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Abstract
In this paper, we derive some interesting identities involving Gegenbauer
polynomials arising from the orthogonality of Gegenbauer polynomials for the inner
product space Pn with respect to the weighted inner product
〈p1,p2〉 =

∫ 1
–1 p1(x)p2(x)(1 – x

2)λ–
1
2 dx.

1 Introduction
The Gegenbauer polynomials are given in terms of the Jacobi polynomials P(α,β)

n (x) with
α = β = λ – 

 (λ > – 
 , λ �= ) by

C(λ)
n (x) =

�(λ + 
 )�(n + λ)

�(λ)�(n + λ + 
 )
P(λ– 

 ,λ–

 )

n (x)

=
(
n + λ – 

n

) n∑
k=

(n
k
)
(λ + n)k
(λ + 

 )k

(
x – 


)k

, (.)

where (a)k = a(a + )(a + ) · · · (a + k – ) (see [, ]).
From (.), we note that C(λ)

k (x) is a polynomial of degree n with real coefficients and
C(λ)
n () =

(n+λ–
n

)
. The leading coefficient of C(λ)

n (x) is n
(
λ+n–

n
)
. By the theory of Jacobi

polynomials with α = β = λ – 
 , λ > – 

 , and λ �= , we get

C(λ)
n (–x) = (–)nC(λ)

n (x). (.)

It is not difficult to show that C(λ)
n (x) is a solution of the following Gegenbauer differential

equation:

(
 – x

)
y′′ – (λ + )xy′ + n(n + λ)y = .

The Rodrigues formula for the Gegenbauer polynomials is well known as the following:

(
 – x

)λ– 
C(λ)

n (x) =
(–)n(λ)n
n!(n + λ)n

(
d
dx

)n(
 – x

)n+λ– 
 (see [, ]). (.)

Equation (.) can be easily derived from the properties of Jacobi polynomials.
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As is well known, the generating function of Gegenbauer polynomials is given by

λ– 


( – xt + t)  ( – xt +
√
 – xt + t)λ– 


=

∞∑
n=

(λ + 
 )n

(λ)n
C(λ)
n (x)tn. (.)

Equation (.) can be also derived from the generating function of Jacobi polynomials.
From (.), we note that


( – xt + t)λ

=
∞∑
n=

C(λ)
n (x)tn

(|t| < , |x| ≤ 
)
. (.)

The proof of (.) is given in the following book: Stein and Weiss, Introduction to Fourier
Analysis in Euclidean Space, Princeton University Press, .
By (.) and (.), we get

∫ 

–
C(λ)
n (x)C(λ)

m (x)
(
 – x

)λ– 
 dx =

π–λ�(n + λ)
n!(n + λ)(�(λ))

δm,n, (.)

where δm,n is the Kronecker symbol and it holds for each fixed λ ∈Rwith λ > – 
 and λ �= .

Equation (.) implies the orthogonality of C(λ)
n (x) and equation (.) is important in

deriving our results in this paper. From (.), we can derive the following derivative of
Gehenbauer polynomials C(λ)

n (x):

d
dx

C(λ)
n (x) = λC(λ+)

n– (x), for n≥ . (.)

By (.), we get

dk

dxk
C(λ)
n (x) = kλkC(λ+k)

n–k (x). (.)

As is well known, the Bernoulli polynomials Bn(x) are defined by the generating function
to be

t
et – 

ext = eB(x)t =
∞∑
n=

Bn(x)
tn

n!
(see [–]), (.)

with the usual convention about replacing Bn(x) by Bn(x). In the special case, x = , Bn() =
Bn are called the nth Bernoulli numbers.
From (.), we note that

Bn(x) = (B + x)n =
n∑
l=

(
n
l

)
Bn–lxl (see [–]), (.)

and

B′
n(x) =

d
dx

Bn(x) = nBn–(x). (.)
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The Euler polynomials En(x) are also defined by the generating function to be


et + 

ext = eE(x)t =
∞∑
n=

En(x)
tn

n!
(see [, –]), (.)

with the usual convention about replacing En(x) by En(x). In the special case, x = , En() =
En are called the nth Euler numbers. By (.), we see that the recurrence formula for En

is given by

E = , (E + )n + En = δ,n (see [–]). (.)

For each fixed λ ∈Rwith λ > – 
 and λ �= , let Pn = {p(x) ∈R[x] | degp(x) ≤ n} be an inner

product space with respect to the inner product

〈
p(x),p(x)

〉
=

∫ 

–

(
 – x

)λ– 
 p(x)p(x)dx, (.)

where p(x),p(x) ∈ Pn. The information entropy of Gegenbauer polynomials is relevant
since it is related to the angular part of the information entropies of certain quantumme-
chanical systems such as the harmonic oscillator and the hydrogen atom inD dimensions.
In [], Buyarov, Lopez-Artes, Martinez-Finkelshtein, and Van Assche gave an effective
method to compute the entropy for Gegenbauer polynomials with an integer parameter
and obtain the first few terms in the asymptotic expansion as the degree of the polyno-
mial tends to infinity. That is, an efficient method was provided for evaluating, in a closed
form, the information entropy of the Gegenbauer polynomials C(λ)

n (x) in the case when
λ = l ∈ N. For given values of n and l, this method requires the computation by means
of recurrence relations of two auxiliary polynomials, P(x) and H(x), of degrees l –  and
l–, respectively (see []). In [], Sanchez-Ruiz showed that P(x) is related to the coef-
ficients of theGaussian quadrature formula for theGegenbauer weightswl(x) = (–x)l– 

 ,
and this fact is used to obtain the explicit expression of P(x). The position andmomentum
information entropies ofD-dimensional quantum systems with central potentials, such as
the isotropic harmonic oscillator and the hydrogen atom, depend on the entropies of the
(hyper)spherical harmonics (see []). In turn, these entropies are expressed in terms of the
entropies of the Gegenbauer (ultraspherical) polynomials C(λ)

n (x), the parameter λ being
either an integer or a half-integer number. Up to now, however, the exact analytical ex-
pression of the entropy of Gegenbauer polynomials of arbitrary degree n has only been
obtained for the particular values of the parameter λ = , ,  (see []). In [], de Vicente,
Gandy, Sanchez-Ruiz presented a novel approach to the evaluation of the information en-
tropy of Gegenbauer polynomials, which makes use of trigonometric representations for
these polynomials and complex integration techniques. Using this method, we are able
to find the analytical expression of the entropy for arbitrary values of both n and λ ∈ N

(see []). The Gegenbauer polynomial seems to be interesting and important in the area
of mathematical physics. Recently, many authors have studied Gegenbauer polynomials
related to mathematical physics (see [–, , , , , , , ]). In this paper, we derive
some interesting identities involving Gegenbauer polynomials arising from the orthogo-
nality of those for the inner product space Pn with respect to the weighted inner product
〈p,p〉 =

∫ 
– p(x)p(x)( – x)λ– 

 dx.
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Our methods used in this paper are useful in finding some new identities and relations
on the Bernoulli and Euler polynomials involving Gegenbauer polynomials.

2 Some identities involving Gegenbauer polynomials
Let us take p(x) =

∑n
k= dkC

(λ)
k (x) ∈ Pn, dk ∈R. Then, by (.) and (.), we get

〈
p(x),C(λ)

k (x)
〉
= dk

〈
C(λ)
k (x),C(λ)

k (x)
〉

= dk
∫ 

–

(
 – x

)λ– 
C(λ)

k (x)C(λ)
k (x)dx = dk

π–λ�(k + λ)
k!(k + λ)(�(λ))

. (.)

Thus, from (.), we have

dk =
(�(λ))k!(k + λ)
π–λ�(k + λ)

∫ 

–

(
 – x

)λ– 
 p(x)C(λ)

k (x)dx. (.)

By (.) and (.), we get

dk =
(�(λ))k!(k + λ)
π–λ�(k + λ)

× (–)k(λ)k
k!(k + λ)k

∫ 

–

(
dk

dxk
(
 – x

)k+λ– 


)
p(x)dx

=
(k + λ)�(λ)

(–)k
√

π�(k + λ + 
 )

∫ 

–

(
dk

dxk
(
 – x

)k+λ– 


)
p(x)dx. (.)

Therefore, by (.), we obtain the following proposition.

Proposition . For p(x) ∈ Pn, let

p(x) =
n∑

n=

dkC(λ)
k (x) (dk ∈ R).

Then

dk =
(k + λ)�(λ)

(–)k
√

π�(k + λ + 
 )

∫ 

–

(
dk

dxk
(
 – x

)k+λ– 


)
p(x)dx.

For example, let p(x) = xn ∈ Pn. From Proposition ., we note that

dk =
(k + λ)�(λ)

(–)k
√

π�(k + λ + 
 )

∫ 

–

(
dk

dxk
(
 – x

)k+λ– 


)
xn dx

= (–n)
∫ 

–

(
dk–

dxk–
(
 – x

)k+λ– 


)
xn– dx×

(
(k + λ)�(λ)√

π (–)k�(k + λ + 
 )

)

= · · ·

=
(k + λ)n!�(λ)

(n – k)!k
√

π (k + 
 + λ)

∫ 

–

(
 – x

)k+λ– 
 xn–k dx

=
(
 + (–)n–k

) (k + λ)n!�(λ)
(n – k)!k

√
π�(k + 

 + λ)

∫ 



(
 – x

)k+λ– 
 xn–k dx. (.)

http://www.advancesindifferenceequations.com/content/2012/1/219


Kim et al. Advances in Difference Equations 2012, 2012:219 Page 5 of 11
http://www.advancesindifferenceequations.com/content/2012/1/219

Let us assume that n – k ≡  (mod). Then, by (.), we get

dk =
(k + λ)n!�(λ)

(n – k)!k
√

π�(k + 
 + λ)

B
(
k + λ +



,
n – k + 



)

=
�( n–k+ )�(k + λ + 

 )
�( n+k+λ+ )

, (.)

where B(α,β) is the beta function which is defined by B(α,β) = �(α)�(β)
�(α+β) .

It is easy to show that

�

(
n – k + 



)
=
n – k – 


�

(
n – k – 



)

=
(
n – k – 



)(
n – k – 



)
�

(
n – k – 



)
= · · ·

=
( n–k )( n–k– )( n–k– ) · · · 

�(

 )

( n–k )( n–k– ) · · · (  )

=
(n – k)!

√
π

n–k( n–k )!
. (.)

Therefore, by (.) and (.), we obtain the following identity:

xn =
∑

≤k≤n,n–k≡ (mod)

(k + λ)n!�(λ)
n( n–k )!�( n+k+λ+ )

C(λ)
k (x). (.)

Let us take p(x) = Bn(x) ∈ Pn. Then, by (.), we get

dk =
(k + λ)�(λ)

(–)k
√

π�(k + λ + 
 )

∫ 

–

(
dk

dxk
(
 – x

)k+λ– 


)
Bn(x)dx

=
(k + λ)�(λ)(–n)

(–)k
√

π�(k + λ + 
 )

∫ 

–

(
dk–

dxk–
(
 – x

)k+λ– 


)
Bn–(x)dx = · · ·

=
(k + λ)�(λ)(–n)(–(n – )) · · · (–(n – k + ))

(–)k
√

π�(k + λ + 
 )

∫ 

–

(
 – x

)k+λ– 
Bn–k(x)dx

=
(k + λ)�(λ)

k
√

π�(k + λ + 
 )

× n!
(n – k)!

∫ 

–

(
 – x

)k+λ– 
Bn–k(x)dx. (.)

From (.) and (.), we can derive the following equation:

∫ 

–

(
 – x

)k+λ– 
Bn–k(x)dx

=
n–k∑
l=

(
n – k
l

)
Bn–k–l

∫ 

–

(
 – x

)k+λ– 
 xl dx

=
n–k∑
l=

(
n – k
l

)
Bn–k–l

(
 + (–)l

)∫ 



(
 – x

)k+λ– 
 xl dx. (.)
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Let us consider that l ≡  (mod). Then, by (.), we get

∫ 

–

(
 – x

)k+λ– 
Bn–k(x)dx

= 
∑

≤l≤n–k,l≡ (mod)

(
n – k
l

)
Bn–k–l

∫ 



(
 – x

)k+λ– 
 xl dx

=
∑

≤l≤n–k,l≡ (mod)

(
n – k
l

)
Bn–k–l

∫ 


( – y)k+λ– 

 y
l–
 dy

=
∑

≤l≤n–k,l≡ (mod)

(
n – k
l

)
Bn–k–l

�(k + λ + 
 )�(

l+
 )

�( k+λ+l+ )
. (.)

For l ∈ Z+ with l ≡  (mod), we have

�

(
l + 


)
= �

(
l – 


+ 
)
=
l – 


�

(
l – 


)

=
(
l – 


)(
l – 


)
�

(
l – 


)
= · · ·

=
(
l – 


)(
l – 


)
· · ·

(



)
�

(



)
=
(  )

ll!�(  )
( l )!

=
l!
√

π

l( l )!
. (.)

By (.) and (.), we get

∫ 

–

(
 – x

)k+λ– 
Bn–k(x)dx

=
∑

≤l≤n–k,l≡ (mod)

(
n – k
l

)
Bn–k–l

�(k + λ + 
 )�(

l+
 )

�( k+λ+l+ )

=
∑

≤l≤n–k,l≡ (mod)

(
n – k
l

)
Bn–k–l

l!
√

π

l( l )!
× �(k + λ + 

 )
�( k+λ+l+ )

. (.)

From (.) and (.), we have

dk =
n!(k + λ)�(λ)
k(n – k)!

∑
≤l≤n–k,l≡ (mod)

(n–k
l

)
Bn–k–ll!

l( l )!�(
k+λ+l+

 )
. (.)

Therefore, by (.) and Proposition ., we obtain the following theorem.

Theorem . For n ∈ Z+, we have

Bn(x)
n!

= �(λ)
n∑

k=

(
(k + λ)

k(n – k)!
∑

≤l≤n–k,l≡ (mod)

(n–k
l

)
Bn–k–ll!

l( l )!�(
k+λ+l+

 )

)
C(λ)
k (x).

By the same method, we get

En(x)
n!

= �(λ)
n∑

k=

(
(k + λ)

k(n – k)!
∑

≤l≤n–k,l≡ (mod)

(n–k
l

)
En–k–ll!

l( l )!�(
k+λ+l+

 )

)
C(λ)
k (x). (.)
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From (.), we note that

C(λ)
n–k(x)C

(λ)
k (x)

=
(
n – k + λ – 

n – k

) n–k∑
l=

(n–k
l

)
(λ + n – k)l
(λ + 

 )l

(
x – 


)l(k + λ – 
k

)

×
k∑

m–

( k
m
)
(λ + k)m
(λ + 

 )m

(
x – 


)m

=
(
n – k + λ – 

n – k

)(
k + λ – 

k

)

×
n∑

p=

( p∑
m=

(n–k
p–m

)( k
m
)
(λ + k)m(λ + n – k)p–m

(λ + 
 )m(λ + 

 )p–m

)(
x – 


)p

. (.)

Let us take p(x) = C(λ)
k (x)C(λ)

n–k(x) ∈ Pn. From Proposition ., p(x) can be rewritten as

p(x) = C(λ)
k (x)C(λ)

n–k(x) =
n∑

r=

drC(λ)
r (x) (dr ∈R). (.)

Then, by Proposition . and (.), we get

dr =
(r + λ)�(λ)

(–)r
√

π�(r + λ + 
 )

∫ 

–

(
dr

dxr
(
 – x

)r+λ– 


)
C(λ)
k (x)C(λ)

n–k(x)dx

=
(r + λ)�(λ)

(–)r
√

π�(r + λ + 
 )

(
n – k + λ – 

n – k

)(
k + λ – 

k

)

×
n∑

p=

( p∑
m=

(n–k
p–m

)( k
m
)
(λ + k)m

(λ + 
 )m(λ + 

 )p–m
(λ + n – k)p–m

)

×
∫ 

–

(
dr

dxr
(
 – x

)r+λ– 


)(
x – 


)p

dx

=
(r + λ)�(λ)

(–)r
√

π�(r + λ + 
 )

(
n – k + λ – 

n – k

)(
k + λ – 

k

)

×
n∑
p=r

( p∑
m=

(n–k
p–m

)( k
m
)
(λ + k)m

(λ + 
 )m(λ + 

 )p–m
(λ + n – k)p–m

)

×
∫ 

–

(
dr

dxr
(
 – x

)r+λ–
)(

x – 


)p

dx. (.)

It is not difficult to show that

∫ 

–

(
dr

dxr
(
 – x

)r+λ– 


)(
x – 


)p

dx

=
(–)rp!
p(p – r)!

∫ 

–

(
 – x

)r+λ– 
 ( – x)p–r(–)p–r dx

=
(–)pp!
p(p – r)!

∫ 

–
( – x)p+λ– 

 ( + x)r+λ– 
 dx
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=
(–)pp!
p(p – r)!

∫ 


( – y)p+λ– 

 (y)r+λ– 
 dy

=
(–)pp+λ– 

 +r+λ– 
 +

p
× p!

(p – r)!

∫ 


( – y)p+λ– 

 yr+λ– 
 dy

= (–)pr+λ
p!

(p – r)!
× �(p + λ + 

 )�(r + λ + 
 )

�(r + p + λ + )
. (.)

From the fundamental theorem of gamma function, we have

�(p + λ + 
 )

�(r + p + λ + )
=
(p + λ – 

 ) · · · (λ + 
 )�(λ + 

 )
(r + p + λ) · · ·λ�(λ)

=
(λ + 

 )p
√

π–λ

(λ)r+p+�(λ)
. (.)

By (.) and (.), we get

∫ 

–

(
dr

dxr
(
 – x

)r+λ– 


)(
x – 


)p

dx

= (–)pr+λ
p!

(p – r)!
× �(p + λ + 

 )�(r + λ + 
 )

�(r + p + λ + )

= (–)pr+λ
p!

(p – r)!
�

(
r + λ +




)
× (λ + 

 )p
√

π–λ

(λ)r+p+�(λ)

= (–)pr+λ+ p!
(p – r)!

�

(
r + λ +




)
× (λ + 

 )p
√

π

(λ)r+p+�(λ)
. (.)

From (.) and (.), we have

dr =
(r + λ)�(λ)

(–)r
√

π�(r + λ + 
 )

(
n – k + λ – 

n – k

)(
k + λ – 

k

)

×
n∑
p=r

( p∑
m=

(n–k
p–m

)( k
m
)
(λ + k)m

(λ + 
 )m(λ + 

 )p–m
(λ + n – k)p–m

)

× (–)pr+λ+ p!
(p – r)!

�

(
λ +



+ r

)
× (λ + 

 )p
√

π

(λ)r+p+�(λ)

= (–)r+pλ+(r + λ)
(
n – k + λ – 

n – k

)(
k + λ – 

k

)

×
n∑
p=r

( p∑
m=

(n–k
p–m

)( k
m
)
(λ + k)m

(λ + 
 )m(λ + 

 )p–m
(λ + n – k)p–m

p!(λ + 
 )p

(p – r)!(λ)r+p+

)
. (.)

Therefore, by (.), we obtain the following theorem.

Theorem . For n,k ∈ Z+ with n≥ k, we have

C(λ)
n–k(x)C

(λ)
k (x) = λ+

(
n – k + λ – 

n – k

)(
k + λ – 

k

) n∑
r=

n∑
p=r

p∑
m=

{
(r + λ)(–)p+r

×
(n–k
p–m

)( k
m
)
(λ + k)m(λ + n – k)p–mp!(λ + 

 )p
(λ + 

 )m(λ + 
 )p–m(p – r)!(λ)r+p+

}
C(λ)
r (x).
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Let us take p(x) = C(λ)
n (x) ∈ Pn. Then, from (.), we have

C(λ)
n (x) =

�(λ + 
 )�(n + λ)

�(λ)�(n + λ + 
 )
P(λ– 

 ,λ–

 )

n (x)

=
(n + λ – ) · · · (λ)
(n + λ – 

 ) · · · (λ + 
 )
P(λ– 

 ,λ–

 )

n (x) =
(n+λ–

n
)

(n+λ– 


n
) P(λ– 

 ,λ–

 )

n (x). (.)

In the previous paper, we have shown that

P(α,β)
n (x) =

n∑
k=

(
n + α

n – k

)(
n + β

k

)(
x – 


)k(x + 


)n–k

(see []). (.)

From (.) and (.), we have

C(λ)
n (x) =

(n+λ–
n

)
(n+λ– 


n

) n∑
k=

(
n + λ – 


n – k

)(
n + λ – 


k

)(
x – 


)k(x + 


)n–k

, (.)

and

dk

dxk
C(λ)
n (x) = kλkC(λ+k)

n–k (x). (.)

Let p(x) = C(λ)
n (x) =

∑n
k= dkC

(λ)
k (x). Then, by Proposition ., we get

dk =
(k + λ)�(λ)

(–)k
√

π�(k + λ + 
 )

∫ 

–

(
dk

dxk
(
 – x

)k+λ– 


)
C(λ)
n (x)dx

=
(k + λ)�(λ)

(–)k
√

π�(k + λ + 
 )
(–)kkλk

∫ 

–

(
 – x

)k+λ– 
C(λ+k)

n–k (x)dx

=
λk(k + λ)�(λ)√
π�(k + λ + 

 )

∫ 

–

(
 – x

)k+λ– 
C(λ+k)

n–k (x)dx. (.)

By (.), we get

C(λ+k)
n–k (x)

=
(n–k+(λ+k)–

n–k
)

(n–k+λ+k– 


n–k

)
n–k∑
l=

(
n – k + λ + k – 


n – k – l

)(
n – k + λ + k – 


l

)(
x – 


)l(x + 


)n–k–l

=
(n+k+λ–

n–k
)

(n+λ– 


n–k

)
n–k∑
l=

(
n + λ – 


n – k – l

)(
n + λ – 


l

)(
x – 


)l(x + 


)n–k–l

. (.)

From (.) and (.), we have

dk =
λk(k + λ)�(λ)√
π�(k + λ + 

 )
×

(n+k+λ–
n–k

)
(n+λ– 


n–k

)
n–k∑
l=

(
n + λ – 


n – k – l

)(
n + λ – 


l

)
(–)l

(



)n–k

×
∫ 

–
( – x)k+λ– 

 +l( + x)λ+n–

 –l dx. (.)
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It is easy to show that

∫ 

–
( – x)k+λ– 

 +l( + x)λ+n–l–

 dx

=
∫ 


( – y)k+λ– 

 +l(y)λ+n–l–

 dy

= n+λ+k
∫ 


( – y)k+λ+l– 

 yλ+n–l– 
 dy

= k+n+λ
�(k + λ + l + 

 )�(λ + n – l + 
 )

�(k + n + λ)
. (.)

By the fundamental theorem of gamma function, we see that

�

(
k + λ + l +




)
=

(
k + λ + l – 


l

)
l!�

(
k + λ +




)
, (.)

�

(
λ + n – l +




)
=

(
λ + n – l – 


n – l

)
(n – l)!�

(
λ +




)
, (.)

and

�(k + λ + n) =
(
k + λ + n – 

n + k

)
(n + k)!�(λ). (.)

As is well known, the duplication formula for the gamma function is given by

�(z)�
(
z +




)
= –z

√
π�(z). (.)

By (.), (.), (.), and (.), we get

∫ 

–
( – x)k+λ+l– 

 ( + x)λ+n–l–

 dx = k+n+

(k+λ+l– 


l

)(λ+n–l– 


n–l

)
�(k + λ + 

 )(n
l
)(k+λ+n–

n+k
)(n+k

k
)
k!�(λ)

√
π . (.)

From (.) and (.), we have

dk = λk(k + λ)k+
(n+k+λ–

n–k
)

(n+λ– 


n–k

)

×
n–k∑
l=

(
n + λ – 


n – k – l

)(
n + λ – 


l

)
(–)l

(k+λ+l– 


l

)(
λ+n–l– 


n–l

)
(n
l
)(k+λ+n–

n+k
)(n+k

k
)
k!
. (.)

Therefore, by (.), we obtain the following theorem.

Theorem . For n ∈ Z+, we have

C(λ)
n (x) =

n∑
k=

{
λk(k + λ)k+

(n+k+λ–
n–k

)
(n+λ– 


n–k

)

×
n–k∑
l=

(n+λ– 


n–k–l

)(n+λ– 


l

)
(–)l

(k+λ+l– 


l

)
(n
l
)(k+λ+n–

n+k
)(n+k

k
)
k!

(
λ + n – l – 


n – l

)}
C(λ)
k (x).
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