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1 Introduction
The classical Bernoulli polynomials Bn(x) and Euler polynomials En(x) have played impor-
tant roles inmany branches ofmathematics such as number theory, combinatorics, special
functions and analysis, and they are usually defined by means of the following generating
functions:
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In particular, Bn = Bn() and En = nEn(/) are called the classical Bernoulli numbers and
Euler numbers, respectively. Numerous interesting properties for these polynomials and
numbers have been explored; see, for example, [–].
Recently, using some relationships involving Bernoulli numbers, Agoh and Dilcher []

extendedEuler’swell-knownquadratic recurrence formula on the classical Bernoulli num-
bers
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BiBn–i = –nBn– – (n – )Bn (n≥ ) (.)

to obtain an explicit expression for (Bk + Bm)n with arbitrary non-negative integers k, m,
n and k andm not both zero as follows:
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where δ(k,m) =  when k =  orm = , and δ(k,m) =  otherwise. As further applications,
Agoh and Dilcher [] derived some new types of recurrence formulae on the classical
Bernoulli numbers and showed that the values of Bn depend only on Bn,Bn+, . . . ,Bn

for a positive integer n and, similarly, for Bn+ and Bn+.
In this paper, using generating functions and combinatorial techniques, we extend the

above mentioned Agoh and Dilcher quadratic recurrence formula for Bernoulli numbers
to Apostol-Bernoulli and Apostol-Euler polynomials and numbers. These results also lead
to some known ones related to the formulae on products of the classical Bernoulli and
Euler polynomials and numbers stated in Nielsen’s classical book [].

2 Preliminaries and known results
We first recall the Apostol-Bernoulli polynomials which were introduced by Apostol []
(see also Srivastava [] for a systematic study) in order to evaluate the value of theHurwitz-
Lerch zeta function. For simplicity, we here start with the Apostol-Bernoulli polynomials
B(α)
n (x;λ) of (real or complex) order α given by Luo and Srivastava []
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Especially the case α =  in (.) gives the Apostol-Bernoulli polynomials which are de-
noted by Bn(x;λ) = B()

n (x;λ). Moreover, Bn(λ) = Bn(;λ) are called the Apostol-Bernoulli
numbers. Further, Luo [] introduced the Apostol-Euler polynomials E (α)

n (x;λ) of order α:
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The Apostol-Euler polynomials En(x;λ) and Apostol-Euler numbers En(λ) are given by
En(x;λ) = E ()

n (x;λ) and En(λ) = nEn(/;λ), respectively. Obviously, Bn(x;λ) and En(x;λ)
reduce to Bn(x) and En(x) when λ = . Several interesting properties for Apostol-Bernoulli
andApostol-Euler polynomials and numbers have been presented in [–]. Next we give
some basic properties for Apostol-Bernoulli and Apostol-Euler polynomials of order α as
stated in [, ].

Proposition . Differential relations of the Apostol-Bernoulli and Apostol-Euler polyno-
mials of order α: for non-negative integers k and n with ≤ k ≤ n,

∂k

∂xk
{
B(α)
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Proposition . Difference equations of the Apostol-Bernoulli and Apostol-Euler polyno-
mials of order α: for a positive integer n,

λB(α)
n (x + ;λ) –B(α)

n (x;λ) = nB(α–)
n– (x;λ)

(
B()
n (x;λ) = xn

)
, (.)
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and

λE (α)
n (x + ;λ) + E (α)

n (x;λ) = E (α–)
n (x;λ)

(
E ()
n (x;λ) = xn

)
. (.)

Proposition . Addition theorems of the Apostol-Bernoulli and Apostol-Euler polynomi-
als of order α: for a suitable parameter β and a non-negative integer n,
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Proposition. Complementary addition theorems of theApostol-Bernoulli andApostol-
Euler polynomials of order α: for a non-negative integer n,
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Setting α = , β =  and α = λ = , β =  in the formulae (.) to (.), we immediately
get the corresponding formulae for the Apostol-Bernoulli andApostol-Euler polynomials,
and the classical Bernoulli and Euler polynomials, respectively. It is worth noting that the
cases α = λ =  in Proposition . are also called the symmetric distributions of the clas-
sical Bernoulli and Euler polynomials. The above propositions will be very useful to in-
vestigate the quadratic recurrence formulae for the Apostol-Bernoulli and Apostol-Euler
polynomials in the next two sections.

3 Recurrence formulae for Apostol-Bernoulli polynomials
In what follows, we shall always denote by δ,λ the Kronecker symbol which is defined by
δ,λ =  or  according to λ �=  or λ = , and also denoteB–n(x;λ) = E–n(x;λ) =  for any pos-
itive integer n. Before stating the quadratic recurrence formula for the Apostol-Bernoulli
polynomials, we begin with a summation formula concerning the quadratic recurrence of
the Apostol-Bernoulli polynomials.

Theorem . Let k,m, n be non-negative integers. Then
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Proof Multiplying both sides of the identity
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Since B(x;λ) =  when λ =  and B(x;λ) =  when λ �=  (see, e.g., []), so by setting
B(x;λ) = δ,λ, we get
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On the other hand, by Taylor’s theorem, we have
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Applying (.), (.) and (.) to (.), in view of the Cauchy product and the complemen-
tary addition theorem of the Apostol-Bernoulli polynomials, we derive
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Comparing the coefficients of umvn+/m!(n + )! and um/m! in (.), we conclude our
proof. �

As a special case of Theorem ., we have the following

Corollary . Let m and n be positive integers. Then
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Proof Setting k =  and substituting y for x and x for y in Theorem ., we obtain that for
non-negative integersm and n, we have
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Hence, replacing y by y – x in the above gives the desired result. �

Remark . Setting λ = μ = , x = t and y = – t in Corollary ., by Bn(– x) = (–)nBn(x)
for a non-negative integer n, we immediately get the generalization ofWoodcock’s identity
on the classical Bernoulli numbers, see [, ],


m
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Applying the difference equation and symmetric distribution of the classical Bernoulli
polynomials, one can get (–)nBn(–x) = Bn(x) + nxn– for a positive integer n. Combin-
ing with Corollary ., we have another symmetric expression on the classical Bernoulli
numbers due to Agoh, see [, ],


m

m∑
i=

(
m
i

)
Bm–iBn+i– +


n

n∑
i=

(
n
i

)
Bn–iBm+i– = –Bm+n– (m,n≥ ). (.)

http://www.advancesindifferenceequations.com/content/2012/1/209


He and Wang Advances in Difference Equations 2012, 2012:209 Page 6 of 16
http://www.advancesindifferenceequations.com/content/2012/1/209

Using Theorem ., we shall give the following quadratic recurrence formula for
Apostol-Bernoulli polynomials.

Theorem . Let k,m, n be non-negative integers. Then
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where δ(k,m) = – when k = m = , δ(k,m) =  when k = , m ≥  or m = , k ≥ , and
δ(k,m) =  otherwise.

Proof Setting k =  and substituting m + k form in Theorem ., we have
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which is just the case δ(k,m) = – or  in Theorem .. Next, consider the case δ(k,m) = .
We shall use induction on k in Theorem . to prove Theorem .. Clearly, the case k = 
in Theorem . gives
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= –δ,λ

n + 
m + 

Bm+n+(x + y;λμ)

+Bm(y;λ)Bn+(x + y;μ) +
n + 
m + 

Bm+(y;λ)Bn(x + y;μ)

+ (n + )
m∑
i=

(
m
i

)
(–)m+iBn+i(x + y;λμ)

Bm+–i(x;λ–)
m +  – i

. (.)

Noting that for any non-negative integer k,
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Hence, substituting (.) and (.) to (.), we get the case k =  of Theorem .. Now
assume that Theorem . holds for all positive integers being less than k. From (.) and
(.), we obtain

(
Bk(x;μ) +Bm(y;λμ)

)n
= –δ,λ

(n + k)Bm+n+k(x + y;λμ)
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Since (.) holds for all positive integers being less than k, we have

k–∑
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(
k
j

)(
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)n
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j
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j
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k–∑
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(
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j

)
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(
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i

)
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(
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)}
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k–∑
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(
k
j
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{
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(
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(
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)}
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For any non-negative integers i, k,m,

k∑
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(k
j
)
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j

) =
m + k + 
m + 

,

k∑
j=

(–)j
(
k
j

)(
m + j
i

)
= (–)k

(
m
i – k

)
.
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It follows from (.) that

k–∑
j=

(k
j
)

(m+k
j

) =
k

m + 
–

k!m!
(m + k)!
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k–∑
j=
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(
k
j
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i
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{(
m
i – k

)
–

(
m + k

i
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–

(
m
i

)
, (.)
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k–∑
j=

(–)k–jj
(
k
j

)(
m + k – j
i – 

)
= (–)k–k

(
m
i – k

)
– k

(
m
i – 

)
, (.)

k–∑
j=

(–)k–j
(
k
j

)(
j
i

)
=

(


i – k

)
– (–)k

(

i

)
–

(
k
i

)
, (.)

k–∑
j=

(–)k–j(m + k – j)
(
k
j

)(
j

i – 

)

= –m
(

k
i – 

)
– (–)k(m + k)

(


i – 

)
+m

(


i – k – 

)
– k

(


i – k

)
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By substituting the above identities (.)-(.) to (.), we get

k–∑
j=

(
k
j

)(
Bj(x;μ) +Bm+k–j(y;λμ)

)n

= –δ,λ
(m + n + k + )Bm+n+k(x + y;λμ)

m + k + 

(
k

m + 
–

k!m!
(m + k)!

)

–
m+k∑
i=

(–)m+i
{
n
(
m
i

)
– k

(
m
i – 

)
+ (–)kn

(
m + k

i

)
– (–)k(n + k)

(
m
i – k

)}

×Bn+i–(x + y;λμ)
Bm+k+–i(x;λ–)
m + k +  – i

–
m+k∑
i=

(–)k+i
{
n
(
k
i

)
–m

(
k

i – 

)}
Bn+i–(x + y;μ)

Bm+k+–i(y;λ)
m + k +  – i

+
n + k
m + 

Bm+(y;λ)Bn+k–(x + y;μ) –
nBm+k+(y;λ)
m + k + 

Bn–(x + y;μ)

–Bm+k(y;λ)Bn(x + y;μ) +Bm(y;λ)Bn+k(x + y;μ). (.)

Thus, putting (.) and (.) to (.) concludes the induction step. This completes the
proof of Theorem .. �

Obviously, the cases λ = μ =  and x = y =  in Theorem . lead to the Agoh-Dilcher
quadratic recurrence formula (.).We nowuseTheorem. to give the following formula
on products of the Apostol-Bernoulli polynomials.

Corollary . Let m and n be positive integers. Then

Bm(x;λ)Bn(y;μ) = n
m∑
i=

(
m
i

)
(–)m–iBm–i

(
y – x;λ–)Bn+i(y;λμ)

n + i

+m
n∑
i=

(
n
i

)
Bn–i(y – x;μ)

Bm+i(x;λμ)
m + i

– (–)mδ,λμ

m!n!
(m + n)!

Bm+n(y – x;μ). (.)

http://www.advancesindifferenceequations.com/content/2012/1/209
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Proof Taking n =  and then substituting m for k, n for m, λ for μ and μ for λ in Theo-
rem ., we obtain that for positive integers m and n,

Bm(x;λ)Bn(y;λμ) = n
m∑
i=

(
m
i

)
(–)iBm–i(x + y;λ)

Bn+i(y;μ)
n + i

+m
n∑
i=

(
n
i

)
(–)iBn–i(x + y;λμ)

Bm+i(x;μ–)
m + i

–
δ,μm!n!
(m + n)!

Bm+n(x + y;λμ). (.)

Substituting  – y for y and μ– for λμ in (.) and using the complementary addition
theorem for Apostol-Bernoulli polynomials, we get our result. �

Remark . The cases λ = μ =  and x = y in Corollary . together with the fact B = –/
and Bn+ =  for a positive integer n (see, e.g., []) will yield that for positive integers m
and n, see [, ],

Bm(x)Bn(x) =
[m+n

 ]∑
i=

{
n
(
m
i

)
+m

(
n
i

)}
Bi

Bm+n–i(x)
m + n – i

+ (–)m+ m!n!
(m + n)!

Bm+n, (.)

where [x] is the maximum integer less than or equal to the real number x.

4 Recurrence formulae for mixed Apostol-Bernoulli and Apostol-Euler
polynomials

In this section, we shall use the above methods to give some quadratic recurrence formu-
lae for mixed Apostol-Bernoulli and Apostol-Euler polynomials. As in the proof of Theo-
rem ., we need the following summation formula concerning the quadratic recurrence
of mixed Apostol-Bernoulli and Apostol-Euler polynomials.

Theorem . Let k,m, n be non-negative integers. Then

n∑
i=

(
n
i

)(
Ei(x;μ) +Bm+n–i(y;λμ)

)k

=
m∑
i=

(
m
i

)
(–)m+iEm–i

(
x;λ–)Bn+k+i(x + y;λμ)

–


{
mEm–(y;λ)En+k(x + y;μ) + (n + k)Em(y;λ)En+k–(x + y;μ)

}
. (.)

Proof Multiplying both sides of the identity


λeu + 


μev + 

=
(

λeu

λeu + 
–


μev + 

)


λμeu+v – 
(.)

by (u + v)exv+y(u+v), we have

exv

μev + 
(u + v)ey(u+v)

λμeu+v – 
= λ

e(–x)u

λeu + 
(u + v)e(x+y)(u+v)

λμeu+v – 
–
u + v


eyu

λeu + 
e(x+y)v

μev + 
. (.)

http://www.advancesindifferenceequations.com/content/2012/1/209
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Making k-times derivative for the above identity (.) with respect to v, with the help of
the Leibniz rule, we get

k∑
j=

(
k
j

)
∂ j

∂vj

(
exv

μev + 

)
∂k–j

∂vk–j

(
(u + v)ey(u+v)

λμeu+v – 

)

= λ
e(–x)u

λeu + 
∂k

∂vk

(
(u + v)e(x+y)(u+v)

λμeu+v – 

)

–
u + v


eyu

λeu + 
∂k

∂vk

(
e(x+y)v

μev + 

)
–
k


eyu

λeu + 
∂k–

∂vk–

(
e(x+y)v

μev + 

)
. (.)

Applying (.) and (.) to (.), in view of the Cauchy product and the complementary
addition theorem for the Apostol-Euler polynomials, we obtain

∞∑
m=

∞∑
n=

[ n∑
i=

(
n
i

) k∑
j=

(
k
j

)
Ei+j(x;μ)Bm+n+k–i–j(y;λμ)

]
um

m!
· v

n

n!

=
∞∑
m=

∞∑
n=

[ m∑
i=

(
m
i

)
(–)m+iEm–i

(
x;λ–)Bn+k+i(x + y;λμ)

]
um

m!
vn

n!

–
∞∑
m=

∞∑
n=

Em(y;λ)En+k(x + y;μ)


um+

m!
vn

n!
–

∞∑
m=

∞∑
n=

Em(y;λ)En+k(x + y;μ)


um

m!
vn+

n!

–
k


∞∑
m=

∞∑
n=

Em(y;λ)En+k–(x + y;μ)
um

m!
vn

n!
. (.)

Thus, by comparing the coefficients of um+vn+/(m + )!(n + )! and um+/(m + )! in (.),
we complete the proof of Theorem .. �

We now give a special case of Theorem .. We have the following

Corollary . Let m and n be positive integers. Then

m∑
i=

(
m
i

)
(–)m–iEm–i

(
y – x;λ–)Bn+i(y;λμ) –

m

Em–(x;λ)En(y;μ)

=
n∑
i=

(
n
i

)
En–i(y – x;μ)Bm+i(x;λμ) –

n

En–(y;μ)Em(x;λ). (.)

Proof Setting k =  and substituting y for x and x for y in Theorem ., we obtain that for
positive integers m and n,

n∑
i=

(
n
i

)
En–i(y;μ)Bm+i(x;λμ)

=
m∑
i=

(
m
i

)
(–)m–iEm–i

(
y;λ–)Bn+i(x + y;λμ)

–


{
mEm–(x;λ)En(x + y;μ) + nEn–(x + y;μ)Em(x;λ)

}
. (.)

Thus, replacing y by y – x in the above gives the desired result. �
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In particular, setting λ = μ = , x = t and y =  – t in Corollary ., by the fact En( –
x) = (–)nEn(x) for a non-negative integer n, we obtain the following symmetric identity
involving the Bernoulli and Euler polynomials, see [].

Corollary . Let m and n be positive integers. Then

m∑
i=

(
m
i

)
(–)iEm–i(t)Bn+i(t) –

m

Em–(t)En(t)

=
n∑
i=

(
n
i

)
(–)iEn–i(t)Bm+i(t) –

n

En–(t)Em(t). (.)

Nowwe apply Theorem . to give the following recurrence formula for mixed Apostol-
Bernoulli and Apostol-Euler polynomials.

Theorem . Let k,m, n be non-negative integers. Then

(
Ek(x;μ) +Bm(y;λμ)

)n
=

m+k∑
i=

(
m
i

)
(–)m+iBn+i(x + y;λμ)Em+k–i

(
x;λ–)

–



m+k∑
i=

(–)k+i
{
n
(
k
i

)
–m

(
k

i – 

)}
En–+i(x + y;μ)Em+k–i(y;λ). (.)

Proof The proof is similar to that of Theorem ., and therefore we leave out some of the
more obvious details. Clearly, the case k =  in Theorem . is complete. Next, consider
the case k ≥  in Theorem .. Assume that Theorem . holds for all positive integers
being less than k. In light of (.), we have

(
Ek(x;μ) +Bm(y;λμ)

)n
= –



{
mEm–(y;λ)En+k(x + y;μ) + (n + k)Em(y;λ)En+k–(x + y;μ)

}

+
m+k∑
i=

(
m
i – k

)
(–)m+k+iBn+i(x + y;λμ)Em+k–i

(
x;λ–)

–
k–∑
j=

(
k
j

)(
Ej(x;μ) +Bm+k–j(y;λμ)

)n. (.)

It follows from (.) and (.) that

(
Ek(x;μ) +Bm(y;λμ)

)n
= –



{
mEm–(y;λ)En+k(x + y;μ) + (n + k)Em(y;λ)En+k–(x + y;μ)

}

+
m+k∑
i=

(–)m+iBn+i(x + y;λμ)Em+k–i
(
x;λ–) k–∑

j=

(–)k––j
(
k
j

)(
m + k – j

i

)

http://www.advancesindifferenceequations.com/content/2012/1/209
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–



m+k∑
i=

(–)k+iEn–+i(x + y;μ)Em+k–i(y;λ)

×
k–∑
j=

(–)k––j
{
n
(
k
j

)(
j
i

)
– (m + k – j)

(
k
j

)(
j

i – 

)}

+
m+k∑
i=

(
m
i – k

)
(–)m+k+iEm+k–i

(
x;λ–)Bn+i(x + y;μ). (.)

In view of (.), (.) and (.), we have

k–∑
j=

(–)k––j
(
k
j

)(
m + k – j

i

)
= (–)k–

(
m
i – k

)
+

(
m
i

)
, (.)

k–∑
j=

(–)k––j
(
k
j

)(
j
i

)
= –

(


i – k

)
+

(
k
i

)
, (.)

k–∑
j=

(–)k––j(k +m – j)
(
k
j

)(
j

i – 

)
=m

(
k

i – 

)
–m

(


i – k – 

)
+ k

(


i – k

)
. (.)

Thus, applying (.), (.) and (.) to (.), we conclude the induction step. This
completes the proof of Theorem .. �

Corollary . Let m be a non-negative integer and n be a positive integer. Then

Em(x;λ)Bn(y;μ) =
n


m∑
i=

(
m
i

)
(–)m–iEm–i

(
y – x;λ–)En+i–(y;λμ)

+
n∑
i=

(
n
i

)
Bn–i(y – x;μ)Em+i(x;λμ). (.)

Proof Taking n =  in Theorem ., and then substitutingm for k, n form, λ for μ and μ

for λ, we have

Em(x;μ)Bn(y;λμ) = –
n


m∑
i=

(
m
i

)
(–)iEm–i(x + y;λ)En+i–(y;μ)

+
n∑
i=

(
n
i

)
(–)iBn–i(x + y;λμ)Em+i

(
x;μ–). (.)

By substituting  – y for y and μ– for λμ in (.), in view of the complementary addi-
tion theorems of the Apostol-Bernoulli and Apostol-Euler polynomials, the desired result
follows immediately. �

In order to give the quadratic recurrence formula for the Apostol-Euler polynomials,
it is routine to present a summation formula concerning the quadratic recurrence of the
Apostol-Euler polynomials.
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Theorem . Let k,m, n be non-negative integers. Then

n∑
i=

(
n
i

)(
Ei(x;μ) + Em+n–i(y;λμ)

)k

= –
m∑
i=

(
m
i

)
(–)m+iEn+k+i(x + y;λμ)

Bm+–i(x;λ–)
m +  – i

+


m + 
{
δ,λEm+n+k+(x + y;λμ) –Bm+(y;λ)En+k(x + y;μ)

}
. (.)

Proof Multiplying both sides of the identity


λeu – 


μev + 

=
(

λeu

λeu – 
–


μev + 

)


λμeu+v + 
(.)

by exv+y(u+v), we obtain

exv

μev + 
ey(u+v)

λμeu+v + 
= λ

e(–x)u

λeu – 
e(x+y)(u+v)

λμeu+v + 
– 

eyu

λeu – 
e(x+y)v

μev + 
. (.)

Making k-times derivative for the above identity (.) with respect to v, with the help of
the Leibniz rule, we derive

k∑
j=

(
k
j

)
∂ j

∂vj

(
exv

μev + 

)
∂k–j

∂vk–j

(
ey(u+v)

λμeu+v + 

)

= λ
e(–x)u

λeu – 
∂k

∂vk

(
e(x+y)(u+v)

λμeu+v + 

)
– 

eyu

λeu – 
∂k

∂vk

(
e(x+y)v

μev + 

)
. (.)

Note that from Taylor’s theorem, we have

ex(u+v)

λeu+v + 
=

∞∑
n=

∂n

∂un

(
exu

λeu + 

)
vn

n!
=

∞∑
m=

∞∑
n=

Em+n(x;λ)
um

m!
· v

n

n!
. (.)

Applying (.), (.) and (.) to (.), in view of the Cauchy product and the comple-
mentary addition theorem for the Apostol-Bernoulli polynomials, we obtain

∞∑
m=

∞∑
n=

[ n∑
i=

(
n
i

) k∑
j=

(
k
j

)
Ei+j(x;μ)Em+n+k–i–j(y;λμ)

]
um

m!
vn

n!

= –
∞∑
m=

∞∑
n=

[ m∑
i=

(
m
i

)
(–)m+iEn+k+i(x + y;λμ)

Bm+–i(x;λ–)
m +  – i

]
um

m!
vn

n!

– 
∞∑
m=

∞∑
n=

En+k(x + y;μ)
Bm+(y;λ)
m + 

um

m!
vn

n!

+ δ,λ
∞∑
m=

∞∑
n=

Em+n+k(x + y;λμ)
um–

m!
vn

n!
–
δ,λ
u

∞∑
n=

En+k(x + y;μ)
vn

n!
. (.)

Thus, comparing the coefficients of umvn/m!n! in (.) gives Theorem .. �

http://www.advancesindifferenceequations.com/content/2012/1/209


He and Wang Advances in Difference Equations 2012, 2012:209 Page 14 of 16
http://www.advancesindifferenceequations.com/content/2012/1/209

Remark . Setting k =  in Theorem ., one can easily reobtain Corollary ..

Theorem . Let k,m, n be non-negative integers. Then

(
Ek(x;μ) + Em(y;λμ)

)n
= δ,λ

k!m!
(m + k + )!

Em+n+k+(x + y;λμ)

– 
m+k∑
i=

(–)m+i
(
m
i

)
En+i(x + y;λμ)

Bm+k+–i(x;λ–)
m + k +  – i

– 
m+k∑
i=

(–)k+i
(
k
i

)
En+i(x + y;μ)

Bm+k+–i(y;λ)
m + k +  – i

. (.)

Proof Clearly, the case k =  in Theorem . leads to the case k =  in Theorem .. Now
consider the case k ≥  in Theorem .. Assume that Theorem . holds for all positive
integers being less than k. By (.) we have

(
Ek(x;μ) + Em(y;λμ)

)n
=


m + 

{
δ,λEm+n+k+(x + y;λμ) –Bm+(y;λ)En+k(x + y;μ)

}

– 
m+k∑
i=

(
m
i – k

)
(–)m+k+iEn+i(x + y;λμ)

Bm+k+–i(x;λ–)
m + k +  – i

–
k–∑
j=

(
k
j

)(
Ej(x;μ) + Em+k–j(y;λμ)

)n. (.)

It follows from (.) and (.) that

(
Ek(x;μ) + Em(y;λμ)

)n
=


m + 

{
Em+n+k+(x + y;λμ) –Bm+(y;λ)En+k(x + y;μ)

}

– 
m+k∑
i=

(
m
i – k

)
(–)m+k+iEn+i(x + y;λμ)

Bm+k+–i(x;λ–)
m + k +  – i

– δ,λ
Em+n+k+(x + y;λμ)

k +m + 

k–∑
j=

(k
j
)

(m+k
j

) – 
m+k∑
i=

(–)m+iEn+i(x + y;λμ)

× Bm+k+–i(x;λ–)
m + k +  – i

k–∑
j=

(–)k––j
(
k
j

)(
m + k – j

i

)

– 
m+k∑
i=

(–)k+iEn+i(x + y;μ)
Bm+k+–i(y;λ)
m + k +  – i

k–∑
j=

(–)k––j
(
k
j

)(
j
i

)
. (.)

Thus, applying (.), (.) and (.) to (.), we conclude the induction step. This
completes the proof of Theorem .. �
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Corollary . Let m and n be non-negative integers. Then

Em(x;λ)En(y;μ) = 
m∑
i=

(
m
i

)
(–)m–iEm–i

(
y – x;λ–)Bn++i(y;λμ)

n +  + i

– 
n∑
i=

(
n
i

)
En–i(y – x;μ)

Bm++i(x;λμ)
m +  + i

– δ,λμ

(–)mm!n!
(m + n + )!

Em+n+
(
y – x;λ–). (.)

Proof Taking n =  in Theorem ., and substitutingm for k, n form, λ for μ and μ for λ,
we get

Em(x;λ)En(y;λμ) = δ,μ
m!n!

(m + n + )!
Em+n+(x + y;λμ)

– 
m∑
i=

(
m
i

)
(–)iEm–i(x + y;λμ)

Bn++i(x;μ–)
n +  + i

– 
n∑
i=

(
n
i

)
(–)iEn–i(x + y;λ)

Bm++i(y;μ)
m +  + i

. (.)

Hence, substituting  – y for y and μ– for λμ in (.), in view of the complementary
addition theorems of the Apostol-Bernoulli and Apostol-Euler polynomials, the desired
result follows immediately. �

Remark . The cases λ = μ =  and x = y in Corollaries . and . will yield the corre-
sponding formulae for Bm(x)En(x) and Em(x)En(x) presented in []. We leave them to the
interested readers for an exercise. For different proofs of Corollaries ., . and ., we
refer to [].
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