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Abstract
In this paper, we study a periodic quasilinear parabolic equation with nonlinear
convection terms and weakly nonlinear sources. Based on the theory of the
Leray-Schauder fixed point theorem, we establish the existence of periodic solutions
when the domain of the solution is sufficiently small.

1 Introduction
In this paper, we consider the following periodic quasilinear parabolic equation with non-
linear convection terms and weakly nonlinear sources:

∂u
∂t

–Di
(
aij(x, t,u)Dju

)
+ b(u) · ∇u = B(x, t,u) + h(x, t), (x, t) ∈QT , (.)

u(x, t) = , (x, t) ∈ ∂� × [,T], (.)

u(x, ) = u(x,T), x ∈ �, (.)

where � is a bounded domain in R
N with a smooth boundary ∂�, QT = � × (,T), and

we assume that
(A) aij(·, ·,u) = aji(·, ·,u) ∈ CT (QT ) and there exist two constants  < λ ≤ � such that

λ|ξ | ≤ aij(x, t,u)ξiξj ≤ �|ξ |, ∀(x, t) ∈QT , ξ ∈R
+.

(A) B(x, t,u) is Hölder continuous in � × R × R, periodic in t with a period T and
satisfies B(x, t,u)u≤ b|u|α+ with constants b ≥  and ≤ α ≤ .
(A) h(x, t) ∈ CT (QT )∩ L∞(,T ;W ,∞

 (�)), h(x, t) >  for � ×R, where CT (QT ) denotes
the set of functions which are continuous in � ×R and ω-periodic with respect to t.
The existence of periodic solutions for parabolic equations has been considered by sev-

eral authors; see [–] and the references therein. As a work related to this paper, we refer
to Nakao [], in which the author considered the following parabolic equation:

∂u
∂t

–	β(u) = B(x, t,u) + h(x, t),

with Dirichlet boundary value conditions, where B, h are periodic in t with a period ω > ,
β(u) satisfies β ′(u) >  except for u =  and β(u) is fulfilled by |u|m–u if m > . Under the
assumption that B(x, t,u)u ≤ b|u|, Nakao established the existence of periodic solutions
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by the Leray-Schauder fixed point theorem. In [], Zhou et al. considered the quasilinear
parabolic equation with nonlocal terms. Based on the theory of Leray-Schauder’s degree,
the authors established the existence of nontrivial periodic solutions. In this paper, we
consider the quasilinear parabolic equation (.) with weakly nonlinear sources and non-
linear convection terms. The convection term b(u) · ∇u describes an effect of convection
with a velocity field b(u). Under a restrictive condition that the domain is sufficiently small,
we establish the existence of periodic solutions of the problem (.)-(.).
This paper is organized as follows. The definition of the generalized solution and a useful

a priori estimate are presented in Section . Our main results will be given in Section .

2 Preliminaries
Our main efforts will focus on the discussion of generalized solutions since the regularity
follows from a quite standard approach. Hence, we give the following definition of gener-
alized solutions.

Definition  A function u is said to be a generalized solution of the problem (.)-(.) if
u ∈ L(,T ;H

(�))∩CT (QT ) and∫∫
QT

(
–u

∂ϕ

∂t
+ aij(x, t,u)DiuDjϕ – β(u) · ∇ϕ – B(x, t,u)ϕ – h(x, t)ϕ

)
dxdt =  (.)

for any ϕ ∈ C(QT ) with ϕ(x, ) = ϕ(x,T) and ϕ|∂�×(,T) = , where β(u) = (β(u), . . . ,βN (u))
and βi(u) =

∫ u
 bi(s)ds, i = , . . . ,N .

For convenience, we let ‖ ·‖p and ‖ ·‖m,p denote Lp(�) andWm,p(�) norms, respectively.
First, we establish the following a priori estimate which plays an important role in the
proof of the main results of this paper.

Lemma  Let u be a solution of

∂u
∂t

–Di
(
aij(x, t,u)Dju

)
+ b(u) · ∇u = σB(x, t,u) + σh(x, t), (x, t) ∈QT , (.)

u(x, t) = , (x, t) ∈ ∂� × [,T], (.)

u(x, ) = u(x,T), x ∈ �, (.)

with σ ∈ [, ], then there exists a positive constant R independent of σ such that

∥∥u(t)∥∥L∞(QT )
< R, (.)

when the measure of � is small enough.

Proof Suppose u is a solution of the problem (.)-(.). Multiplying equation (.) by
|u|pu (p≥ ) and integrating the resulting relation over �, noticing that

∫
�

b(u) · ∇u|u|pudx =
∫

�

N∑
i=

bi(u)|u|pu ∂u
∂xi

dx =
N∑
i=

∫
�

(∫ u


bi(s)|s|ps ds

)
xi
dx

=
N∑
i=

∫
∂�

(∫ u


bi(s)|s|ps ds

)
cos(n,xi)dx = ,
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where n is the outer normal to ∂�, we have


p + 

d
dt

∫
�

∣∣u(t)∣∣p+ dx – ∫
�

Di
(
aij(x, t,u)Dju

)∣∣u(t)∣∣pu(t)dx
≤ b

∫
�

∣∣u(t)∣∣p+α+ dx +
∫

�

∣∣u(t)∣∣pu(t)hdx. (.)

The second term of the left-hand side in the above integral equality can be written as

–
∫

�

Di
(
aij(x, t,u)Dju

)∣∣u(t)∣∣pu(t)dx = (p + )
∫

�

∣∣u(t)∣∣paij(x, t,u)DjuDiudx

≥ λ(p + )
(p + )

∫
�

∣∣∇[∣∣u(t)∣∣ p u(t)]∣∣ dx,
and

∫
�

∣∣u(t)∣∣pu(t)hdx ≤
(∫

�

∣∣u(t)∣∣p+ dx)
p+
p+

(∫
�

hp+ dx
) 

p+
.

Hence, from (.), we have

d
dt

∥∥u(t)∥∥p+
p+ +C

∥∥∇(∣∣u(t)∣∣ p u(t))∥∥
 ≤ C(p + )

(∥∥u(t)∥∥p+α+
p+α+ + ‖u‖p+p+

)
, (.)

where C, C are positive constants independent of u(t), p.
If  ≤ α < , by Hölder’s inequality and Young’s inequality, we have

∫
�

∣∣u(t)∣∣p+α+ dx ≤
(∫

�

∣∣u(t)∣∣p+ dx)
p+α+
p+ |�| –α

p+

≤ max
{
, |�|  }∥∥u(t)∥∥p+α+

p+

= max
{
, |�|  }∥∥u(t)∥∥(p+)α

p+

∥∥u(t)∥∥(p+)(–α)
p+

≤ ∥∥u(t)∥∥p+
p+ +C

∥∥u(t)∥∥p+
p+. (.)

Combined with (.), it yields

d
dt

∥∥u(t)∥∥p+
p+ +C

∥∥∇(∣∣u(t)∣∣ p u(t))∥∥
 ≤ C(p + )

(∥∥u(t)∥∥p+
p+ +

∥∥u(t)∥∥p+
p+

)
. (.)

If α = , from (.) we can get (.) directly.
Set

uk(t) =
∣∣u(t)∣∣ pk u(t), pk = k –  (k = , , . . .),

then pk = pk– + . From (.), we have

d
dt

∥∥uk(t)∥∥
 +C

∥∥∇uk(t)
∥∥
 ≤ C(pk + )

∥∥uk(t)∥∥
 +C(pk + )

∥∥uk(t)∥∥ (pk+)
pk+

 .
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By the Gagliardo-Nirenberg inequality, we have

∥∥uk(t)∥∥ ≤ C
∥∥∇uk(t)

∥∥θ



∥∥uk(t)∥∥–θ

 , with θ =
N

N + 
∈ (, ). (.)

Noticing ‖uk(t)‖ = ‖uk–(t)‖, by (.) we obtain

d
dt

∥∥uk(t)∥∥
 ≤ –C

∥∥uk(t)∥∥ 
θ



∥∥uk(t)∥∥ (θ–)
θ

 +C(pk + )
∥∥uk(t)∥∥



+C(pk + )
∥∥uk(t)∥∥ (pk+)

pk+


≤ –C
∥∥uk(t)∥∥ 

θ



∥∥uk–(t)∥∥ (θ–)
θ

 +C(pk + )
∥∥uk(t)∥∥



+C(pk + )
∥∥uk(t)∥∥ (pk+)

pk+
 . (.)

Set λk =max{, supt ‖uk(t)‖}, then

d
dt

∥∥uk(t)∥∥
 ≤ ∥∥uk(t)∥∥ (pk+)

pk+


{
–C

∥∥uk(t)∥∥ 
θ
– (pk+)

pk+
 λ

(θ–)
θ

k–

+C(pk + )
∥∥uk(t)∥∥ 

pk+
 +C(pk + )

}
. (.)

Now, we estimate (pk + )‖uk(t)‖


pk+
 . By Young’s inequality,

ab ≤ εap
′
+ ε

– q′
p′ 
q′

(

p′

) q′
p′
bq

′
,

where p′ > , q′ > , 
p′ + 

q′ =  with

a =
∥∥uk(t)∥∥ 

pk+
 , b = pk + , ε =



λ

(θ–)
θ

k– ,

p′ = lk =
pk + 

θ
– pk –  =

(pk +m + )(N + )
N

– pk – ,

we have

(pk + )
∥∥uk(t)∥∥ 

pk+
 ≤ 


‖u‖


θ
– (pk+)

pk+
 λ

(θ–)
θ

k– +C(pk + )
lk

lk– λ

(–θ )
θ (lk–)
k– . (.)

It is easy to see that limk→∞ lk = +∞. Denote

ak =
lk

lk – 
, bk =

( – θ )
θ (lk – )

.

From (.), (.), we have

d
dt

∥∥uk(t)∥∥


≤ ∥∥uk(t)∥∥ (pk+)
pk+



{
–
C


∥∥uk(t)∥∥ 

θ
– (pk+)

pk+
 λ

(θ–)
θ

k– +C(pk + )akλbk
k– +C(pk + )

}
.
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That is,

(pk + )
d
dt

∥∥uk(t)∥∥ 
pk+


≤ –
C


∥∥uk(t)∥∥ 

θ
– (pk+)

pk+
 λ

(θ–)
θ

k– +C(pk + )akλbk
k– +C(pk + ). (.)

The periodicity of uk(t) implies that there exists t′ such that ‖uk(t)‖ takes its maximum
and the left-hand side of (.) vanishes. Then we have

∥∥uk(t)∥∥ ≤ {
C

[
(pk + ) + (pk + )ak lbkk–

]
λ

(–θ )
θ

k–
} 
ck ,

where

ck =

θ
–
(pk + )
pk + 

=
lk

pk + 
.

Since λk– ≥  (k = , , ·), it follows that

∥∥uk(t)∥∥ ≤ {
C(pk + )akλbk+

(–θ )
θ

k–
} 
ck =

{
C(pk + )ak

} pk+
lk λ

(–θ )(pk+)
(lk–)θ

k– .

Noticing that pk+
(lk–)θ

= 
–θ

and pk+
lk

are bounded, we have

∥∥uk(t)∥∥ ≤ Cka
′
λ
k–,

where a′ is a positive constant independent of k. That is,

ln
∥∥uk(t)∥∥ ≤ ln lk ≤ lnC + k lnA +  ln lk–,

where A = a′ > , then

ln
∥∥uk(t)∥∥ ≤ lnC

k–∑
i=

i + k– lnλ + lnA

( k–∑
j=

(k – j)j
)

≤ (
k– – 

)
lnC + k– lnλ + f (k) lnA

with

f (k) = k+ – k– – k – .

That is,

∥∥u(t)∥∥pk+
≤ {

Ck–λk–
 Af (k)} 

pk+ .

Letting k → ∞, we obtain

∥∥u(t)∥∥∞ ≤ Cλ
 ≤ C

(
max

{
, sup

t

∥∥u(t)∥∥

})
. (.)
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In order to estimate ‖u(t)‖, we set p = . From (.), we obtain

d
dt

∥∥u(t)∥∥
 +C

∥∥∇u(t)
∥∥
 ≤ C

∥∥u(t)∥∥
 +C

∥∥u(t)∥∥.

According to the Poincaré inequality, we have

Cp
∥∥u(t)∥∥

 ≤ ∥∥∇u(t)
∥∥
,

where Cp is a positive constant which depends only on N and the measure of � and be-
comes very large when |�| becomes small. Then

d
dt

∥∥u(t)∥∥
 +CCp

∥∥u(t)∥∥
 ≤ C

∥∥u(t)∥∥
 +C

∥∥u(t)∥∥.

So, when |�| is sufficiently small, we haveCCp > C. Then byYoung’s inequality, we obtain

d
dt

∥∥u(t)∥∥
 +C

∥∥u(t)∥∥
 ≤ C,

where C is a constant independent of u. By the periodicity of u, we have

∥∥u(t)∥∥ ≤ R,

where R is a positive constant independent of σ . Combining the above inequality with
(.), we obtain (.). The proof is completed. �

3 Themain results
Our main result is the following theorem.

Theorem  If (A), (A) and (A) hold, then the problem (.)-(.) admits at least one
periodic solution u.

Proof First, we define a map by considering the following problem:

∂u
∂t

–Di
(
aij(x, t,u)Dju

)
+ b(u) · ∇u = f (x, t), (x, t) ∈QT , (.)

u(x, t) = , (x, t) ∈ ∂� × [,T], (.)

u(x, ) = u(x,T), x ∈ �, (.)

where f (x, t) is a given function in CT (QT ). It follows from a standard argument similar
to [] that the problem (.)-(.) admits a unique solution. So, we can define a map
T : CT (QT ) → CT (QT ) by u = Tf and the map u = Tf is compact and continuous. In fact,
by the method in [], we can infer that ‖u‖L∞(QT ) is bounded if f ∈ L∞(QT ) and u, ∇u ∈
Cα(QT ) for some α > . Then (by the Arzela-Ascoli theorem) the compactness of the map
T comes from ‖u‖L∞(QT ) and the Hölder continuity of u. The continuity of the map T
comes from the Hölder continuity of ∇u.
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Let �(u) = B(x, t,u) + h(x, t), by (A)-(A) and the above arguments, we see that T(σ�)
is a complete continuous map for σ ∈ [, ]. By Lemma , we can see that any fixed point
u of the map T(σ�) satisfies

‖u‖∞ ≤ C,

where C is a positive constant independent of σ . Then, by the Leray-Schauder fixed point
theorem [], we conclude that the problem (.)-(.) admits a periodic solution u. The
proof is complete. �
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