
Song and Yu Advances in Difference Equations 2012, 2012:214
http://www.advancesindifferenceequations.com/content/2012/1/214

RESEARCH Open Access

Convergence and stability of implicit
compensated Euler method for stochastic
differential equations with Poisson random
measure
Minghui Song1* and Hui Yu1,2

*Correspondence:
songmh@lsec.cc.ac.cn
1Department of Mathematics,
Harbin Institute of Technology,
Harbin, 150001, P.R. China
Full list of author information is
available at the end of the article

Abstract
In this paper, an implicit compensated Euler method is introduced for stochastic
differential equations with Poisson randommeasure. A convergence theorem is
proved to show that the method obtains a strong order 0.5. After exploiting the
conditions of exponential mean-square stability of such equations, the implicit
compensated Euler method is proved to share the same stability for any step size.
Numerical examples indicate the performance of the convergence and stability.
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1 Introduction
In finance and economics, in order to obtain the dynamics observed, it is important to
model the impact of event-driven uncertainty. Events such as corporate defaults, opera-
tional failures, market crashes or central bank announcements lead to the introduction of
stochastic differential equations (SDEs) driven by random measure; see [, ] since such
equations were initiated by Merton [].
Since only explicit solutions of a small class of SDEs with Poisson random measure can

be obtained, one needs, in general, discrete time approximationswhich can be divided into
strong approximations and weak approximations. Strong approximations provide path-
wise approximations, while weak approximations are appropriate for problems such as
derivative pricing or the evaluation of risk measures and expected utilities.
We give an overview of the existing literature on the strong approximations of SDEs

with Poisson randommeasure. Early, in [], Platen gave a convergence theorem for strong
approximations of any given order γ ∈ {., , ., . . .} and originally introduced the so-
called jump-adapted schemes which were based on time discretizations that included all
the jump times. Moreover, by using an order . scheme for approximating the diffusion
part, Kloeden and Platen (see []) obtained the jump-adapted order . strong scheme, and
they also constructed the derivative free or implicit jump-adapted schemes with desired
order of strong convergence. In [], for the specific case of pure jump SDEs, the strong or-
der of convergence of Taylor schemes was established under weaker conditions than those
currently known in the literature. Recently, Bruti-Liberati and Platen [, ] have presented
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the drift-implicit schemes which achieve strong order γ ∈ {., }. Mao [] deals with the
convergence of numerical solutions for variable delay differential equations driven by Pois-
son random measure. In [], the improved Runge-Kutta methods have been presented to
improve the accuracy behavior of problems with small noise for SDEs with Poisson ran-
dom measure. Weak approximations can be seen in [, , ].
As for the stability of SDEs with Poisson random measure, only limited results have

been presented in currently known literature. Li, Dong and Situ [] have shown that the
almost sure asymptotic stability of linear SDEs with Poisson randommeasure depends on
the negative Lyapunov exponential functions. Using Liapunov’s method, Swishchuk and
Kazmerchuk [] have presented the stability of a trivial solution of semi-linear stochastic
delay differential equations with Markovian switchings and with Poisson bifurcations.
However, to the best of our knowledge, little has been presented about the stability of

numerical methods to SDEs with Poisson randommeasure. The main contribution in our
work shows that the implicit compensated Euler method shares exponential mean-square
stability for any step size �t with SDEs with Poisson randommeasure; that is, the method
can preserve exponential mean-square stability without any restrictions on a step size. To
some extent, our numerical experiments demonstrate that the stability behavior of the
implicit compensated Euler method is not influenced by an increasing step size, while the
Euler method and drift-implicit Euler method can only preserve stability for restricted
step sizes. Our work is motivated by [–, ]. In [, ], the drift-implicit Euler method of
order . was introduced to SDEs with Poisson randommeasure and its convergence was
considered. In [], Euler method was presented to SDEs with Poisson randommeasure. In
[], the stability was analyzed for the compensated split-step backward (CSSBE) method
and split-step backward Euler (SSBE) method to SDEs with Poisson process.
Our work is organized as follows. In Section , an implicit compensated Euler method is

introduced to SDEs with Poisson random measure. In Section , a convergence theorem
of the method is proved by four lemmas under the Lipschitz conditions and the linear
growth conditions. In Section , the exponentialmean-square stability of such an equation
is analyzed. Subsequently, the stability of the implicit compensated Euler method to such
an equation is presented in the last theorem under the one-sided Lipschitz conditions.
In Section , some numerical experiments show the performance of the convergence and
stability. Finally, a concluding remark is given.

1.1 Problem’s setting
Throughout this paper, unless otherwise specified, we use the following notations. Let
u ∨ u = max{u,u}. Let | · | and 〈·, ·〉 be the Euclidean norm and the inner product of
vectors in Rd , d ∈ N. If A is a vector or matrix, its transpose is denoted by AT . If A is a
matrix, its trace norm is denoted by |A| = √

trace(ATA). Let LF
(�;Rd) denote the family

of Rd-valued F-measurable random variables ξ with E|ξ | < ∞. C(Rd;Rd) denotes the
family of continuously differentiable Rd-valued functions defined on Rd .
The following d-dimensional stochastic differential equationwith Poisson randommea-

sure is considered in our paper:

dx(t) = a
(
x(t–)

)
dt + b

(
x(t–)

)
dW (t) +

∫
ε

c
(
x(t–), v

)
pφ(dv× dt), t >  (.)

with initial condition x(–) = x() = x ∈ LF
(�;Rd), where x(t–) denotes lims→t– x(s).
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The randomness in this equation is generated by the following (see []). An m-
dimensional Wiener process W = {W (t) = (W (t), . . . ,Wm(t))T } with independent scalar
components is defined on a filtered probability space (�W ,FW , (FW

t )t≥,PW ). A Poisson
random measure pφ(ω,dv × dt) is on �J × ε × [,∞), where ε ⊆ Rr \ {}, with r ∈ N,
and its deterministic compensated measure φ(dv)dt = λf (v)dvdt. f (v) is a probabil-
ity density, and we require finite intensity λ = φ(ε) < ∞. The Poisson random mea-
sure is defined on a filtered probability space (�J ,F J , (F J

t )t≥,PJ ). As a consequence,
the process x is defined on a product space (�,F , (Ft)t≥,P), where � = �W × �J ,
F = FW × F J , (Ft)t≥ = (FW

t )t≥ × (F J
t )t≥, P = PW × PJ and F contains all P-

null sets. The Wiener process and the Poisson random measure are mutually indepen-
dent.
The drift coefficient a : Rd → Rd , the diffusion coefficient b : Rd → Rd×m and the jump

coefficient c : Rd × ε → Rd are usually assumed to be Borel measurable functions and the
coefficients satisfy the Lipschitz conditions

∣∣a(x) – a(y)
∣∣ ∨ ∣∣b(x) – b(y)

∣∣ ∨
∫

ε

∣∣c(x, v) – c(y, v)
∣∣φ(dv) ≤ K|x – y| (.)

for every x, y ∈ Rd and K > , and the linear growth conditions

∣∣a(x)∣∣ ∨ ∣∣b(x)∣∣ ∨
∫

ε

∣∣c(x, v)∣∣φ(dv)≤ K
(
 + |x|) (.)

for all x ∈ Rd and K =max{K, |a()|, |b()|, 
∫
ε
|c(, v)|φ(dv)}, where

∣∣a()∣∣ + ∣∣b()∣∣ + ∫
ε

∣∣c(, v)∣∣φ(dv)≤ L, L > .

A unique strong solution of the equation (.) exists under the conditions (.) and (.);
see [, ].

1.2 Implicit compensated Euler method
It is convenient to rewrite the equation (.) in terms of the compensated Poissonmeasure
(see [])

p̃φ(dv× dt) := pφ(dv× dt) – φ(dv)dt,

as

dx(t) =
(
a
(
x(t–)

)
+

∫
ε

c
(
x(t–), v

)
φ(dv)

)
dt + b

(
x(t–)

)
dW (t)

+
∫

ε

c
(
x(t–), v

)̃
pφ(dv× dt), (.)

for x ∈ Rd .
Given a step size �t > , the implicit compensated Euler method applied to (.) com-

putes approximation Yn ≈ x(tn), where tn = n�t, n = , , . . . , by setting Y = x and form-
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ing

Yn+ = Yn +
(
a(Yn+) +

∫
ε

c(Yn+, v)φ(dv)
)

�t + b(Yn)�Wn

+
∫ tn+

tn

∫
ε

c(Yn, v)̃pφ(dv× dt), (.)

where �Wn =W (tn+) –W (tn).
The continuous-time implicit compensated Euler method is then defined by

Y (t) := Y +
∫ t



(
a
(
Z(s–)

)
+

∫
ε

c
(
Z(s–), v

)
φ(dv)

)
ds +

∫ t


b
(
Z(s–)

)
dW (s)

+
∫ t



∫
ε

c
(
Z(s–), v

)̃
pφ(dv× ds), (.)

where Z(t) = Yn, Z(t) = Yn+ for t ∈ [tn, tn+), n = , , . . . .
Actually, as we see in [], pφ = {pφ(t) := pφ(ε× [, t])} is a process that counts the number

of jumps until some given time. The Poisson randommeasure pφ(dv× dt) generates a se-
quence of pairs {(τi, ξi), i ∈ {, , . . . ,pφ(T)}} for a given finite positive constant T if λ < ∞.
Here {τi : � → R+, i ∈ {, , . . . ,pφ(T)}} is a sequence of increasing nonnegative random
variables representing the jump times of a standard Poisson process with intensity λ, and
{ξi : � → ε, i ∈ {, , . . . ,pφ(T)}} is a sequence of independent identically distributed ran-
dom variables, where ξi is distributed according to φ(dv)/φ(ε). Then (.) can equivalently
be of the following form:

Yn+ = Yn +
(
a(Yn+) +

∫
ε

c(Yn+, v)φ(dv)
)

�t + b(Yn)�Wn

–
∫

ε

c(Yn, v)φ(dv)�t +
pφ (tn+)∑

i=pφ (tn)+

c(Yn, ξi). (.)

As the special case of (.), that is, c(x, v) = c(x), the method (.) reduces to

Yn+ = Yn +
(
a(Yn+) + λc(Yn+)

)
�t + b(Yn)�Wn – λc(Yn)�t + c(Yn)�pn,

where �pn = pφ(tn+) – pφ(tn) is a Poisson distributed random variable with mean λ�t.

2 Strong convergence of implicit compensated Euler method
In this section, we present a convergence theorem of the implicit compensated Euler
method (.) to the SDE with Poisson random measure (.) over a finite time interval
[,T] under the Lipschitz conditions and the linear growth conditions, where T is a con-
stant and �t = T/N , N ∈N. At the beginning, we give four lemmas.
The first lemma demonstrates the existence of a solution to the implicit compensated

Euler method (.).

Lemma . Under the Lipschitz conditions (.), if (
√
K +

√
λK)�t < , then the equation

for the implicit compensated Euler method (.) can be solved uniquely for Yn+ given Yn,
with probability one.
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Proof Writing (.) as Yn+ = F(Yn+) and then using the Cauchy-Schwarz inequality and
(.), we have

∣∣F(u) – F(u)
∣∣ = ∣∣∣∣a(u) – a(u) +

∫
ε

c(u, v)φ(dv) –
∫

ε

c(u, v)φ(dv)
∣∣∣∣�t

≤ ∣∣a(u) – a(u)
∣∣�t +

(∫
ε

φ(dv)
∫

ε

∣∣c(u, v) – c(u, v)
∣∣φ(dv))/

�t

≤ (
√
K +

√
λK)�t|u – u|,

for u,u ∈ Rd . Hence, the result follows from the classical Banach contraction mapping
theorem. �

The second lemma shows that the discrete implicit compensated Euler method (.) of
the equation (.) has bounded second moments.

Lemma . Under the linear growth conditions (.), there exists �t >  such that for all
 < �t <�t < /( + K + λK),

E|Yn| ≤ C
(
 + E|x|

)
, whenever n�t ≤ T , (.)

where C is a constant independent of �t.

Proof It follows from (.) that

∣∣∣∣Yn+ –
(
a(Yn+) +

∫
ε

c(Yn+, v)φ(dv)
)

�t
∣∣∣∣

=
∣∣∣∣Yn + b(Yn)�Wn +

∫ tn+

tn

∫
ε

c(Yn, v)̃pφ(dv× dt)
∣∣∣∣.

Thus, by taking expectations and using the martingale properties of dWn and p̃φ(dv×dt),
we have

E|Yn+| ≤ �tE
〈
Yn+,a(Yn+) +

∫
ε

c(Yn+, v)φ(dv)
〉
+ E|Yn|

+�tE
∣∣b(Yn)

∣∣ + E
∫ tn+

tn

∫
ε

∣∣c(Yn, v)
∣∣φ(dv)dt. (.)

Now, using the inequalities 〈u, v〉 ≤ |u||v| ≤ ( |u|+|v|
 ) ≤ |u|+|v|

 for u, v ∈ Rd , the Cauchy-
Schwarz inequality and the linear growth conditions (.), we can obtain

E
〈
Yn+,a(Yn+) +

∫
ε

c(Yn+, v)φ(dv)
〉

≤ E
(

|Yn+|
∣∣∣∣a(Yn+) +

∫
ε

c(Yn+, v)φ(dv)
∣∣∣∣
)

≤ 

E|Yn+| + E

∣∣a(Yn+)
∣∣ + E

∣∣∣∣
∫

ε

c(Yn+, v)φ(dv)
∣∣∣∣
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≤ 

E|Yn+| + E

∣∣a(Yn+)
∣∣ + E

(∫
ε

φ(dv)
∫

ε

∣∣c(Yn+, v)
∣∣φ(dv))

=


E|Yn+| + E

∣∣a(Yn+)
∣∣ + E

(
λ

∫
ε

∣∣c(Yn+, v)
∣∣φ(dv))

≤
(


+K + λK

)
E|Yn+| + (K + λK), (.)

E|b(Yn)| ≤ K
(
 + E|Yn|

)
, (.)

and

E
∫ tn+

tn

∫
ε

∣∣c(Yn, v)
∣∣φ(dv)dt ≤ K�t

(
 + E|Yn|

)
. (.)

So, by substituting (.), (.) and (.) into (.) and then choosing any �t ∈ (, /( +
K + λK)), we get

E|Yn+| ≤ E|Yn| +  + K + λK

 –�t( + K + λK)
�tE|Yn|

+
K + λK

 –�t( + K + λK)
�t (.)

for all �t ∈ (,�t). Summing the inequality (.) from  to n ∈Nwhen n�t ≤ T , we find

E|Yn| ≤ E|Y| +  + K + λK

 –�t( + K + λK)
�t

n–∑
i=

E|Yi|

+
K + λK

 –�t( + K + λK)
T ,

which yields the following result by the discrete-type Gronwall inequality (see []) and
n�t ≤ T

E|Yn| ≤
(
E|Y| + KT + λKT

 –�t( + K + λK)

)
exp

(
T + KT + λKT

 –�t( + K + λK)

)
.

So, we have the result (.), where

C = max

{
exp

(
( + K + λK)T

 –�t( + K + λK)

)
,

(K + λK)T
 –�t( + K + λK)

exp

(
( + K + λK)T

 –�t( + K + λK)

)}
. �

The third lemma shows that the continuous-time implicit compensated Euler method
(.) has bounded second moments.

Lemma . Under the linear growth conditions (.), there exists a positive constant C

such that for all  < �t < �t,

E sup
t∈[,T]

∣∣Y (t)∣∣ ≤ C
(
 + E|x|

)
. (.)

http://www.advancesindifferenceequations.com/content/2012/1/214
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Proof It follows from (.) that

∣∣Y (t)∣∣ ≤ |Y| + 
∣∣∣∣
∫ t



(
a
(
Z(s–)

)
+

∫
ε

c
(
Z(s–), v

)
φ(dv)

)
ds

∣∣∣∣

+ 
∣∣∣∣
∫ t


b
(
Z(s–)

)
dW (s)

∣∣∣∣ + 
∣∣∣∣
∫ t



∫
ε

c
(
Z(s–), v

)̃
pφ(dv× ds)

∣∣∣∣, (.)

where the inequality |u +u +u +u| ≤ |u| +|u| +|u| +|u| for u,u,u,u ∈
Rd is used. Now, using the inequality (|u| + |v|) ≤ (|u| + |v|) for u, v ∈ Rd , the Cauchy-
Schwarz inequality, the linear growth conditions (.) and Fubini’s theorem, we have

E sup
t∈[,T]

∣∣∣∣
∫ t



(
a
(
Z(s–)

)
+

∫
ε

c
(
Z(s–), v

)
φ(dv)

)
ds

∣∣∣∣

≤ E sup
t∈[,T]

∣∣∣∣
∫ t


a
(
Z(s–)

)
ds

∣∣∣∣ + E sup
t∈[,T]

∣∣∣∣
∫ t



∫
ε

c
(
Z(s–), v

)
φ(dv)ds

∣∣∣∣

≤ E sup
t∈[,T]

(∫ t


 ds

∫ t



∣∣a(Z(s–)
)∣∣ ds)

+ E sup
t∈[,T]

(∫ t


 ds

∫ t



∣∣∣∣
∫

ε

c
(
Z(s–), v

)
φ(dv)

∣∣∣∣ ds
)

≤ TE
∫ T



∣∣a(Z(s–)
)∣∣ ds + TE sup

t∈[,T]

∫ t



(∫
ε

φ(dv)
∫

ε

∣∣c(Z(s–), v
)∣∣φ(dv))ds

≤ (T + Tλ)
∫ T


K

(
 + E

∣∣Z(s–)
∣∣)ds. (.)

Moreover, Doob’s martingale inequality (see []), the linear growth conditions (.) and
Fubini’s theorem imply

E
(

sup
t∈[,T]

∣∣∣∣
∫ t


b
(
Z(s–)

)
dW (s)

∣∣∣∣
)

≤ E
∫ T



∣∣b(Z(s–)
)∣∣ ds≤ 

∫ T


K

(
 + E

∣∣Z(s–)
∣∣)ds, (.)

and

E
(

sup
t∈[,T]

∣∣∣∣
∫ t



∫
ε

c
(
Z(s–), v

)̃
pφ(dv× ds)

∣∣∣∣
)

≤ E
∫ T



∫
ε

∣∣c(Z(s–), v
)∣∣φ(dv)ds

≤ 
∫ T


K

(
 + E

∣∣Z(s–)
∣∣)ds. (.)

Thus, substituting (.), (.) and (.) into (.) on the interval [,T + ], we get the
result (.) by taking

C = max
{
 + (T + Tλ)KCT + KCT ,

(T + Tλ)K( +C)T + K( +C)T
}
. �
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The last lemma shows the close relation between the continuous-time implicit compen-
sated Euler method (.) and its step functions Z(t) and Z(t).

Lemma . Under the conditions (.), there exist positive constants C and C indepen-
dent of �t such that for all  <�t < �t,

E sup
t∈[,T]

∣∣Y (t) – Z(t)
∣∣ ≤ C�t

(
 + E|x|

)
, (.)

and

E sup
t∈[,T]

∣∣Y (t) – Z(t)
∣∣ ≤ C�t

(
 + E|x|

)
. (.)

Proof It follows from (.) in t ∈ [tn, tn+] ⊆ [,T] that

Y (t) – Z(t) = Yn +
∫ t

tn

(
a
(
Z(s–)

)
+

∫
ε

c
(
Z(s–), v

)
φ(dv)

)
ds +

∫ t

tn
b
(
Z(s–)

)
dW (s)

+
∫ t

tn

∫
ε

c
(
Z(s–), v

)̃
pφ(dv× ds) – Yn.

Using the inequality |u +u +u +u| ≤ |u| +|u| +|u| +|u| for u,u,u,u ∈
Rd , we have

sup
t∈[,T]

∣∣Y (t) – Z(t)
∣∣

≤ max
n=,,...,T/�t–

sup
τ∈[tn ,tn+]

{

∣∣∣∣
∫ τ

tn
a
(
Z(s–)

)
ds

∣∣∣∣ + 
∣∣∣∣
∫ τ

tn

∫
ε

c
(
Z(s–), v

)
φ(dv)ds

∣∣∣∣

+ 
∣∣∣∣
∫ τ

tn
b
(
Z(s–)

)
dW (s)

∣∣∣∣ + 
∣∣∣∣
∫ τ

tn

∫
ε

c
(
Z(s–), v

)̃
pφ(dv× ds)

∣∣∣∣
}
. (.)

Now, the Cauchy-Schwarz inequality gives

∣∣∣∣
∫ τ

tn
a
(
Z(s–)

)
ds

∣∣∣∣ =
∫ τ

tn
 ds

∫ τ

tn

∣∣a(Z(s–)
)∣∣ ds ≤ �t

∫ tn+

tn

∣∣a(Z(s–)
)∣∣ ds, (.)

and

∣∣∣∣
∫ τ

tn

∫
ε

c
(
Z(s–), v

)
φ(dv)ds

∣∣∣∣ ≤
∫ τ

tn
 ds

∫ τ

tn

∣∣∣∣
∫

ε

c
(
Z(s–), v

)
φ(dv)

∣∣∣∣ ds
≤ �t

∫ tn+

tn

∣∣∣∣
∫

ε

c
(
Z(s–), v

)
φ(dv)

∣∣∣∣ ds
≤ �t

∫ tn+

tn

(∫
ε

φ(dv)
∫

ε

∣∣c(Z(s–), v
)∣∣φ(dv))ds

= �tλ
∫ tn+

tn

∫
ε

∣∣c(Z(s–), v
)∣∣φ(dv)ds. (.)

http://www.advancesindifferenceequations.com/content/2012/1/214
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Moreover, Doob’s martingale inequality (see []) implies

E
(

sup
τ∈[tn ,tn+]

∣∣∣∣
∫ τ

tn
b
(
Z(s–)

)
dW (s)

∣∣∣∣
)

≤ E
∫ tn+

tn

∣∣b(Z(s–)
)∣∣ ds, (.)

and

E
(

sup
τ∈[tn ,tn+]

∣∣∣∣
∫ τ

tn

∫
ε

c
(
Z(s–), v

)̃
pφ(dv× ds)

∣∣∣∣
)

≤ E
∫ tn+

tn

∫
ε

∣∣c(Z(s–), v
)∣∣φ(dv)ds. (.)

Therefore, by substituting (.), (.), (.) and (.) into (.) and then applying the
linear growth conditions (.) and Fubini’s theorem, we can obtain

E sup
t∈[,T]

∣∣Y (t) – Z(t)
∣∣

≤ max
n=,,...,T/�t–

{
K�t

∫ tn+

tn

(
 + E

∣∣Z(s–)
∣∣)ds

+ K�tλ
∫ tn+

tn

(
 + E

∣∣Z(s–)
∣∣)ds + K

∫ tn+

tn

(
 + E

∣∣Z(s–)
∣∣)ds}.

Hence from (.), it follows that

E sup
t∈[,T]

∣∣Y (t) – Z(t)
∣∣ ≤ �t

{
( +C)(K�t + Kλ�t + K)

+C(K�t + Kλ�t + K)E|x|
}

≤ C�t
(
 + E|x|

)
,

where C = ( +C)(K�t + Kλ�t + K).
A similar analysis gives the result (.). �

Now, let us state the convergence of the implicit compensated Euler method by relying
on the lemmas above.

Theorem . Under the Lipschitz conditions (.) and the linear growth conditions (.),
the continuous implicit compensated Euler method (.) of the equation (.) satisfies

E sup
t∈[,T]

∣∣Y (t) – x(t)
∣∣ ≤ C

(
 + E|x|

)
�t, (.)

for all  <�t < �t, where C is a constant independent of �t.

Proof From (.) and (.), we can have

∣∣Y (t) – x(t)
∣∣

≤ 
∣∣∣∣
∫ t



(
a
(
Z(s–)

)
– a

(
x(s–)

))
ds

∣∣∣∣ + 
∣∣∣∣
∫ t



(
b
(
Z(s–)

)
– b

(
x(s–)

))
dW (s)

∣∣∣∣

http://www.advancesindifferenceequations.com/content/2012/1/214


Song and Yu Advances in Difference Equations 2012, 2012:214 Page 10 of 17
http://www.advancesindifferenceequations.com/content/2012/1/214

+ 
∣∣∣∣
∫ t



∫
ε

(
c
(
Z(s–), v

)
– c

(
x(s–), v

))
φ(dv)ds

∣∣∣∣

+ 
∣∣∣∣
∫ t



∫
ε

(
c
(
Z(s–), v

)
– c

(
x(s–), v

))̃
p(dv× ds)

∣∣∣∣,
where the inequality |u +u +u +u| ≤ |u| +|u| +|u| +|u| for u,u,u,u ∈
Rd is used. Hence, by the Cauchy-Schwarz inequality andDoob’smartingale inequality, for
any  ≤ t ≤ T , we obtain

E
(

sup
t∈[,t]

∣∣Y (t) – x(t)
∣∣)

≤ tE
∫ t



∣∣a(Z(s–)
)
– a

(
x(s–)

)∣∣ ds
+ tλE

∫ t



∫
ε

∣∣c(Z(s–), v
)
– c

(
x(s–), v

)∣∣φ(dv)ds
+ E

∫ t



∣∣b(Z(s–)
)
– b

(
x(s–)

)∣∣ ds
+ E

∫ t



∫
ε

∣∣c(Z(s–), v
)
– c

(
x(s–), v

)∣∣φ(dv)ds.
Fubini’s theorem, the Lipschitz conditions (.) and the inequality |u + v| ≤ |u| + |v|
then give

E
(

sup
t∈[,t]

∣∣Y (t) – x(t)
∣∣)

≤ TK

∫ t


E
∣∣Z(s–) – x(s–)

∣∣ ds + TKλ

∫ t


E
∣∣Z(s–) – x(s–)

∣∣ ds
+ K

∫ t


E
∣∣Z(s–) – x(s–)

∣∣ ds
≤ (TK + TKλ)

∫ t


E
∣∣Y (s) – Z(s–)

∣∣ ds + K

∫ t


E
∣∣Y (s) – Z(s–)

∣∣ ds
+ (TK + TKλ + K)

∫ t


E sup

t∈[,s]

∣∣Y (t) – x(t–)
∣∣ ds.

Applying (.) and (.), we have

E
(

sup
t∈[,t]

∣∣Y (t) – x(t)
∣∣) ≤ T

(
 + E|x|

)
(TKC + TKλC + KC)�t

+ (TK + TKλ + K)
∫ t


E sup

t∈[,s]

∣∣Y (t) – x(t–)
∣∣ ds.

The result (.) then follows from the continuous Gronwall inequality (see []). �

The theorem shows that the implicit compensated Euler method has strong order .
under the conditions (.) and (.).

http://www.advancesindifferenceequations.com/content/2012/1/214
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3 Mean-square stability
This section presents new results on the exponential mean-square stability for the equa-
tion (.) under the one-sided Lipschitz conditions in the following.
We assume that there exist constants μ, μ, μ, μ such that ∀x, y ∈ Rd

a(x),b(x),
∫

ε

c(x, v)φ(dv) ∈ C(Rd;Rd), (.)

〈
x,a(x)

〉 ≤ μ|x|, (.)〈
x,

∫
ε

c(x, v)φ(dv)
〉
≤ μ|x|, (.)

∣∣b(x)∣∣ ≤ μ|x|, (.)∫
ε

∣∣c(x, v)∣∣φ(dv)≤ μ|x|, (.)

and

a() = b() = c(, ) = . (.)

And so the equation (.) admits the trivial solution x(t)≡ .
Since the numerical method (.) is implicit, the question of existence and uniqueness

arises. And we solve this question in the following lemma.

Lemma . Under the conditions (.), (.) and (.), the equation for the implicit com-
pensated Euler method (.) has a unique solution, with probability one, for all

(μ +μ)�t < . (.)

Proof The required result is a special case of Theorem . in []. �

In this paper, we consider the exponential mean-square stability of the trivial solution,
which is defined according to [, ].

Definition . (see []) The equation (.) is said to be exponentially stable in the mean
square if there is a pair of positive constants α and α such that for any initial data x ∈
LF

(�;Rd),

E
∣∣x(t)∣∣ ≤ αE|x|e–αt , for all t ≥ . (.)

Definition . (see []) A numerical method applied to the equation (.) is said to be
exponentially stable in the mean square, if there is a pair of positive constants β and β

such that the numerical approximations Yn satisfy

E|Yn| ≤ βE|x|e–β·n�t , n ∈N, (.)

for initial data x ∈ LF
(�;Rd) and a given step size �t > .

The result below shows the exponential mean-square stability of the equation (.).

http://www.advancesindifferenceequations.com/content/2012/1/214
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Theorem . Under the conditions (.)-(.), if σ <  in (.), then the equation (.)
is exponentially stable in the mean square. More precisely, any analytical solution of the
equation (.) with E|x| < ∞ satisfies

E
∣∣x(t)∣∣ ≤ E|x|eσ t , for all t ≥ , (.)

where

σ := (μ +μ) +μ +μ. (.)

Proof Using Itô’s formula (see []) to f (t,x) = |x(t)|, we have

d
∣∣x(t)∣∣ = (〈

x(t–),a
(
x(t–)

)
+

∫
ε

c
(
x(t–), v

)
φ(dv)

〉
+

∣∣b(x(t–))∣∣)dt

+
∫

ε

(∣∣x(t–) + c
(
x(t–), v

)∣∣ – ∣∣x(t–)∣∣ – 〈
x(t–), c

(
x(t–), v

)〉)
φ(dv)dt

+
〈
x(t–),b

(
x(t–)

)〉
dW (t) +

∫
ε

(∣∣x(t–) + c
(
x(t–), v

)∣∣ – ∣∣x(t–)∣∣)̃pφ(dv× dt)

for all t ≥ . Therefore, the conditions (.)-(.) give

d
∣∣x(t)∣∣ ≤ (

(μ + μ +μ +μ)
∣∣x(t–)∣∣)dt + 〈

x(t–),b
(
x(t–)

)〉
dW (t)

+
∫

ε

(∣∣x(t–) + c
(
x(t–), v

)∣∣ – ∣∣x(t–)∣∣)̃pφ(dv× dt).

Hence, we have

E
∣∣x(t)∣∣ ≤ E|x|e(μ+μ+μ+μ)t ,

where the martingale properties of dW (t) and p̃φ(dv× dt) are used. �

The following lemma shows that the implicit compensated Euler (.) has a unique solu-
tion for all�t under the condition σ <  for themean-square stability of the equation (.).

Lemma . Under the conditions (.) and (.), if σ <  in (.), the implicit compen-
sated Euler method (.) produces a well-defined unique solution.

Proof From the conditions (.) and (.), we get μ ≥  and μ ≥ . Therefore, σ <  in
(.) can lead to (μ + μ) < . Hence, for any �t > , we have (μ + μ)�t <  < . So,
according to Lemma ., the equation for the implicit compensated Eulermethod (.) has
a unique solution, with probability one, for all �t > . �

In what follows, the theorem shows that as long as the equation (.) is exponentially
stable in the mean square, the implicit compensated method (.) applied to (.) indeed
shares the stability for any step size �t > .

http://www.advancesindifferenceequations.com/content/2012/1/214
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Theorem . Under the conditions (.)-(.), if σ <  in (.) and (.), then for any
step size �t >  the implicit compensated Euler method (.) to the equation (.) is expo-
nentially stable in the mean square, namely

E|Yn| ≤ E|x|eβ·n�t , n ∈N, (.)

where β(�t) = σ +O(�t), as �t → .

Proof It follows from (.) that

∣∣∣∣Yn –
(
a(Yn) +

∫
ε

c(Yn, v)φ(dv)
)

�t
∣∣∣∣

=
∣∣∣∣Yn– + b(Yn–)�Wn– +

∫ tn

tn–

∫
ε

c(Yn–, v)̃pφ(dv× dt)
∣∣∣∣,

for any step size �t > . Now, taking expectations and applying the martingale properties
of �Wn– and p̃φ(dv× dt), we get

E|Yn| ≤ �tE
〈
Yn,a(Yn) +

∫
ε

c(Yn, v)φ(dv)
〉
+ E|Yn–|

+�tE
∣∣b(Yn–)

∣∣ + E
∫ tn

tn–

∫
ε

∣∣c(Yn–, v)
∣∣φ(dv)dt.

Under the conditions (.)-(.), we have

E|Yn| ≤ (μ +μ)�tE|Yn| + ( +μ�t +μ�t)E|Yn–|.

Since the conditions of (.) and (.) in Theorem . give

 – (μ +μ)�t > ,

and

 <
 +μ�t +μ�t
 – (μ +μ)�t

< ,

we get

E|Yn| ≤ E|x|eβ(�t)·n�t ,

where

β(�t) :=


�t
ln

(
 +μ�t +μ�t
 – (μ +μ)�t

)
= σ +O(�t), as �t → . �

4 Numerical experiments
This section presents several numerical experiments that demonstrate the results about
convergence and stability in Section  and Section .

http://www.advancesindifferenceequations.com/content/2012/1/214
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We consider the following equation:

dx(t) = ax(t–)dt + bx(t–)dW (t) +
∫

ε

cx(t–)vpφ(dv× dt), t > , (.)

with x(), where d =m = r = . The compensatedmeasure of the Poisson randommeasure
pφ(dv× dt) is given by φ(dv)dt = λf (v)dvdt, and

f (v) =
√
πv

exp

(
–
(ln v)



)
,  ≤ v <∞,

is the density function of a lognormal random variable. We simulate W (t), pφ(t) and ξi

which are from independent sources of randomness, mainly according to [, ]. Here
three examples are given as

I: a = –, b = , c = –., λ = ,
II: a = –, b = , c = –., λ = ,

and

III: a = , b = , c = –., λ = .

In Figure , the convergence of the implicit compensated Euler method (.) to I, II and
III is described. In this numerical test, we focus on the error at the endpoint T = , and the
endpoint error is denoted as E|x(T) – Y (T)|. The expectation is estimated by averaging
M = , sample paths over [, ], and for each path, the implicit compensated method
is applied with four different step sizes �t = pδt for  ≤ p ≤ , δt = T/. The solid line
shows a log-log plot of the expectation E|x(T) –Y (T)| against �t. For reference, a dashed
line of slope . is added. We can see that the computational result is consistent with a
strong order equal to ..
To observe the performance of the stability of the implicit compensated Euler method

(.) to (.), we compare themethodwith the Eulermethod (see []) and the drift-implicit
Euler method (see []) for an increasing step size�t in Figure , Figure , Figure  and Fig-
ure .Here,E|Yn| denotes the expectation of the numerical approximations. The expecta-
tion is estimated by averagingM = , sample paths, that is to say, ωi :  ≤ i≤ ,,
E|Yn| = /,

∑,
i= |Yn(ωi)|. According to Theorem ., I, II and III are exponen-

tially stable in the mean square.

Figure 1 The global error of implicit compensated method for (4.1) at T = 1 with x(0) = 0.1.

http://www.advancesindifferenceequations.com/content/2012/1/214
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Figure 2 The stability of numerical methods for I about small step sizes with x(0) = 0.1.

Figure 3 The stability of numerical methods for I and II about larger step sizes with x(0) = 0.01.

Figure 4 The stability of numerical methods for I and II about larger step sizes.

Figure 5 The stability of implicit compensated Euler for pure jump example III with x(0) = 0.0025.
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FromFigure , for a small step size�t = /, the three numericalmethods to I aremean-
square stable and behave similarly. Moreover, for a step size �t = /, slight difference
appears among the three methods. However, from Figure , for a larger step size �t = ,
there is observable instability of the Euler method and drift-implicit Euler method while
the implicit compensated Euler method remains stable for I. Therefore, our numerical
results show that for the parameter values used here, the Euler method and drift-implicit
Euler method are stable in the mean square only for restricted step sizes. It is interesting
to observe that even for a very large step size �t = , the implicit compensated Euler
method is still stable in the mean square for I and II in Figure . And in Figure , pure
jump example III is described.
So, we can think that the numerical experiments are consistent with our results in Sec-

tion , that is to say, the implicit Euler compensatedmethod performs better stability than
current numerical methods of order ..

Competing interests
The authors declare that they have no competing interests.

Authors’ contributions
The authors have equal contributions to each part of this article. All the authors read and approved the final manuscript.

Author details
1Department of Mathematics, Harbin Institute of Technology, Harbin, 150001, P.R. China. 2Department of Mathematics,
Heilongjiang Bayi Agricultural University, Daqing, 163319, P.R. China.

Acknowledgements
The financial support from the National Natural Science Foundation of China (No. 11071050) is gratefully acknowledged.

Received: 25 July 2012 Accepted: 6 December 2012 Published: 13 December 2012

References
1. Schönbucher, PJ: In: Credit Derivatives Pricing Models: Models, Pricing and Implementation, pp. 86-103. Wiley,

Chichester (2003)
2. Cont, R, Tankov, P: Financial Modelling with Jump Processes. Financ. Math. Ser. Chapman & Hall/CRC, Boca Raton

(2004)
3. Merton, RC: Option pricing when underlying stock returns are discontinuous. J. Financ. Econom. 2, 125-144 (1976)
4. Platen, E: An approximation method for a class of Itô processes with jump component. Liet. Mat. Rink. 22(2), 124-136

(1982)
5. Bruti-Liberati, N, Platen, E: On the strong approximation of jump-diffusion processes. Technical report, Quantitative

Finance Research Papers 157, University of Technology, Sydney (2005)
6. Bruti-Liberati, N, Platen, E: Strong approximations of stochastic differential equations with jumps. J. Comput. Appl.

Math. 205, 982-1001 (2007)
7. Bruti-Liberati, N, Platen, E: Approximation of jump diffusions in finance and economics. Comput. Econ. 29, 283-312

(2007)
8. Mao, W: Convergence of numerical solutions for variable delay differential equations driven by Poisson random jump

measure. Appl. Math. Comput. 212, 409-417 (2009)
9. Buckwar, E, Riedler, MG: Runge-Kutta methods for jump-diffusion differential equations. J. Comput. Appl. Math.

(2011). doi:10.1016/j.cam.2011.08.001
10. Liu, XQ, Li, CW: Weak approximations and extrapolations of stochastic differential equations with jumps. SIAM

J. Numer. Anal. 37(6), 1747-1767 (2000)
11. Mordecki, E, Szepessy, A, Tempone, R, Zouraris, GE: Adaptive weak approximation of diffusions with jumps. SIAM J.

Numer. Anal. 46(4), 1732-1768 (2008)
12. Li, CW, Dong, Z, Situ, R: Almost sure stability of linear stochastic differential equations with jumps. Probab. Theory

Relat. Fields 123, 121-155 (2002)
13. Swishchuk, AV, Kazmerchuk, YI: Stability of stochastic differential delay Itô’s equations with Poisson jumps and with

Markovian switchings. Application to financial models. Teor. Imovir. Mater. Stat. 64, 141-151 (2001)
14. Higham, DJ, Kloeden, PE: Numerical methods for nonlinear stochastic differential equations with jumps. Numer.

Math. 101(1), 101-119 (2005)
15. Ikeda, N, Watanabe, S: Stochastic Differential Equations and Diffusion Processes, 2nd edn. North-Holland, Amsterdam

(1989)
16. Øksendal, B, Sulem, A: Applied Stochastic Control of Jump-Diffusions. Universitext. Springer, Berlin (2005)
17. Mao, XR, Yuan, CG: In: Stochastic Differential Equations with Markovian Switching, pp. 17-200. Imperial College Press,

London (2006)
18. Hairer, E, Wanner, G: In: Solving Ordinary Differential Equations II: Stiff and Differential-Algebraic Problems, 2nd edn.,

pp. 215-217. Springer, Berlin (1996)

http://www.advancesindifferenceequations.com/content/2012/1/214
http://dx.doi.org/10.1016/j.cam.2011.08.001


Song and Yu Advances in Difference Equations 2012, 2012:214 Page 17 of 17
http://www.advancesindifferenceequations.com/content/2012/1/214

19. Liu, MZ, Cao, WR, Fan, ZC: Convergence and stability of the semi-implicit Euler method for a linear stochastic
differential delay equation. J. Comput. Appl. Math. 170, 255-268 (2004)

20. Higham, DJ: An algorithmic introduction to numerical simulation of stochastic differential equations. SIAM Rev. 43(3),
525-546 (2001)

doi:10.1186/1687-1847-2012-214
Cite this article as: Song and Yu: Convergence and stability of implicit compensated Euler method for stochastic
differential equations with Poisson randommeasure. Advances in Difference Equations 2012 2012:214.

http://www.advancesindifferenceequations.com/content/2012/1/214

	Convergence and stability of implicit compensated Euler method for stochastic differential equations with Poisson random measure
	Abstract
	Keywords

	Introduction
	Problem's setting
	Implicit compensated Euler method

	Strong convergence of implicit compensated Euler method
	Mean-square stability
	Numerical experiments
	Competing interests
	Authors' contributions
	Author details
	Acknowledgements
	References


