t]

m + 
– ,

where [·] denotes the greatest integer function.
Hence,

∫ ∞

T

( ∏
T≤tk<t

d–
k

)[
p(t) +

λ

a(t)

( ∑
T≤tk<t

∏
tk<tj<t

dj( – dk)a(tk)
)

– λ
∑

T≤tk<t

∏
tk<tj<t

dj( – dk)a(tk)
]
exp

{
–λ

∫ t

T

(
 –


a(s)

×
∑

T≤tk<s

∏
tk<tj<s

dj( – dk)a(tk)
)
ds

}
dt

=
∫ ∞

T

( ∏
T≤tk<t

k
k + 

)[
t


+

(



)( ∑
T≤tk<t

∏
tk<tj<t

(
j + 
j

)(
–

k

))

–
(



) ∑
T≤tk<t

∏
tk<tj<t

(
j + 
j

)(
–

k

)]
exp

{
–



∫ t

T

(
 – 

×
∑

T≤tk<s

∏
tk<tj<s

(
j + 
j

)(
–

k

))
ds

}
dt

≥
∫ ∞

T

( ∏
T≤tk<[t]+

k
k + 

)[
t


+

(



)( ∑
T≤tk<[t]

∏
tk<tj<[t]

(
j + 
j

)(

k

))

×
( ∑
T≤tk<[t]

∏
tk<tj<[t]

(
j + 
j

)(

k

)
+ 

)]
exp

{
–



∫ t

T

(
 + 

×
∑

T≤tk<[s]+

∏
tk<tj<[s]+

(
j + 
j

)(

k

))
ds

}
dt

≥
∫ ∞

T

(
m + 
[t] + 

)[
t


+

(



)( [t]
m + 

– 
)

×
(

[t]
m + 

)]
exp

{
–



∫ t

T

(
 + 

(
[s] + 
m + 

– 
))

ds
}
dt
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≥
∫ ∞

T

(
m + 
t + 

)(
t

)
exp

{
–



∫ t

T

(
 + 

(
s + 
T

))
ds

}
dt

= ∞,

and
∫ ∞

T

( ∏
T≤tk<t

dk
)


a(t)

exp

{
λ

∫ t

T

(
 –


a(s)

∑
T≤tk<s

∏
tk<tj<s

dj( – dk)a(tk)
)
ds

}
dt

=
∫ ∞

T

( ∏
T≤tk<t

k + 
k

)

× exp

{



∫ t

T

(
 + 

∑
T≤tk<s

∏
tk<tj<s

j + 
j

· 
k

)
ds

}
dt

≥
∫ ∞

T

( ∏
T≤tk<[t]

k + 
k

)
exp

{



∫ t

T
()ds

}
dt

=
∫ ∞

T

(
m + 
m + 

· m + 
m + 

· · · [t]
[t] – 

)
exp

{



∫ t

T
()ds

}
dt

=
∫ ∞

T

(
[t]

m + 

)
exp

{


(t – T)

}
dt

≥
∫ ∞

T

(
t – 
m + 

)
exp

{


(t – T)

}
dt

= ∞.

By Theorem ., Eq. (.) is oscillatory.

Example . Consider the equation

⎧⎨
⎩
( 

(t+)


[x′(t) + 

x(t)])
′ + π tx(t) = , t ≥ , t �= tk ,

x(t+k ) = bkx(tk), x′(t+k ) = bkx′(tk), k = , , . . . ,
(.)

where {bk} is a known sequence of positive real numbers. It is easy to see that

∫ ∞


π te–


 t dt = ∞

and ∫ ∞



(
t + 

) 
 e


 t dt = ∞.

By Corollary ., Eq. (.) is oscillatory.
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