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Abstract
In this paper, we consider a three-dimensional discrete neural network model with
delay. The characteristic equation of the linearized system at the zero solution is a
polynomial equation involving very high order terms. We derive some sufficient and
necessary conditions on the asymptotic stability and multiple bifurcations of the zero
solution. We give computer simulations to support the theoretical predictions.
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1 Introduction
Dynamical systems theory plays an important role in many areas of mathematics and
physics because it provides the building blocks that allow us to understand the changes
many physical systems experience in their dynamics when parameters are varied. In the
research of nonlinear dynamical systems, symmetric systems have become an important
topic. Symmetric systems appear naturally in many applications. Often the symmetry re-
flects certain spatial invariant of the dynamical systems. Symmetries change the generic
behavior of a dynamical system dramatically, and in recent years, there has been rapid
progress in the development of a bifurcation theory for periodic orbits of symmetric dy-
namical systems; see, e.g., [].
Artificial neural network is used tomimic the human brain structure and function. Since

s, the theories and applications of neural networks have been greatly developed after
the work of Hopfield [–].
A discrete Hopfield neural network is one of the most interesting topics in spatial ex-

tended systems. Recently, the dynamical behaviors (including stability, instability, periodic
oscillatory and chaos) of the discrete-time Hopfield neural networks without or with de-
lay have received increasing interest due to their promising potential applications in many
fields. Some results have been reported; see [–].
In this paper, we consider the following three-dimensional discrete Hopfield neural net-

work with delay:

⎧⎪⎪⎨
⎪⎪⎩
xn+ = axn + αf (xn) + βg(yn–k),

yn+ = ayn + αf (yn) + βg(zn–k),

zn+ = azn + αf (zn) + βg(xn–k),

(.)

where α, β , a are parameters.
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The presence of symmetries changes the nature and type of bifurcations that a dynam-
ical systemmay undergo. There is a lot of research into equivariant bifurcations of ODEs.
We refer the readers to Golubitsky []. But, until now, there have been few papers to dis-
cuss equivariant bifurcation problems in discrete neural networks, which motivated us
to write this paper. The goal of this paper is to investigate how parameters affect the dis-
crete neural network with delay (.) by using the symmetric groups theory of Golubit-
sky [].
Accordingly, the paper is organized as follows. In Sections  and , we show that the

structure of the system (.) can be represented by a cyclic group Z. The generalized
center subspace is invariant under the action of the symmetry group and the center
manifold reduction can be performed in such a way that the reduced equations com-
mute with the restricted action of the symmetry group. We obtain some important re-
sults about spontaneous bifurcations of multiple branches of periodic solutions and their
spatio-temporal patterns, which describe the oscillatory mode of each neural cell. We
also consider the direction and stability of the Hopf bifurcation in a discrete neural net-
work model. Finally, some numerical simulations are carried out to support the analysis
results.

2 Z3-equivariant and linear stability of a discrete neural network
Assume that Xn = (xn, yn, zn)T , then Eq. (.) can be rewritten as

Xn+ =

⎛
⎜⎝
a  
 a 
  a

⎞
⎟⎠Xn +

⎛
⎜⎝

α  
 α 
  α

⎞
⎟⎠

⎛
⎜⎝
f ((Xn))
f ((Xn))
f ((Xn))

⎞
⎟⎠

+

⎛
⎜⎝
 β 
  β

β  

⎞
⎟⎠

⎛
⎜⎝
g((Xn–k))
g((Xn–k))
g((Xn–k))

⎞
⎟⎠ , (.)

where (Xn)T = [(Xn), (Xn), (Xn)]T . Throughout this section, to establish the main results
for Eq. (.), we make the following hypothesis on the activation functions in Eq. (.):

(H): f , g : R –→ R are C-smooth functions with f () = ; f ′() =  and g() = ; g ′() = .

Under the assumption (H), the origin (, , ) is an equilibrium of Eq. (.). Linearizing
the system (.) about origin (, , ) gives the following linear system:

Yn+ =

⎛
⎜⎝
a + α  
 a + α 
  a + α

⎞
⎟⎠Yn +

⎛
⎜⎝
 β 
  β

β  

⎞
⎟⎠Yn–k . (.)

For discussing the linear stability and Hopf bifurcations of Eq. (.), we need to consider
the characteristic equation for Eq. (.). We can use the method of Zhang and Zheng []
to mark

Mn+ = AMn,
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where

Mn = (xn,xn–,xn–, . . . ,xn–k , yn, yn–, yn–, . . . , yn–k , zn, zn–, zn–, . . . , zn–k)T ,

A =

⎛
⎜⎝
R R O
O R R

R O R

⎞
⎟⎠

(k+)×(k+)

,

R =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

a + α  · · · · · ·  
  · · · · · · · · · 
   · · · · · · 
    · · · 

· · · · · · · · · · · · · · · · · ·
  · · · · · ·  

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

(k+)×(k+)

,

R =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

  · · · · · ·  β

  · · · · · · · · · 
   · · · · · · 
    · · · 

· · · · · · · · · · · · · · · · · ·
  · · · · · ·  

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

(k+)×(k+)

.

Using Lemma . in Ref. [], we can obtain the characteristic equation for Eq. (.):

|λE –A| = [
λk+ – (a + α)λk – β

][
λk+ – (a + α)λk – βe

π i


][
λk+ – (a + α)λk – βe

π i


]
= ��� = , (.)

where

� = λk+ – (a + α)λk – β ,

� = λk+ – (a + α)λk – βe
π i
 ,

� = λk+ – (a + α)λk – βe
π i
 .

It is not difficult to verify that a + bi is a root of � =  if and only if a – bi is a root of
� = . In order to study the distribution of Eq. (.), it is sufficient to investigate � = ,
� = .
In what follows, we denote β as a bifurcating parameter. The analysis of the distribution

of roots to Eq. (.) is based on the conclusion given in []: the sum of the order of zeros
of Eq. (.) can change only if a zero appears or accesses the unit circle as the parameter β

is varied. We make the following assumptions:

(H): |a + α| < ;
(H): |β| > | – (a + α)|.
Consider � = . Let eiω be a root of � = . Then

ei(k+)ω – (a + α)eikω = β .
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That is,
⎧⎨
⎩
cos(k + )ω – (a + α) coskω = β ,

sin(k + )ω – (a + α) sinkω = .

So,

cosω =  +
( – (a + α)) – β

(a + α)
.

Hence,

⎧⎪⎪⎨
⎪⎪⎩

|βj| =
√
 + (a + α) – (a + α) cosω (j = , , . . . ,k – ),

sin(k + )ω – (a + α) sinkω = ,

ω ∈ ( jπk ,
(j+)π
k+ ) for j = , , . . . ,k – .

(.)

For further analysis, we found that the transversality conditions are met:

d|λ|
dβ

∣∣∣∣
β=βj

= βj

k + –(a+α)–β

[(cosω–a–α)+sinω
 ]

|(k + )eikω – k(a + α)ei(k–)ω ||eiω – (a + α)| = sign(βj). (.)

Similarly, for � = , let eiω be a root of � = . Then we have

⎧⎪⎪⎨
⎪⎪⎩

|βj| =
√
 + (a + α) – (a + α) cosω (j = , , . . . ,k – ),

sin(k + )ω – (a + α) sinkω = –β sin π
 ,

ω ∈ ( jπk ,
(j+)π
k+ ) for j = , , . . . ,k – .

(.)

And the transversality conditions are met:

d|λ|
dβ

∣∣∣∣
β=βj

= βj

k + –(a+α)–β

[(cosω–a–α)+sinω
]

|(k + )eikω – k(a + α)ei(k–)ω ||eiω – (a + α)| = sign(βj). (.)

Theorem . Assume that (H)-(H) hold.
() The system (.) undergoes a doubling bifurcation if (–)k( – a – α) = β .
() The zero solution of Eq. (.) is local asymptotically for all |β| < | – (a + α)|.
() The zero solution of Eq. (.) is local asymptotically stable if

| – (a + α)| < |β| <min(|β|, |β|) and unstable if |β| >min(|β|, |β|).

Proof
() If (–)k( – a – α) = β , the – is a root of Eq. (.). A doubling bifurcation can occur.
() It is clear that Eq. (.) has roots λ = , and λ = a + α if β = . The zero solution of

Eq. (.) is asymptotically stable when β = .
() If |β| < | – (a + α)|, from Eq. (.) and Eq. (.), � =  and � =  have no roots

with modular one.
() If (H) holds, then for β = βlj, l = , , j = , ,  . . .k – , Eq. (.) has a pair roots with

modular one.
Using the theorem of Ref. [], the conclusions are obtained. �
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3 Multiple bifurcations
The purpose of this section is to explore the coexistence of multiple stable patterns such
as multiple periodic orbits of the map (.).
Firstly, we will introduce the equivariant bifurcation theorem of Golubitsky.
Assume that

F : Rn × R –→ Rn

and that (DF)(,) has eigenvalues e±π iθ , each with multiplicity n, where θ �= ,  . Denote
by SPT the subspace of PT consisting of all T-periodic solutions of the map. Let 	 be a
subgroup and (	,SPT ) be a fixed-point subspace of SPT .

Lemma . [] Let 	 be a subgroup such that dimFix(	,SPT ) = . Assume that the eigen-
values cross the unit circle at nonzero speed. Then, generically, there exists a unique branch
of F-invariant circles emanating from the trivial fixed point x =  and this branch is tangent
to Fix(	) ⊂ Rn × R at x = .

Now, we explore the symmetric property of Eq. (.). Consider the subgroup of

Z =
{
I,P,P},

where

P =

⎛
⎜⎝
  
  
  

⎞
⎟⎠ .

∀G ∈ Z, we have

G

⎡
⎢⎣

⎛
⎜⎝
a  
 a 
  a

⎞
⎟⎠Xn +

⎛
⎜⎝

α  
 α 
  α

⎞
⎟⎠

⎛
⎜⎝
f ((Xn))
f ((Xn))
f ((Xn))

⎞
⎟⎠ +

⎛
⎜⎝
 β 
  β

β  

⎞
⎟⎠

⎛
⎜⎝
g((Xn–k))
g((Xn–k))
g((Xn–k))

⎞
⎟⎠

⎤
⎥⎦

=

⎛
⎜⎝
a  
 a 
  a

⎞
⎟⎠GXn +

⎛
⎜⎝

α  
 α 
  α

⎞
⎟⎠G

⎛
⎜⎝
f ((Xn))
f ((Xn))
f ((Xn))

⎞
⎟⎠ +

⎛
⎜⎝
 β 
  β

β  

⎞
⎟⎠G

⎛
⎜⎝
g((Xn–k))
g((Xn–k))
g((Xn–k))

⎞
⎟⎠ .

Hence, the system (.) is Z equivariant. Let T = π
ω

or T = π
ω
. Consider the subgroup of

Z × S:

	 =
(
P, θ (t)

)
=

{
P, θ (ωt) = ωt

}
,

	 =
(
P, θ (t)

)
=

{
P, θ (ωt) = ωt –

π


}
.

It is clear that

() dimFix(	x,SPT ) = ,
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() dimFix(	x,SPT ) = .

The system (.) is equivariant with respect to the Z-action where the subgroups 	 and
	 of Z act by synchronization and by permutation.

Theorem . Assume that (H)-(H) hold.
() βj is defined as in (.).When near β = βj, there exist synchronous periodic

solutions of a period PT near π
ω
, bifurcated simultaneously from the zero solution of

the system (.).
() βj is defined as in (.).When near β = βj, there exist phase-locked periodic

solutions of a period PT near π
ω
, bifurcated simultaneously from the zero solution of

the system (.).

4 Direction and stability of the Hopf bifurcation in a discrete neural network
model

In this section, we give some results of direction and stability of the Hopf bifurcation in a
discrete neural network model. The method we used is based on the theories of a discrete
system by Kuznetsov []. Throughout this section, we always assume that the system (.)
undergoes the Hopf bifurcation at the origin (, , ) for β = βlj, l = ,  and then e±iω, are
corresponding roots with modulus one of the characteristic equation at the origin.
Without loss of generality, denote any one of these the critical values βlj (l = , ,

j = , , , . . . ,k – ) by β* at which the system (.) undergoes the Hopf bifurcation from
(, , ) and ω, by ω*. Rewritting β = β* + μ, then μ =  is Hopf bifurcation value of
Eq. (.).
For the map (.), we have

Yn+ = AYn +


B(Yn,Mn) +



C(Yn,Yn,Yn) +O

(‖Yn‖
)
,

where

B(φ,φ) =
(
f ′′(φ


) + g ′′(φk


), , . . . , , f ′′(φ


) + g ′′(φk


),

, . . . , , f ′′(φ

) + g ′′(φk


), . . . , )T ,

C(φ,φ,φ) =
(
f ′′′(φ


) + g ′′′(φk


), , . . . , , f ′′′(φ


) + g ′′′(φk


),

, . . . , , f ′′′(φ

) + g ′′′(φk


), . . . , )T .

Let q ∈ C(k+) be a complex eigenvector corresponding to eiω* satisfying

Aq = eiω*q, Aq̄ = e–iω* q̄.

We also introduce an adjoint eigenvector q* ∈ C(k+) having the properties

ATq* = e–iω*q*, Aq̄∗ = eiω* q̄*,

and satisfying the normalization

〈
q*,q

〉
= .

http://www.advancesindifferenceequations.com/content/2012/1/207
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Using Theorem . of Ref. [], we obtain

q =
(
qT , e

iπ
 qT , e

iπ
 qT

)T

and

q* =
(
q*T , e

iπ
 q*T , e

iπ
 q*T

)T ,
where

q =
(
eikω* , ei(k–)ω* , . . . , eiω* , 

)T ,
q* = K̄

(
,β*ei(k–)ω* , . . . ,β*eiω* ,β*eiω*

)T ,
and

K =
[
q̄*T · q + q̄*T Be–

(k+)iω*
k q

]–.
Now, we begin to analyze Eq. (.). Let Tc denote a real eigenspace corresponding to e±iω* ,
which is two-dimensional and is spanned by {Re(q), Im(q)}, and Ts be a real eigenspace
corresponding to all eigenvalues of AT other than e±iω* which is (k + )-dimensional.
For any x ∈ R(k+), we have its decomposition

x = zq + zq + y,

where z ∈ C, zq+zq ∈ Tc, y ∈ Ts. The complex variable z can be viewed as a new coordinate
on Tc, and

z =
〈
q*,x

〉
,

y = x –
〈
q*,x

〉
q –

〈
q*,x

〉
q.

In the coordinate, the map at μ =  has the form

z 
→ eiω*z +
〈
q*,F(zq + zq + y)

〉
,

y 
→ Ay + F(zq + zq + y) –
〈
q*,F(zq + zq + y)

〉
q –

〈
q*,F(zq + zq + y)

〉
q.

Using the Taylor expansions,

⎧⎨
⎩
z 
→ eiω*z + 

gz
 + gzz + 

gz
 + 

Gzz + 〈G, y〉z + 〈G, y〉z,
y 
→ Ay + 

Hz +Hzz + 
Hz +O(|z|),

(.)

g =
〈
q*,B(q,q)

〉
,

g =
〈
q*,B(q,q)

〉
,

g =
〈
q*,B(q,q)

〉
,

G =
〈
q*,C(q,q,q)

〉
,

http://www.advancesindifferenceequations.com/content/2012/1/207
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〈G, y〉 =
〈
q*,B(q, y)

〉
,

〈G, y〉 =
〈
q*,B(q, y)

〉
,

H = B(q,q) –
〈
q*,B(q,q)

〉
q –

〈
q*,B(q,q)

〉
q,

H = B(q,q) –
〈
q*,B(q,q)

〉
q –

〈
q*,B(q,q)

〉
q,

H = B(q,q) –
〈
q*,B(q,q)

〉
q –

〈
q*,B(q,q)

〉
q.

Now, we seek the center manifold which has the representation

y = V (z, z) =


wz +wzz +



wz +O

(|z|), (.)

where 〈q*,wij〉 = . Substituting (.) into (.), we have

⎧⎪⎪⎨
⎪⎪⎩
w = (eiω* I –A)–H,

w = (I –A)–H = ,

w = (e–iω* –A)–H = .

We restrict (.) to the center manifold, up to a cubic term, then we have

g =
〈
q*,C(q,q, q̄)

〉
– 

〈
q*,B

(
q, (I –A)–

)
B(q, q̄)

〉

+
〈
q*,B

(
q̄,

(
zI –A

))–B(q,q)〉 –  – z
z – z

〈
q*,B(q,q)

〉〈
q*,B(q, q̄)

〉

– ( – z̄)–
∣∣〈q*,B(q, q̄)〉∣∣ – (

z – z̄
)–∣∣〈q*,B(q̄, q̄)〉∣∣.

Define

c(β) =
gg(z + z̄ – )
(z̄ – )(z – z)

+
|g|
( – z̄)

+
|g|

(z – z̄)
+
g

.

We have Theorem ..

Theorem . The direction and stability of the Hopf bifurcation in the map (.) is deter-
mined by the sign of v = –Re[e–iω* c(β*)]

d|λ|
dβ

|β=β*

: if v >  (<), then theHopf bifurcation is supercritical

(subcritical).

5 Computer simulation
To illustrate analytical results, let us consider the following example:

⎧⎪⎪⎨
⎪⎪⎩
xn+ = axn + α tanh(xn) + β tanh(yn–),

yn+ = ayn + α tanh(yn) + β tanh(zn–),

zn+ = azn + α tanh(zn) + β tanh(xn–).

(.)

Firstly, we choose parameters such that Eq. (.) is met. When a = ., α = –, β = –.,
we have the result that a period  solution appears. See Figure .

http://www.advancesindifferenceequations.com/content/2012/1/207
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Figure 1 Synchronous period 2 solution for parameters a = 0.5, α = 0.48, β = –0.18.

Figure 2 The zero solution is asymptotically stable for parameters a = 0.8, α = –0.3, β = –0.5.

Next, one possible choice of the parameters is a = ., α = –., β = –.. In this case,
the zero solution is asymptotically stable. See Figure .
Finally, the parameters are a = ., α = –., β = –.. In this case, multiple branches

of periodic solutions appear. These solutions are shown in Figure .
It is shown that in Figures ,  and , for different values of parameters, the system (.)

exhibits its different dynamics. At first, the trivial solution is stable, then it loses its stability,
and several different periodic patterns by a discrete Hopf bifurcation can be observed,
which depend on different values of parameters.

http://www.advancesindifferenceequations.com/content/2012/1/207
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Figure 3 Completely symmetrical waveforms with 2π
3ω2

out of phase for parameters a = 0.8, α = –0.3,
β = –0.535.
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