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Abstract
Linear differential equation

ẏ(t) = –c(t)y(t – r),

where c(t) is a positive continuous function and delay r is a positive constant, is
considered for t → ∞. It is proved that, under certain assumptions on the function
c(t) and delay r, a class of positive linear initial functions defines dominant positive
solutions with positive limit for t → ∞.
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1 Introduction
This article is devoted to the problem of the asymptotic behavior of solutions of delayed
equations of the type

ẏ(t) = –c(t)y(t – r) ()

with a positive continuous function c(t) on the set [t – r,∞), t ∈ R,  < r = const in
the non-oscillatory case. The following results on the asymptotic behavior of solutions,
needed in the following analysis, are taken from [] (see [] as well).

Theorem  (Theorem  in []) Let there exist a positive solution ỹ of () on [t – r,∞).
Then there are two positive solutions y and y of () on [t – r,∞) satisfying

lim
t→∞

y(t)
y(t)

= . ()

Moreover, every solution y of () on [t – r,∞) is represented by the formula

y(t) = Ky(t) +O
(
y(t)

)
, ()

where t ∈ [t – r,∞) and a coefficient K ∈R depends on y.

© 2012 Diblík and Kúdelčíková; licensee Springer. This is an Open Access article distributed under the terms of the Creative Com-
mons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and repro-
duction in any medium, provided the original work is properly cited.

http://www.advancesindifferenceequations.com/content/2012/1/213
mailto:josef.diblik@fhv.uniza.sk
http://creativecommons.org/licenses/by/2.0
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In [] it is shown that in representation () an arbitrary couple y and y of two positive
solutions of () satisfying () can be used, i.e., the following theorem holds.

Theorem  Assume that y and y are two positive solutions of () on [t – r,∞) satisfying
(). Then every solution y of () on [t – r,∞) is represented by formula (), where t ∈
[t – r,∞) and a coefficient K ∈R depends on y.

This is the reason for introducing the following definition.

Definition  [] Let y and y be fixed positive solutions of () on [t – r,∞) with property
(). Then (y, y) is called a pair of dominant and subdominant solutions on [t – r,∞).

We note that in the literature one can find numerous criteria of positivity of solutions
not only to (), but more complicated, as well as lots of properties of such solutions and
explanation of their importance (see, e.g., books [–], papers [, , –], and the ref-
erences therein). They are formulated as implicit criteria (simultaneously both sufficient
and necessary) or as explicit sufficient criteria. In the paper we employ the following ex-
plicit criterion (assumptions are slightlymodified to restrict the criterion to the considered
case).

Theorem  [] If

∫ t

t–r
c(s) ds ≤ 

e

for t ∈ [t,∞), then () has a non-oscillatory solution on [t – r,∞).

In this paper we prove that every positive linear initial function given on the initial in-
terval [t – r, t] and satisfying certain restrictions, defines a positive solution y = y(t) of
() on [t – r,∞). Moreover, we show that this positive solution is a dominant solution and
its limit y(∞) is positive.
The paper is organized as follows. The main result (Theorem  below) in Section  is

proved by the sensitive and flexible retract method. It is shortly described in Section . Its
applicability is performed via Theorem , where an important role is played by a system
of initial functions (see Definition ). Proper choice of such a system of initial functions
together with the application of Theorem  form the mainstay of the proof of Theorem .

2 Preliminaries - Ważewski’s retract principle
Let C([a,b],Rn), where a,b ∈ R, a < b, be the Banach space of the continuous mappings
from the interval [a,b] into R

n equipped with the supremum norm

‖ψ‖C = sup
θ∈[a,b]

∥∥ψ(θ )
∥∥, ψ ∈ C

(
[a,b],Rn),

where ‖ · ‖ is the maximum norm in R
n. In the case a = –r <  and b = , we shall denote

this space as Cn
r , that is,

Cn
r := C

(
[–r, ],Rn).
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If σ ∈ R, A ≥ , and y ∈ C([σ – r,σ + A],Rn), then, for each t ∈ [σ ,σ + A], we define
yt ∈ Cn

r by yt(θ ) = y(t + θ ), θ ∈ [–r, ].
In this section we present Ważewski’s principle for a system of retarded functional dif-

ferential equations

ẏ(t) = F(t, yt), ()

where F : �* �→ R
n is a continuous quasi-bounded map which satisfies a local Lipschitz

condition with respect to the second argument and �* is an open subset in R×Cn
r .

The principle below was for the first time introduced by Ważewski [] for ordinary
differential equations and later extended to retarded functional differential equations by
Rybakowski [].
We recall that the functional F is quasi-bounded if F is bounded on every set of the form

[t, t] × Cn
r,L ⊂ �*, where t < t, Cn

r,L := C([–r, ],L) and L is a closed bounded subset of
R

n (see [, p.]).
In accordance with [], a function y(t) is said to be a solution of the system () on [σ –

r,σ + A) if there are σ ∈ R and A >  such that y ∈ C([σ – r,σ + A),Rn), (t, yt) ∈ �* and
y(t) satisfies the system () for t ∈ [σ ,σ + A). For given σ ∈ R, ϕ ∈ Cn

r , we say y(σ ,ϕ) is
a solution of the system () through (σ ,ϕ) ∈ �* if there is an A >  such that y(σ ,ϕ) is a
solution of the system () on [σ –r,σ +A) and yσ (σ ,ϕ) = ϕ. In view of the above conditions,
each element (σ ,ϕ) ∈ �* determines a unique solution y(σ ,ϕ) of the system () through
(σ ,ϕ) ∈ �* on its maximal interval of existence Iσ ,ϕ = [σ ,a), σ < a ≤ ∞ which depends
continuously on initial data []. A solution y(σ ,ϕ) of the system () is said to be positive
if yi(σ ,ϕ) >  on [σ – r,σ ]∪ Iσ ,ϕ for each i = , , . . . ,n.
As usual, if a set ω ⊂R×R

n, then intω and ∂ω denote the interior and the boundary of
ω, respectively.

Definition  [] Let the continuously differentiable functions li(t, y), i = , , . . . ,p and
mj(t, y), j = , , . . . ,q, p + q >  be defined on some open set ω ⊂R×R

n. The set

ω* =
{
(t, y) ∈ ω : li(t, y) < ,mj(t, y) < , i = , . . . ,p, j = , . . . ,q

}
()

is called a regular polyfacial set with respect to the system (), provided it is nonempty
and the conditions (α) to (γ ) below hold:

(α) For (t,π ) ∈R×Cn
r such that (t + θ ,π (θ )) ∈ ω* for θ ∈ [–r, ), we have (t,π ) ∈ �*.

(β) For all i = , , . . . ,p, all (t, y) ∈ ∂ω* for which li(t, y) = , and all π ∈ Cn
r for which π () =

y and (t + θ ,π (θ )) ∈ ω*, θ ∈ [–r, ), it follows that Dli(t, y) > , where

Dli(t, y) ≡
n∑
k=

∂li(t, y)
∂yk

fk(t,π ) +
∂li(t, y)

∂t
.

(γ ) For all j = , , . . . ,q, all (t, y) ∈ ∂ω* for which mj(t, y) = , and all π ∈ Cn
r for which

π () = y and (t + θ ,π (θ )) ∈ ω*, θ ∈ [–r, ), it follows that Dmj(t, y) < , where

Dmj(t, y)≡
n∑
k=

∂mj(t, y)
∂yk

fk(t,π ) +
∂mj(t, y)

∂t
.
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The elements (t,π ) ∈R×Cn
r in the sequel are assumed to be such that (t,π ) ∈ �*.

Definition  A system of initial functions pA,ω* with respect to the nonempty sets A and
ω*, where A ⊂ ω* ⊂ R × R

n, is defined as a continuous mapping p : A → Cn
r such that (i)

and (ii) below hold:
(i) If z = (t, y) ∈ A∩ intω*, then (t + θ ,p(z)(θ )) ∈ ω* for θ ∈ [–r, ].
(ii) If z = (t, y) ∈ A∩ ∂ω*, then (t + θ ,p(z)(θ )) ∈ ω* for θ ∈ [–r, ) and (t,p(z)()) = z.

Definition  [] If A ⊂ B are subsets of a topological space and π : B → A is a contin-
uous mapping from B onto A such that π (p) = p for every p ∈ A, then π is said to be a
retraction of B onto A. When a retraction of B onto A exists, A is called a retract of B.

The following lemma describes the main result of the paper [].

Lemma  Let ω* ⊂ ω be a regular polyfacial set with respect to the system (), and let W
be defined as follows:

W =
{
(t, y) ∈ ∂ω* :mj(t, y) < , j = , , . . . ,q

}
.

Let Z ⊂ W ∪ ω* be a given set such that Z ∩ W is a retract of W but not a retract of Z.
Then, for each fixed system of initial functions pZ,ω* , there is a point z = (σ, y) ∈ Z ∩ ω*

such that for the corresponding solution y(σ,p(z))(t) of () we have

(
t, y

(
σ,p(z)

)
(t)

) ∈ ω*

for each t ∈Dσ,p(z).

Remark  When Lemma  is applied, a lot of technical details should be fulfilled. In order
to simplify necessary verifications, it is useful, without loss of generality, to vary the first
coordinate t in the definition of the set ω* in () within a half-open interval open at the
right. Then the setω* is not open, but tracing the proof of Lemma , it is easy to see that for
such sets it remains valid. Such possibility is used below. Similar remark and explanation
can be applied to sets of the type�,�* which serve as domains of definitions of functionals
on the right-hand sides of equations considered.

Continuously differentiable functions li(t, y), i = , , . . . ,p andmj(t, y), j = , , . . . ,q, p +
q >  mentioned in Definition  are often used in the form:

li(t, y) =
(
yi – ρi(t)

)(
yi – δi(t)

)
, i = , , . . . ,p,

mj(t, y) =
(
yj – ρj(t)

)(
yj – δj(t)

)
, j = p + ,p + , . . . ,n,

mn+(t, y) = –t + t – r,

where ρ , δ are continuous vector functions

ρ = (ρ,ρ, . . . ,ρn), δ = (δ, δ, . . . , δn) : [t – r,∞) →R
n,

http://www.advancesindifferenceequations.com/content/2012/1/213


Diblík and Kúdelčíková Advances in Difference Equations 2012, 2012:213 Page 5 of 12
http://www.advancesindifferenceequations.com/content/2012/1/213

with ρ(t)  δ(t) for t ∈ [t – r,∞) (the symbol  here and below means ρi(t) < δi(t) for
all i = , , . . . ,n), continuously differentiable on [t,∞). Hence, the shape of the regular
polyfacial set ω* from Definition  can be simplified to

ω* :=
{
(t, y) : t ∈ [t – r,∞),ρ(t) y δ(t)

}
.

In the sequel we employ the result from [, Theorem ].

Theorem  Let there be a p ∈ {, . . . ,n} such that:
(i) If t ≥ t, φ ∈ Cn

r and (t + θ ,φ(θ )) ∈ ω* for any θ ∈ [–r, ), then

(
δi

)′(t) < Fi(t,φ) when φi() = δi(t), ()
(
ρ i)′(t) > Fi(t,φ) when φi() = ρ i(t) ()

for any i = , , . . . ,p. (If p = , this condition is omitted.)
(ii) If t ≥ t, φ ∈ Cn

r and (t + θ ,φ(θ )) ∈ ω* for any θ ∈ [–r, ), then

(
ρ i)′(t) < Fi(t,φ) when φi() = ρ i(t),

(
δi

)′(t) > Fi(t,φ) when φi() = δi(t)

for any i = p + ,p + , . . . ,n. (If p = n, this condition is omitted.)
Then, for each fixed system of initial functions pZ,ω* , where the set Z is defined as

Z =
{
(t, y), y ∈ [

ρ(t), δ(t)
]}
,

there is a point z = (σ, y) ∈ Z∩ ω* such that for the corresponding solution y(σ,p(z))(t)
of () we have

(
t, y

(
σ,p(z)

)
(t)

) ∈ ω*

for each t ∈Dσ,p(z), i.e., then there exists an uncountable set Y of solutions of () on [t –
r,∞) such that each y ∈ Y satisfies

ρ(t) y(t)  δ(t), t ∈ [t – r,∞).

The original Theorem  is in [] proved using the retract technique combined with
Razumikhin-type ideas known in the theory of stability of retarded functional differential
equations.

3 Main result
In this section we consider scalar differential equation (), where r >  and c : [t – r,∞) →
R

+ = (,∞) is a continuous function satisfying

∫ t

t–r
c(s) ds ≤ 

e
()

http://www.advancesindifferenceequations.com/content/2012/1/213
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for t ∈ [t – r,∞) and

∫ ∞
c(s) ds < ∞. ()

The first condition (), in accordance with Theorem , guarantees the existence of a pos-
itive solution y = y(t) on the interval [t – r,∞). Then Theorems  and  are valid and
equation () has two different positive solutions (dominant and subdominant) y = y(t)
and y = y(t) on the interval [t – r,∞). Condition (), as will be seen from the explanation
below, implies that the dominant solution has a positive limit for t → ∞.
We set

C := exp

(
–e

∫ ∞

t–r
c(t) dt

)
> ,

where the constant C is well defined due to (), and

ϕ(t) := exp

(
–e

∫ t

t–r
c(s) ds

)
–C > , t ∈ [t – r,∞).

Obviously, ϕ(∞) = . Denote

m = min
[t–r,t]

{∣∣ϕ′(t)
∣∣} = min

[t–r,t]

{
ec(t) exp

(
–e

∫ t

t–r
c(s) ds

)}
.

Due to positivity of c(t) on [t – r, t], we havem > .
Let ϕK ,μ ∈ C

r be a linear initial function defined on the interval [t – r, t] as

ϕK ,μ(t + θ ) := K +μθ , θ ∈ [–r, ], ()

where K ,μ ∈ R and |μ| ≤ m. The following theorem gives sufficient conditions for the
property

y(t,ϕK ,μ)(t) > , t ∈ [t – r,∞)

together with

lim
t→+∞ y(t,ϕK ,μ)(t) = K *(ϕK ,μ),

where K *(ϕK ,μ) is a positive constant depending on the choice of the initial linear function
ϕK ,μ.

Theorem  Let inequalities (), () be valid, a constant C ≥ / and ϕK ,μ ∈ C
r be defined

by ().Then the solution y(t,ϕK ,μ)(t),where ϕK ,μ is defined by (), K ,μ ∈R and |μ| ≤ m,
is positive including the value y(t,ϕK ,μ)(∞), i.e.

y(t,ϕK ,μ)(t) > , t ∈ [t – r,∞)

http://www.advancesindifferenceequations.com/content/2012/1/213
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and

lim
t→+∞ y(t,ϕK ,μ)(t) = K *(ϕK ,μ) > .

Proof We will employ Theorem  with p = n = , i.e., the case (i) only. Set

F(t,φ) := –c(t)φ(–r), ρ(t) := ϕ(t), δ(t) := ϕ(t),

where functions ϕj : [t – r,∞)→R are defined as

ϕ(t) := C + ϕ(t),

ϕ(t) := C – ϕ(t).

We have

lim
t→∞ϕi(t) = C, i = ,  ()

and since C ≥ / > / (i.e., C > ϕ(t – r)): ϕ(t) > ϕ(t) >  on [t – r,∞). Now, we define

ω* :=
{
(t, y) : t ∈ [t – r,∞),ϕ(t) < y < ϕ(t)

}

and

Z :=
{
(t, y), y ∈ [

ϕ(t),ϕ(t)
]}
.

We verify inequality (). For t ≥ t, φ ∈ C
r , and (t + θ ,φ(θ )) ∈ ω*, θ ∈ [–r, ), with φ() =

δ(t) = ϕ(t) = C + ϕ(t), i.e., for

ϕ(t + θ ) < φ(θ ) < ϕ(t + θ ), θ ∈ [–r, ),

φ() = ϕ(t) = C + ϕ(t),

we have

F(t,φ) – δ′(t) = –c(t)φ(–r) – ϕ′
(t)

= –c(t)φ(–r) + ec(t) exp
(
–e

∫ t

t–r
c(s) ds

)

> –c(t)ϕ(t – r) + ec(t) exp
(
–e

∫ t

t–r
c(s) ds

)

= –c(t)
[
C + ϕ(t – r)

]
+ ec(t) exp

(
–e

∫ t

t–r
c(s) ds

)

= –c(t) exp
(
–e

∫ t–r

t–r
c(s) ds

)
+ ec(t) exp

(
–e

∫ t

t–r
c(s) ds

)

= c(t) exp
(
–e

∫ t

t–r
c(s) ds

)[
e – exp

(
e
∫ t

t–r
c(s) ds

)]

http://www.advancesindifferenceequations.com/content/2012/1/213
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≥ [
we use ()

]

≥ c(t) exp
(
–e

∫ t

t–r
c(s) ds

)[
e – exp

(
e · 

e

)]
= .

Therefore, F(t,φ) > δ′(t) and () holds. Inequality () holds as well because for t ≥ t, φ ∈
C
r and (t + θ ,φ(θ )) ∈ ω*, θ ∈ [–r, ), with φ() = ρ(t) = ϕ(t) = C – ϕ(t), i.e., for

ϕ(t + θ ) < φ(θ ) < ϕ(t + θ ), θ ∈ [–r, ),

φ() = ϕ(t) = C – ϕ(t)

we have

F(t,φ) – ρ ′(t) = –c(t)φ(–r) – ϕ′
(t)

= –c(t)φ(–r) +
[
–ec(t) exp

(
–e

∫ t

t–r
c(s) ds

)]

< –c(t)ϕ(t – r) – ec(t) exp
(
–e

∫ t

t–r
c(s) ds

)

= –c(t)
[
C – ϕ(t – r)

]
– ec(t) exp

(
–e

∫ t

t–r
c(s) ds

)

= –c(t)
[
C – exp

(
–e

∫ t–r

t–r
c(s) ds

)]
– ec(t) exp

(
–e

∫ t

t–r
c(s) ds

)

= c(t)
[
–C – e exp

(
–e

∫ t

t–r
c(s) ds

)
+ exp

(
–e

∫ t–r

t–r
c(s) ds

)]

= c(t)
[
–C + exp

(
–e

∫ t

t–r
c(s) ds

)(
–e + exp

(
e
∫ t

t–r
c(s) ds

))]

≤ [
we use ()

]

≤ c(t)
[
–C + exp

(
–e

∫ t

t–r
c(s) ds

)(
–e + exp

(
e · 

e

))]

= –c(t)C < .

Now, we will specify the system of initial functions pZ,ω* mentioned in Theorem . For

z =
(
t, y*

) ∈ Z,

(y* varies within the interval [ϕ(t),ϕ(t)]), we define

p(z)(θ ) := y* +μθ , θ ∈ [–r, ], |μ| ≤ m,

i.e., every initial function is a linear function described by formula (). Since ϕ′(t) < ,
t ∈ [t – r,∞), for the system of functions pZ,ω* , both assumptions (i), (ii) in Definition 
are valid. Indeed, this property implies

ϕ′
(t) = ϕ′(t) <  and ϕ′

(t) = –ϕ′(t) > 

http://www.advancesindifferenceequations.com/content/2012/1/213
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if t ∈ [t – r,∞),

min
[t–r,t]

{∣∣ϕ′
(t)

∣∣} = min
[t–r,t]

{∣∣ϕ′
(t)

∣∣} =m

and

–m ≤ ϕ′
i(t) ≤ m, t ∈ [t – r, t], i = , .

Therefore, every segment

y(t) = y* +μt, |μ| ≤ m, t ∈ [t – r, t]

satisfies inequalities

ϕ(t) < y(t) < ϕ(t) ()

if y* ∈ intZ, t ∈ [t – r, t]. Consequently, (i) in Definition  holds.
If y* ∈ ∂Z, then inequalities () hold if t ∈ [t – r, t) and (ii) is also valid.
Theorem  is also valid for this system. Consequently, there exists a point

z =
(
t, y*

) ∈ Z ∩ ω*

such that

(
t, y

(
t,p(z)

)
(t)

) ∈ ω*, t ∈ [t – r,∞),

i.e.,

ϕ(t) < y
(
t,p(z)

)
(t) < ϕ(t), t ∈ [t – r,∞). ()

From inequalities () we conclude

lim
t→+∞ y

(
t,p(z)

)
(t) = C

because of (). This solution is positive, i.e.,

y
(
t,p(z)

)
(t) > , t ∈ [t – r,∞)

due to positivity of ϕ(t).
Since the statement of the theorem holds for initial functions with μ = , we can also

conclude that due to linearity of equation (), every constant positive initial function de-
fines a positive solution.
If the solution y(t,p(z))(t) does not coincide with the solution y(t,ϕK ,μ)(t), i.e., if y* �=

K , then due to linearity, the sum or the difference of y(t,p(z))(t) and a suitable positive
solution generated by a positive constant initial function gives the solution y(t,ϕK ,μ)(t).

http://www.advancesindifferenceequations.com/content/2012/1/213
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It is only necessary to show that the solution y(t,ϕK ,μ)(t) will be again positive. The con-
dition for positivity is

ϕ(t – r) > ϕ(t) – ϕ(t)

or, after some computations,

C ≥  +  exp
(
–e

∫ t

t–r
c(s) ds

)
.

The last inequality holds since

C ≥  >  +  exp
(
–e

∫ t

t–r
c(s) ds

)
.

We finish the proof with the conclusion that the existence of positive limit K *(ϕK ,μ) is
proved. �

Theorem  Let all assumptions of Theorem  be valid. Then the solution y(t,ϕK ,μ) of
equation () is a positive dominant solution.

Proof Every positive solution y = y(t) of equation () on [t – r, +∞) is decreasing and
therefore its limit limt→∞ y(t) exists and is finite. The value of the limit can be either pos-
itive or zero. In the case of solution y(t,ϕK ,μ) of equation (), we have

lim
t→∞ y(t,ϕK ,μ)(t) = K *(ϕK ,μ) > .

By Theorem  there must exist another positive solution y = Y (t) of equation () on [t –
r, +∞) such that either

lim
t→∞

y(t,ϕK ,μ)(t)
Y (t)

=  ()

or

lim
t→∞

Y (t)
y(t,ϕK ,μ)(t)

= . ()

The first possibility () is impossible since in such a case there should exist a positive
solution Y (t) of equation () on [t – r, +∞) with the property

lim
t→∞Y (t) = ∞,

which is obviously false. The possibility () remains. Then, by Definition , a solution
y(t,ϕK ,μ) of equation () is a dominant solution on [t – r, +∞). �

Remark  It is well known [, Theorem ..] that every continuous initial function ϕ,
defined on the interval [t – r, t], such that ϕ(t) > , ϕ(t)≥ ϕ(s), s ∈ [t – r, t), defines a
positive solution on [t – r, +∞) if the assumptions of Theorem  hold. But it is not known

http://www.advancesindifferenceequations.com/content/2012/1/213
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if such a solution is dominant or subdominant or if its limit for t → ∞ is positive or equals
zero. The statements of Theorems  and  give new results in this direction since, for a
class of linear initial positive functions (not fully covered by known results), positivity
of generated solutions (including positivity of their limits) is established together with
dominant character of their asymptotical behavior. It is a problem for future investigation
to find values of positive limits of solutions considered in the paper (e.g., by methods used
in [–]) or to enlarge the presented method to more general classes of equations and
initial functions.
The topic considered in this paper is also connected with problems on the existence of

bounded solutions. We refer, e.g., to recent papers [–] and to the references therein.
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13. Diblík, J, Kúdelčíková, M: Two classes of positive solutions of first order functional differential equations of delayed

type. Nonlinear Anal. 75, 4807-4820 (2012)
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