
Ufuktepe Advances in Difference Equations 2012, 2012:211
http://www.advancesindifferenceequations.com/content/2012/1/211

RESEARCH Open Access

Unification of probability theory on time
scales
Ünal Ufuktepe*

To my wife

*Correspondence:
unal.ufuktepe@ieu.edu.tr
Department of Mathematics, İzmir
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Abstract
The theory of time scales was introduced by Stefan Hilger in his PhD thesis in 1988 in
order to unify continuous and discrete analysis. Probability is a discipline in which
appears to be many applications of time scales. Time scales approach to probability
theory unifies the standard discrete and continuous random variables. We give some
basic random variables on the time scales. We define the distribution functions on
time scales and show their properties.
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1 Introduction
A time scale or a measure chain was introduced by Stefan Hilger in his PhD thesis in 
in order to unify continuous and discrete analysis []. We refer the reader to the textbooks
[–].
Time scale calculus has received a lot of attention [, –]. In recent years there have

been many research activities about applications of time scales. Probability theory is an
ideal discipline for applications of time scales since random variables and distributions
functions can be described with either discrete or continuous cases.
We give a brief introduction to measure theory on time scales introduced by Guseinov

[] in Section . We give the discussion of our original probability results in Section . In
Section  we study the discrete random variables, i.e., binomial, Poisson, geometric, and
negative binomial random variables on a discrete time scale hN. In Section . we define
uniform random variables on the time scale, and we give the definition of Gaussian bell in
Section .

2 Measure on time scales
The Riemann � integral has been introduced by Guseinov in [], the � measure and the
Lebesgue� integral were introduced byGuseinov in [] and studied by Cabada [], Ufuk-
tepe and Deniz in [], and Rzezuchowski in []. In this section we set out basic concepts
of � and ∇ measures.
Let T be a time scale, a < b be points in T, and [a,b) be a half-closed bounded interval

in T, σ and ρ be the forward and backward jump operators respectively on T. Let

� =
{[
a′,b′) ∩T : a′,b′ ∈ T,a′ ≤ b′}
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be the family of all left closed and right open intervals of T. Then � is a semiring. Here
[a′,a′) = Ø. m : � → [,∞] is a set function which assigns to each interval its length:
m([a′,b′)) = b′ – a′. So, if {In} is a sequence of disjoint intervals in �, then m(

⋃
In) =∑

m(In).
Let E ⊂ T. By the Carathéodory extension, the outer measure of E is

m*
(E) = inf

E⊂⋃
n In

∑
m(In),

where In ∈ �. If there is no such covering of E, thenm*
(E) = ∞.

Definition . A set E ⊂ T is said to be �-measurable if for each set A,

m*
(A) =m*

(A∩ E) +m*

(
A∩ Ec),

where Ec = T – E.

Since we always havem*
(A)≤ m*

(A∩E) +m*
(A∩Ec), we see that E is �-measurable iff

for each A we havem*
(A) ≥ m*

(A∩ E) +m*
(A∩ Ec).

If E is �-measurable, then Ec is also �-measurable. Clearly, Ø and T are �-measurable.

Lemma . If E and E are �-measurable, so is E ∪ E.

LetM(m*
) = {E ⊂ T : E is �-measurable} be a family of �-measurable sets.

Corollary . M(m*
) is a σ algebra.

Definition . The restriction of m*
 to M(m*

) is called the Lebesgue �-measure and
denoted by μ�.

So,m*
(E) = μ�(E) if E ∈M(m*

). Similarly, if we take

F =
{(
a′,b′] : a′,b′ ∈ T,a′ ≤ b′},

where (a′,a′] is understood as an empty set, thenm : F → [,∞] such thatm((a′,b′]) =
b′ – a′ is a countably additive measure. Then M(m*

) is the set of ∇-measurable sets and
μ∇ is the Lebesgue ∇-measure on T.

Proposition . Let {En} be an infinite decreasing sequence of �-measurable sets, that is,
a sequence E ⊃ E ⊃ · · · ⊃ En ⊃ · · · ,Ei ∈ F for each i,

⋂
Ei ∈ F and m*

(E) < ∞. Then

m*


( ∞⋂
n=

Ei

)
= lim

n→∞m*
(En).

Proof []. �

Proposition . (Properties of m*
)

(i) m*
(Ø) = ;

(ii) If E ⊂ F , then m*
(E)≤ m*

(F);
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(iii) If {En}∞n= is a sequence of elements of F, then

m*


( ∞⋃
n=

En

)
≤

∞∑
n=

m*
(En).

Proof Similar to the proof in []. �

Theorem . For each t ∈ T – {maxT}, the single point set {t} is �-measurable and its
�-measure is given by μ�({t}) = σ (t) – t.

Proof Case . Let t be right scattered. Then {t} = [t,σ (t)) ∈ F. So, {t} is�-measurable
and μ�({t}) = σ (t) – t.
Case . Let t be right dense. Then there exists a decreasing sequence {tk} of points of T

such that t ≤ tk and tk ↓ t. Since {t} = ⋂∞
k=[t, tk) ∈ F. Therefore, {t} is�-measurable.

By Proposition .,

μ�

({t}) = μ�

( ∞⋂
k=

[t, tk)

)

= lim
n→∞μ�

(
[t, tn)

)
= lim

n→∞ tn – t = ,

which is the desired result since t is right dense. �

Every kind of interval can be obtained from an interval of the form [a,b) by adding or
subtracting the end points a and b. Then each interval of T is �-measurable.

Theorem . If a,b ∈ T and a ≤ b, then
(i) μ�([a,b)) = b – a;
(ii) μ�((a,b)) = b – σ (a);
(iii) If a,b ∈ T –maxT, then μ�((a,b]) = σ (b) – σ (a) and μ�([a,b]) = σ (b) – a.

Proof []. �

Theorem . For each t ∈ T – {minT}, the ∇-measure of the single point set {t} is given
by μ∇ ({t}) = t – ρ(t).

Proof Similar to μ� case. �

Theorem . If a,b ∈ T and a≤ b, then
(i) μ∇ ((a,b]) = b – a;
(ii) μ∇ ((a,b)) = ρ(b) – a;
(iii) If a,b ∈ T –minT, then μ∇ ([a,b)) = ρ(b) – ρ(a) and μ∇ ([a,b]) = b – ρ(a).

Proof The equalities can be obtained by the same technique with μ� case. �

Lemma . λ*(E)≤ m*
(E), where λ*(E) is the outer measure of E.
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Example
(i) T = {,  ,  , ,  , . . .} and A = {, , }, then μ�(A) = .
(ii) Let T = {, , , , , . . .} and A = {, , , }, then μ�(A) = .

3 Probability on time scales
Let T be any time scale (which may be finite or infinite) and A⊂ T, then A can be written
as

A =
m⋃
i=

[ai,bi]T ∪ {t, t, . . . , tn},

where m and n are nonnegative integers which may be finite or infinite, ai is right dense,
bi is left dense for all i = , , . . . ,m, all interior points of [ai,bi]T are dense points, and ti is
an isolated point for j = , , . . . ,n. So, the Lebesgue �-measure of A �= ∅ is

μ�(A) =
m∑
i=

(
σ (bi) – ai

)
+

n∑
j=

(
σ (tj) – tj

)
,

if A = ∅, then μ�(A) = .

Definition . Let T be a time scale and �T be a field of subsets of T. Suppose that P� is
a �-measure defined on �T . Then P� is a probability measure if P�(T) = . In this case,
the triple {T,�T ,P�} is called a �-probability space.

Definition . Let �T be a sample space and A⊂ �T , then

P�(A) =
μ�(A)
μ�(�T )

is called �-probability of A. Similarly,

P∇ (A) =
μ∇ (A)
μ∇ (�T )

is called ∇-probability of A.

Proposition . P� and P∇ are probability functions.

Proof Let A ⊂ �T . By using  ≤ μ�(A) ≤ μ�(�T ), we get  ≤ P�(A) ≤ . P�(�T ) =  is
clear by the definition. Let A,A, . . . be countable disjoint subsets of �T , then

P�

( ∞⋃
i=

A

)
=

μ�(
⋃∞

i=Ai)
μ�(�T )

=
∑∞

i= μ�(Ai)
μ�(�T )

=
∞∑
i=

P�(Ai).

The proof of P∇ is similar. �

Example Let �T = {, , , , . . . ,n} and A = {, , , . . . ,m}, wherem < n. Then

P�(A) =
μ�(A)
μ�(�T )

=
m
n
,

which is equivalent to the counting probability.
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Proposition . For any A,B ⊂ �T , we have P�(A) ≤ P�(B) if A ⊂ B.

Proof Let A⊂ B ⊂ T. Then

P�(A) =
μ�(A)
μ�(�T )

≤ μ�(B)
μ�(�T )

= P�(B). �

4 Discrete random variables on time scales
Definition . A random variable XT is a real-valued function defined on �T .

In this section we consider the binomial, Poisson, geometric, and negative binomial ran-
dom variables on T = hN, where h > .

4.1 Binomial random variable on hN
Consider the time scale T = hN, h > . Lets there are n Bernoulli trials and but each
Bernoulli trial has h independent Bernoulli trials with probability of at least k times success
ph are performed independently, thenXT, the number of trials for x successes, is called the
binomial random variable on the time scale with parameters n, k, and ph. The probability
function of this random variable is defined as follows:

p(x) = P(XT = xt) =
( n

μ(x)
x

)
pxhq

n
μ(x) –x
h , (.)

where xt = hx, μ(x) is a grainness function, ph =
∑h

i=k
( h
i

)
piqh–i and qh =  – ph is called a

binomial random variable on the time scale. Since μ(x) = x + h – x = h, we take h instead
of μ(x).

Example Consider a jury trial in which it takes eight out of twelve juror groups to convict;
that is, in order for the defendant to be convicted, at least eight of the juror groups must
vote him guilty. Also, consider each group consists of three members. If at least two of
three members vote that the defendant is guilty, then the decision of the group is guilty.
If we assume that each juror group acts independently and each person makes the right
decisionwith probability θ , what is the probability that the jury renders a correct decision?
Let the defendant be innocent. The probability of the juror’s right decision is

p =
∑
i=

(

i

)
θ i
h( – θh)–i,

where θh =
( 


)
θ( – θ ) +

( 


)
θ.

Let the defendant be guilty. Then the probability of the juror’s correct decision is

p =
∑
i=

(

i

)
θ i
h( – θh)–i.

If α represents the probability that the defendant is guilty, then αp +(–α)p is the desired
result.

While evaluating the expected value and the variance of the discrete random variables,
we will make use of the following proposition.
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Proposition . If XT is a discrete random variable that takes on one of the values
xi, i ≥ , with the respective probabilities p(xi), then for any real-valued function g ,
E[g(X)] =

∑
i g(xi)p(xi).

The expected value of a binomial random variable is given as follows:

E
[
Xs
T

]
=

n
h∑
i=

isP(XT = i) =

n
h∑
i=

is
( n

h
i

)
pihq

n
h–i
h

=

n
h∑
i=

is
( n

h
i

)
pihq

n
h–i
h

= ph

n
h∑
i=

i
( n

h
i

)
is–pi–h q

n
h–i
h = ph

n
h∑
i=

n
h

( n
h – 
i – 

)
is–pi–h q

n
h–i
h

=
nph
h

n
h–∑
i=

( n
h – 
i

)
(i + )s–pihq

n
h––i
h =

nph
h

E
[
(Y + )s–

]
,

where Y is a random variable with parameters n
h –  and ph. If we set s = , we get

E[XT] =
nph
h

. (.)

Remark . When we take h = , then the time scale is a set of natural numbers and the
expected value is as in the classical probability theory.

If s = ,

E
[
X
T

]
=
nph
h

E[Y + ]

=
nph
h

(
E[Y ] + 

)
=
nph
h

((
n
h
– 

)
ph + 

)
.

So, the variance of a binomial random variable is

Var(XT) = E
[
X
T

]
– E[XT]

=
nphqh
h

.

Remark . When we take h = , then the time scale is a set of natural numbers and the
variance is as in the classical probability theory.

4.2 Poisson random variable on hN
Definition . Let T = hN be the time scale. A random variable XT with possible values
,h, h, . . . is called a Poisson random variable on the time scale with the parameter λ > ,

p(t) = P(XT = t) = e–λ λ
t

μ(t)

μ(t)( t
μ(t) )!

. (.)

http://www.advancesindifferenceequations.com/content/2012/1/211
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Since

∫
t∈T

p(t)�t =
∫ h


p(t)�t +

∫ h

h
p(t)�t + · · ·

= p()h + p(h)h + p(h)h + · · ·
= h

(
p() + p(h) + p(h) + · · · )

= h
∞∑
i=

p(ih)

= h
∞∑
i=

e–λ λ
ih

μ(t)

h( ih
μ(t) )!

= h
∞∑
i=

e–λ λ
ih
h

h( ihh )!

= e–λ

∞∑
i=

λi

i!
= ,

then p(t) is a probability mass function.
The Poisson probability function is the limit of a binomial probability function, the ex-

pected value of a binomial random variable with parameters ( nh ,ph) is
n
hph = λ. It is rea-

sonable to expect that the mean of the Poisson random variable with the parameter λ is λ

as follows:

E[XT] =
∫
t∈T

tp(t)�t =
∫
t∈T

te–λ λ
t
h

h( th )!
�t

=
e–λ

h

∞∑
n=

∫ σ (nh)

nh
t
λ

t
h

( th )!
�t =

e–λ

h

∞∑
n=

nh
λn

n!

= λe–λ

∞∑
n=

λn–

(n – )!
= λ.

For the variance of the Poisson random variable on hN, we first compute

E
[
X
T

]
=

∫
t∈T

tp(t)�t

=
∫
t∈T

te–λ λ
t

μ(t)

μ(t)( t
μ(t) )!

�t

=
∫
t∈T

te–λ λ
t
h

h( th )!
�t

= e–λλ

∫
t∈T

t
λ

t
h–

( th – )!
�t

= e–λλ

∞∑
n=

∫ σ (nh)

nh
t

λ
t
h–

( th – )!
�t

http://www.advancesindifferenceequations.com/content/2012/1/211
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= e–λλ

(∫ h


t

λ
t
h–

( th – )!
�t +

∫ h

h
t

λ
t
h–

( th – )!
�t + · · ·

)

= e–λλ

(


λ

!
+ 

λ

!
+ 

λ

!
+ · · ·

)

= e–λλ

∞∑
k=

(k + )
λk

k!

= e–λλ

( ∞∑
k=

k
λk

k!
+

∞∑
k=

λk

k!

)

= e–λλ
(
λeλ + eλ

)
= λ(λ + ).

Therefore,

Var(XT) = E
[
X
T

]
– E[XT] = λ. (.)

Example An energy company produces batteries and sells five in a box. The probability
that a battery is defective is ..We assume if a box contains at least two defective batteries,
then this box is also defective. Find the probability that a sample of ten boxes contains at
most one defective.

By a binomial random variable, the desired probability is

(



)
phq


h +

(



)
phqh,

where

ph =
∑
i=

(

i

)
(.)i(.)–i

and qh = –ph. So, the desired probability is ., whereas the Poisson approximation
yields the value

∑
i=

e–ph
(ph)i

i!
� ..

4.3 Geometric random variable on hN
Suppose that independent trial groups, each having the probability ph,  < ph < , of being
a success, are performed until a success occurs. If we let XT equal the number of trials
required, then we define

P(XT = n) = ( – ph)
n
h–ph, n = h, h, . . . . (.)

Equation (.) follows because in order for XT to equal n
h , it is necessary and sufficient

that the first n
h –  trial groups are failures and the n

h th trial group is a success. Equation
(.) then follows, since the outcomes of the successive trial groups are assumed to be
independent.

http://www.advancesindifferenceequations.com/content/2012/1/211
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Since

∞∑
n/h=

( – ph)
n
h–ph = ph

∞∑
n/h=

( – ph)
n
h–

= ph


 – ( – ph)
= ,

it follows that with probability one, a success group will eventually occur.

Definition . Any random variable XT whose probability mass function is given by
Equation (.) is said to be a geometric random variable with the parameter ph.

By letting n
h = k, the expected value geometric random variable is given as follows:

E[XT] =
∞∑
k=

k( – ph)k–ph

= ph
d
dqh

( ∞∑
k=

qkh

)

= ph
d
dqh

(


 – qh

)

= ph


( – qh)
=


ph

. (.)

To determine the variance of a geometric random variable, we first compute E[X].

E
[
X] = ∞∑

k=

k( – ph)k–ph = ph
∞∑
k=

kqk–h = ph
∞∑
k=

d
dqh

(
kqkh

)

= ph
d
dqh

( ∞∑
k=

kqkh

)
= ph

d
dqh

(
qh

 – qh
E[XT]

)
= ph

d
dqh

(
qh( – qh)–

)

= ph
(


ph

+
( – ph)

ph

)
=


ph

–

ph

.

Hence,

Var(XT) = E
[
X
T

]
–

(
E[XT]

) =  – ph
ph

. (.)

4.4 Negative binomial random variable on hN
Negative binomial random variables on hN are generalizations of geometric random vari-
ables on hN. Suppose that a sequence of Bernoulli independent trials, each trial is repeated
h Bernoulli trials with probability of at least k-times success ph, are performed. Let XT be
the number of experiments until ith success occurs, then it is called a negative binomial
random variable if

P(XT = n) =
( n

h – 
i – 

)
pihq

n
h–i
h , n = ih, (i + )h, (i + )h, . . . . (.)

http://www.advancesindifferenceequations.com/content/2012/1/211
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The expected value and the variance of a negative binomial random variable

E
[
Xs
T

]
=

∞∑
m=i

ms
(
m – 
i – 

)
pih( – ph)m–i

=
i
ph

∞∑
m=i

ms–
(
m
i

)
pi+h ( – ph)m–i

=
i
ph

∞∑
m=i+

(m – )s–
(
m – 
i

)
pi+h ( – ph)m–(i+)

=
i
ph

E
[
(Y – )s–

]
,

where m = n
h , and Y is a negative binomial random variable on hN with parameters i + ,

ph. We use the identity

m
(
m – 
i – 

)
= i

(
m
i

)

in the third line of the preceding equation. Setting s =  in E[Xs
T
], we get the expected value

of a negative binomial random variable on hN,

E[XT] =
i
ph

. (.)

Setting s =  in E[Xs
T
] and using Equation (.) gives that

E
[
X
T

]
=

i
ph

E[Y – ] =
i
ph

(
i + 
ph

– 
)
.

Therefore,

Var(XT) =
i
ph

(
i + 
ph

– 
)
–

(
i
ph

)

=
i( – ph)

ph
.

Example A student takes multiple choice exams which have five questions with three
choices. The student is successful if he/she gives at least three correct answers in an exam.
What is the probability of the third success of the student in the tenth exam by guessing?
Here T = N and n, the number of questions on exams, is . So, by formula (.), we

have

P(XT = ) =
(



)
phq


h � .,

where ph =
( 


)
(  )

(  )
 +

( 


)
(  )

(  )
 +

( 


)
(  )

(  )
 = 

 and qh =  – ph = 
 .

http://www.advancesindifferenceequations.com/content/2012/1/211
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4.5 Uniform random variable on the time scale
Let T = [t, t]∪ [t, t]∪ · · · ∪ [tn–, tn], where t = a and tn = b and SR = {t, t, . . . , tk+} be
the set of right scattered points. A uniform �-probability function on T can be defined as
follows:

f�(t) =

⎧⎨
⎩


μ�([a,b)) , if t ∈ T,

, otherwise.

Since this function satisfies the following condition:

∫ ∞

–∞
f�(t)�(t) =

∫ a

–∞
f�(t)�(x) +

∫ b

a
f�(t)�(x) +

∫ ∞

b
f�(t)�(x)

=
∫ t

a


μ�([a,b))

�(x) + · · · +
∫ tn

tn–


μ�([a,b))

�(x)

=


μ�([a,b))

n∑
i=

μ�

(
[ti–, ti)

)

=
b – a
b – a

= ,

this function is a probability function. Also, a uniform�-probability distribution function
on the time scale is defined as follows:

F�(t) =

⎧⎪⎪⎨
⎪⎪⎩
, t < a or t ∈ (ti+,σ (ti+)), where ti+ is right scattered,
μ�([a,t)∩�)
μ�([a,b)) , if t ∈ T,

, t ≥ b.

This function satisfies all the properties of the distribution function

lim
t→+∞F�(t) = lim

t→+∞
μ�([a, t)∩ �)
μ�([a,b))T

=
μ�([a,b))T
μ�([a,b))T

= ,

lim
t→–∞F�(t) = lim

t→–∞
μ�([a, t)∩ �)

b – a

= lim
t→–∞

μ�({a})T
b – a

=
σ (a) – a
b – a

= .

Remark . If we take the left closed and right open interval on our time scale T
such that A = [ti, ti+), then the integral over this set

∫
A f�(t)�(t) =

∫ ti+
ti

f�(t)�(t) =


μ�([b–a))μ�([ti, ti+)) = b–a
b–a = , and also, if we take right and left open intervals and since a

is right dense, then our result is the same
∫
A f�(t)�(t) =

∫ ti+
ti

f�(t)�(t) +
∫ σ (ti+)
ti

f�(t)�(t) =


μ�((b–a))μ�((ti, ti+)) = b–σ (a)
b–a = .
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5 Gaussian bell on time scales
The continuous Gaussian bell f (t) = e– t

 satisfies the initial value problem

f ′(t) = –tf (t), f () = .

The Gaussian bell is an even function, then the infinite time scale should be symmetric
with respect to zero and contain zero. We denote the positive part of T by T+. So, the
Gaussian bell fT on the time scale should satisfy the following relation ∀t ∈ T+:

f �
T
(t) = p(t)f (t), fT() = ,

where p(t) must be –t in the case T = R. Erbe and Peterson [] defined the Gaussian bell
on the time scale as follows.

Definition . On the time scale T, we define the Gaussian bell fT to be the unique solu-
tion of the initial value problem for all t ∈ T+

f �
T
(t) = �(t � )f (t), fT() =  (.)

and fT(–t) = fT(t).

By using the definition of � (circle dot) and � (circle minus) operations [], if μ(t) > ,

�(t � ) =
( +μ(t))–t – 

μ(t)
. (.)

By the definition of � derivative, Equations (.) and (.), we get

fT
(
σ (t)

)
=

(
 +μ(t)

)–t fT(t), ∀t ∈ T+, fT() = . (.)

Since fT(t) satisfies the differential equation of the continuumGaussian bell f (t) at right-
dense points t ∈ T+, thus it has a non-positive derivative at those points. We can conclude
that fT(t) is non-increasing on T+. On the discrete time scale T, i.e., a time scale T con-
taining no continuum intervals, we can write fT as

fT(t) =
∏

x∈[,t)

(
 +μ(x)

)–x, ∀t ∈ T+. (.)

Example Consider T = hZ, h > . So, μ(t) = h, substituting t = hn, we get

fT(hn) =
∏

x∈[,t)
( + h)–x = ( + h)–h

∑n–
k= k = ( + h)

hn(–n)
 , ∀n ∈N, (.)

which implies fT(t) = [( + h)

h ]

–t(t–h)
 , ∀t ∈ T+.

For large t, e t
 ≤ fT(t), fT(t) converges to the continuum Gaussian bell as h → ; ∀t ∈

[hn,h(n + )], n ∈N,

lim
h→

fT(ht) = lim
h→

[
( + h)


h
]– th(t–)

 = e–
t
 , ∀t ∈R.
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Example Let T =
⋃∞

n=[n, n + ]. Then the Gaussian bell on T is

fT(t) =
(
e


)n

e
n–t
 , ∀t ∈ [n, n + ]. (.)

Mathematical induction is used for showing Equation (.).

In general, a probability distribution function and expected value of a random variable
on a time scale can be defined as follows:

F�(x) =
∫ x

–∞
p(t)�t,

E(x) =
∫ ∞

–∞
tp(t)�t.

By using an exponential function on time scales, we can define an exponential probability
density function in a general case and we can define a moment generating function by us-
ing Laplace transformations on time scales. Then future works can be stochastic processes
on time scales and stochastic dynamic equations.
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