Frobenius-Euler polynomials and umbral calculus in the p-adic case

Dae San Kim ${ }^{1}$, Taekyun Kim²* ${ }^{*}$, Sang-Hun Lee ${ }^{3}$ and Seog-Hoon Rim ${ }^{4}$

*Correspondence: tkkim@kw.ac.kr
${ }^{2}$ Department of Mathematics, Kwangwoon University, Seoul, 139-701, Republic of Korea Full list of author information is available at the end of the article

Abstract
 In this paper, we study some p-adic Frobenius-Euler measure related to umbral calculus in the p-adic case. Finally, we derive some identities of Frobenius-Euler polynomials from our study.
 MSC: 05A10; 05A19
 Keywords: Frobenius-Euler polynomials; umbral calculus; p-adic integral

1 Introduction

Let p be a fixed prime number. Throughout this paper $\mathbb{Z}_{p}, \mathbb{Q}_{p}$ and \mathbb{C}_{p} will denote the ring of p-adic integers, the field of p-adic rational numbers and the completion of algebraic closure of \mathbb{Q}_{p}, respectively.
For $f \in \mathbb{N}$ with $(f, p)=1$, let

$$
\begin{aligned}
& X=\lim _{\overleftarrow{N}} \mathbb{Z} / f p^{N} \mathbb{Z} ; \\
& a+f p^{N} \mathbb{Z}_{p}=\left\{x \in X \mid x \equiv a\left(\bmod f p^{N}\right)\right\}, \quad 0 \leq a \leq f p^{N}-1, \\
& X^{*}=\bigcup_{0<a<f p,(a, p)=1}\left(a+f p^{N} \mathbb{Z}_{p}\right), \quad N \in \mathbb{N} \text { (see [1-7]). }
\end{aligned}
$$

Note that the natural map $\mathbb{Z} / f p^{N} \mathbb{Z} \rightarrow \mathbb{Z} / p^{N} \mathbb{Z}$ induces

$$
\pi: X \rightarrow \mathbb{Z}_{p}
$$

If g is a function on \mathbb{Z}_{p}, we denote by the same g the function $g \circ \pi$ on X. Namely, we can consider g as a function on X.

For $k \geq 0$ and $\lambda \in \mathbb{C}_{p}$ with $|1-\lambda|_{p}>1$, the Frobenius-Euler measure on X is defined by

$$
\begin{equation*}
\mu_{\lambda}\left(x+f p^{N} \mathbb{Z}_{p}\right)=\frac{\lambda^{f p^{N}-x}}{1-\lambda^{f p^{N}}} \quad(\text { see }[5,8]) \tag{1.1}
\end{equation*}
$$

where the p-adic absolute value on \mathbb{C}_{p} is normalized by $|p|_{p}=\frac{1}{p}$.
As is well known, the Frobenius-Euler polynomials are defined by the generating function to be

$$
\begin{equation*}
\left(\frac{1-\lambda}{e^{t}-\lambda}\right) e^{x t}=e^{H(x \mid \lambda) t}=\sum_{n=0}^{\infty} H_{n}(x \mid \lambda) \frac{t^{n}}{n!} \quad(\text { see }[5,7,9]), \tag{1.2}
\end{equation*}
$$

with the usual convention about replacing $H^{n}(x \mid \lambda)$ by $H_{n}(x \mid \lambda)$. In the special case, $x=0$, $H_{n}(0 \mid \lambda)=H_{n}(\lambda)$ are called the nth Frobenius-Euler numbers

$$
\begin{equation*}
H_{n}(x \mid \lambda)=(H(\lambda)+x)^{n}=\sum_{l=0}^{\infty}\binom{n}{l} H_{l}(\lambda) x^{n-l} \quad(\text { see }[6,9,10]) . \tag{1.3}
\end{equation*}
$$

Thus, by (1.2) and (1.3), we easily get

$$
\begin{equation*}
(H(\lambda)+1)^{n}-\lambda H_{n}(\lambda)=(1-\lambda) \delta_{0, n} \quad(\text { see }[1-19]), \tag{1.4}
\end{equation*}
$$

where $\delta_{n, k}$ is the Kronecker symbol.
For $r \in \mathbb{N}$, the Frobenius-Euler polynomials of order r are defined by the generating function

$$
\begin{align*}
\left(\frac{1-\lambda}{e^{t}-\lambda}\right)^{r} e^{x t} & =\underbrace{\left(\frac{1-\lambda}{e^{t}-\lambda}\right) \times \cdots \times\left(\frac{1-\lambda}{e^{t}-\lambda}\right)}_{r \text {-times }} e^{x t} \\
& =\sum_{n=0}^{\infty} H_{n}^{(r)}(x \mid \lambda) \frac{t^{n}}{n!} \quad(\text { see }[5,9]) . \tag{1.5}
\end{align*}
$$

In the special case, $x=0, H_{n}^{(r)}(0 \mid \lambda)=H_{n}^{(r)}(\lambda)$ are called the nth Frobenius-Euler numbers of order r. The nth Frobenius-Euler polynomials can be represented by (1.1) as follows:

$$
\begin{align*}
\frac{\lambda H_{n}(x \mid \lambda)}{1-\lambda} & =\int_{X}(x+y)^{n} d \mu_{\lambda}(y)=\int_{\mathbb{Z}_{p}}(x+y)^{n} d \mu_{\lambda}(y) \\
& =\lim _{N \rightarrow \infty} \frac{1}{1-\lambda^{p^{N}}} \sum_{y=0}^{p^{N}-1}(x+y)^{n} \lambda^{p^{N}-y} \quad(\text { see }[6,7]) . \tag{1.6}
\end{align*}
$$

Let \mathcal{F} be the set of all formal power series in the variable t over \mathbb{C}_{p} with

$$
\begin{equation*}
\mathcal{F}=\left\{\left.f(t)=\sum_{k=0}^{\infty} \frac{a_{k}}{k!} t^{k} \right\rvert\, a_{k} \in \mathbb{C}_{p}\right\} . \tag{1.7}
\end{equation*}
$$

Let $\mathbb{P}=\mathbb{C}_{p}[x]$ and \mathbb{P}^{*} denote the vector space of all linear functionals on \mathbb{P}.
The formal power series

$$
\begin{equation*}
f(t)=\sum_{k=0}^{\infty} \frac{a_{k}}{k!} t^{k} \in \mathcal{F} \quad(\text { see }[11,15]) \tag{1.8}
\end{equation*}
$$

defines a linear functional on \mathbb{P} by setting

$$
\begin{equation*}
\left\langle f(t) \mid x^{n}\right\rangle=a_{n} \quad \text { for all } n \geq 0 \tag{1.9}
\end{equation*}
$$

From (1.8) and (1.9), we have

$$
\begin{equation*}
\left\langle t^{n} \mid x^{n}\right\rangle=n!\delta_{n, k} \quad(n, k \geq 0) . \tag{1.10}
\end{equation*}
$$

Here, \mathcal{F} denotes both the algebra of formal power series in t and the vector space of all linear functionals on \mathbb{P}, and so an element $f(t)$ of \mathcal{F} will be thought of as both a formal power series and a linear functional (see [11, 15]). We will call \mathcal{F} the umbral algebra. The umbral calculus is the study of umbral algebra (see [11, 15]).
The order $o(f(t))$ of power series $f(t)(\neq 0)$ is the smallest integer k for which a_{k} does not vanish (see $[11,15]$). A series $f(t)$ for which $o(f(t))=1$ is called a delta series. If a series $f(t)$ has $o(f(t))=0$, then $f(t)$ is called an invertible series (see [11, 15]). Let $f(t), g(t) \in \mathcal{F}$. Then we easily see that $\langle f(t) g(t) \mid p(x)\rangle=\langle f(t) \mid g(t) p(x)\rangle=\langle g(t) \mid f(t) p(x)\rangle$. From (1.10), we note that

$$
\begin{align*}
& \left\langle e^{y t} \mid x^{n}\right\rangle=y^{n}, \quad\left\langle e^{y t} \mid p(x)\right\rangle=p(y), \tag{1.11}\\
& f(t)=\sum_{k=0}^{\infty} \frac{\left\langle f(t) \mid x^{k}\right\rangle}{k!} t^{k}, \quad f(t) \in \mathcal{F}, \tag{1.12}
\end{align*}
$$

and

$$
\begin{equation*}
p(x)=\sum_{k=0}^{\infty} \frac{\left\langle t^{k} \mid p(x)\right\rangle}{k!} x^{k}, \quad p(x) \in \mathbb{P} \text { (see [15]). } \tag{1.13}
\end{equation*}
$$

For $f_{1}(t), f_{2}(t), \ldots, f_{m}(t) \in \mathcal{F}$, we have

$$
\begin{equation*}
\left\langle f_{1}(t) f_{2}(t) \cdots f_{m}(t) \mid x^{n}\right\rangle=\sum_{i_{1}+\cdots+i_{m}=n}\binom{n}{i_{1}, \ldots, i_{m}}\left\langle f_{1}(t) \mid x^{i_{1}}\right\rangle \cdots\left\langle f_{m}(t) \mid x^{i_{m}}\right\rangle . \tag{1.14}
\end{equation*}
$$

By (1.13), we get

$$
\begin{equation*}
p^{(k)}(x)=\frac{d^{k} p(x)}{d x^{k}}=\sum_{l=k}^{n}\left\langle t^{l} \mid p(x)\right\rangle\binom{ l}{k} \frac{k!}{l!} x^{l-k} \tag{1.15}
\end{equation*}
$$

and

$$
p^{(k)}(0)=\left\langle t^{k} \mid p(x)\right\rangle=\left\langle 1 \mid p^{(k)}(x)\right\rangle .
$$

Thus, by (1.15), we get

$$
\begin{equation*}
t^{k} p(x)=p^{(k)}(x)=\frac{d^{k} p(x)}{d x^{k}} \quad(\text { see }[11,15]) \tag{1.16}
\end{equation*}
$$

By (1.16), we easily see that

$$
\begin{equation*}
e^{y t} p(x)=p(x+y) \quad(\text { see }[15]) . \tag{1.17}
\end{equation*}
$$

Let $S_{n}(x)$ denote a polynomial of degree n. Suppose that $f(t), g(t) \in \mathcal{F}$ with $o(f(t))=1$ and $o(g(t))=0$. Then there exists a unique sequence $S_{n}(x)$ of polynomials satisfying $\left\langle g(t) f(t)^{k} \mid S_{n}(x)\right\rangle=n!\delta_{n, k}$ for all $n, k \geq 0$. The sequence $S_{n}(x)$ is called the Sheffer sequence for $(g(t), f(t))$, which is denoted by $S_{n}(x) \sim(g(t), f(t))$. If $S_{n}(x) \sim(g(t), t)$, then $S_{n}(x)$ is called the Appell sequence for $g(t)$ (see [15]).

For $p(x) \in \mathbb{P}$, we have

$$
\begin{align*}
& \langle f(t) \mid x p(x)\rangle=\left\langle\partial_{t} f(t) \mid p(x)\right\rangle=\left\langle f^{\prime}(t) \mid p(x)\right\rangle, \tag{1.18}\\
& \left\langle e^{y t}-1 \mid p(x)\right\rangle=p(y)-p(0) . \tag{1.19}
\end{align*}
$$

If $S_{n}(x) \sim(g(t), f(t))$, then we have

$$
\begin{array}{ll}
h(t)=\sum_{k=0}^{\infty} \frac{\left\langle h(t) \mid S_{k}(x)\right\rangle}{k!} g(t) f(t)^{k}, & h(t) \in \mathcal{F}, \\
p(x)=\sum_{k=0}^{\infty} \frac{\left\langle g(t) f(t)^{k} \mid p(x)\right\rangle}{k!} S_{k}(x), & p(x) \in \mathbb{P}, \tag{1.21}
\end{array}
$$

$$
\begin{equation*}
f(t) S_{n}(x)=n S_{n-1}(x) \tag{1.22}
\end{equation*}
$$

and

$$
\begin{equation*}
\frac{1}{g(\bar{f}(t))} e^{\bar{y}(t)}=\sum_{k=0}^{\infty} \frac{S_{k}(y)}{k!} t^{k} \quad \text { for all } y \in \mathbb{C}_{p} \tag{1.23}
\end{equation*}
$$

where $\bar{f}(t)$ is compositional inverse of $f(t)$ (see [11, 15]). In [9], Kim and Kim have studied some identities of Frobenius-Euler polynomials arising from umbral calculus. In this paper, we study some p-adic Frobenius-Euler integral on \mathbb{Z}_{p} related to umbral calculus in the p-adic case. Finally, we derive some new and interesting identities of Frobenius-Euler polynomials from our study.

2 Frobenius-Euler polynomials associated with umbral calculus

Let

$$
\begin{equation*}
g(t ; \lambda)=\frac{e^{t}-\lambda}{1-\lambda} \in \mathcal{F} . \tag{2.1}
\end{equation*}
$$

Then we see that $g(t ; \lambda)$ is an invertible series. From (1.2), we have

$$
\begin{equation*}
\sum_{k=0}^{\infty} H_{k}(x \mid \lambda) \frac{t^{k}}{k!}=\frac{1}{g(t ; \lambda)} e^{x t} \tag{2.2}
\end{equation*}
$$

Hence, by (2.2), we get

$$
\begin{equation*}
\left(\frac{1-\lambda}{e^{t}-\lambda}\right) x^{n}=\frac{1}{g(t ; \lambda)} x^{n}=H_{n}(x \mid \lambda) . \tag{2.3}
\end{equation*}
$$

By (2.2) and (2.3), we get

$$
H_{n}(x \mid \lambda) \sim(g(t ; \lambda), t) .
$$

From (1.6), we have

$$
\begin{equation*}
\int_{\mathbb{Z}_{p}} e^{(x+y) t} d \mu_{\lambda}(y)=\frac{\lambda}{e^{t}-\lambda} e^{x t}, \tag{2.4}
\end{equation*}
$$

and

$$
\begin{equation*}
\int_{\mathbb{Z}_{p}} e^{(x+y+1) t} d \mu_{\lambda}(y)-\lambda \int_{\mathbb{Z}_{p}} e^{(x+y) t} d \mu_{\lambda}(y)=\lambda e^{x t} . \tag{2.5}
\end{equation*}
$$

By (2.5), we get

$$
\begin{equation*}
\int_{\mathbb{Z}_{p}}(x+y+1)^{n} d \mu_{\lambda}(y)-\lambda \int_{\mathbb{Z}_{p}}(x+y)^{n} d \mu_{\lambda}(y)=\lambda x^{n} \tag{2.6}
\end{equation*}
$$

From (1.6) and (2.6), we have

$$
\begin{equation*}
\frac{\lambda}{1-\lambda} H_{n}(x+1 \mid \lambda)-\frac{\lambda^{2}}{1-\lambda} H_{n}(x \mid \lambda)=\lambda x^{n} . \tag{2.7}
\end{equation*}
$$

From (2.2), we can easily derive

$$
\begin{equation*}
H_{n+1}(x \mid \lambda)=\left(x-\frac{g^{\prime}(t ; \lambda)}{g(t ; \lambda)}\right) H_{n}(x \mid \lambda) . \tag{2.8}
\end{equation*}
$$

By (2.8), we get

$$
\begin{equation*}
g(t ; \lambda) H_{n+1}(x \mid \lambda)=g(t ; \lambda) x H_{n}(x \mid \lambda)-g^{\prime}(t ; \lambda) H_{n}(x \mid \lambda) . \tag{2.9}
\end{equation*}
$$

Thus, from (2.9), we have

$$
\begin{equation*}
\left(e^{t}-\lambda\right) H_{n+1}(x \mid \lambda)=\left(e^{t}-\lambda\right) x H_{n}(x \mid \lambda)-e^{t} H_{n}(x \mid \lambda) . \tag{2.10}
\end{equation*}
$$

By (2.10), we get

$$
\begin{equation*}
H_{n+1}(x+1 \mid \lambda)-\lambda H_{n+1}(x \mid \lambda)=x\left(H_{n}(x+1 \mid \lambda)-\lambda H_{n}(x \mid \lambda)\right) . \tag{2.11}
\end{equation*}
$$

From (2.11), we note that

$$
\begin{align*}
H_{n}(x+1 \mid \lambda)-\lambda H_{n}(x \mid \lambda) & =x\left(H_{n-1}(x+1 \mid \lambda)-\lambda H_{n-1}(x \mid \lambda)\right) \\
& =x^{2}\left(H_{n-2}(x+1 \mid \lambda)-\lambda H_{n-2}(x \mid \lambda)\right)=\cdots \\
& =x^{n}\left(H_{0}(x+1 \mid \lambda)-\lambda H_{0}(x \mid \lambda)\right)=x^{n}(1-\lambda) . \tag{2.12}
\end{align*}
$$

Let us consider the linear functional $f(t)$ such that

$$
\begin{equation*}
\langle f(t) \mid p(x)\rangle=\int_{\mathbb{Z}_{p}} p(u) d \mu_{\lambda}(u) \tag{2.13}
\end{equation*}
$$

for all polynomials $p(x)$ can be determined from (1.12) to be

$$
\begin{equation*}
f(t)=\sum_{k=0}^{\infty} \frac{\left\langle f(t) \mid x^{k}\right\rangle}{k!} t^{k}=\sum_{k=0}^{\infty} \int_{\mathbb{Z}_{p}} u^{k} d \mu_{\lambda}(u) \frac{t^{k}}{k!}=\int_{\mathbb{Z}_{p}} e^{u t} d \mu_{\lambda}(u) . \tag{2.14}
\end{equation*}
$$

By (2.4) and (2.14), we get

$$
\begin{equation*}
f(t)=\int_{\mathbb{Z}_{p}} e^{u t} d \mu_{\lambda}(u)=\frac{\lambda}{e^{t}-\lambda} . \tag{2.15}
\end{equation*}
$$

Therefore, by (2.15), we obtain the following theorem.

Theorem 2.1 For $p(x) \in \mathbb{P}$, we have

$$
\left\langle\left.\frac{\lambda}{e^{t}-\lambda} \right\rvert\, p(x)\right\rangle=\int_{\mathbb{Z}_{p}} p(u) d \mu_{\lambda}(u)
$$

In particular,

$$
\frac{\lambda}{1-\lambda} H_{n}(\lambda)=\left\langle\int_{\mathbb{Z}_{p}} e^{y t} d \mu_{\lambda}(y) \mid x^{n}\right\rangle .
$$

From (1.6), we have

$$
\begin{equation*}
\sum_{n=0}^{\infty} \int_{\mathbb{Z}_{p}}(x+y)^{n} d \mu_{\lambda}(y) \frac{t^{n}}{n!}=\int_{\mathbb{Z}_{p}} e^{(x+y) t} d \mu_{\lambda}(y)=\sum_{n=0}^{\infty} \int_{\mathbb{Z}_{p}} e^{y t} d \mu_{\lambda}(y) x^{n} \frac{t^{n}}{n!} \tag{2.16}
\end{equation*}
$$

By (1.6), (2.4) and (2.16), we get

$$
\begin{equation*}
\frac{\lambda}{1-\lambda} H_{n}(x \mid \lambda)=\int_{\mathbb{Z}_{p}} e^{y t} d \mu_{\lambda}(y) x^{n}=\frac{\lambda}{e^{t}-\lambda} x^{n}, \quad \text { for } n \geq 0 \tag{2.17}
\end{equation*}
$$

Therefore, by (2.17), we obtain the following theorem.

Theorem 2.2 For $p(x) \in \mathbb{P}$, we have

$$
\int_{\mathbb{Z}_{p}} p(x+y) d \mu_{\lambda}(y)=\int_{\mathbb{Z}_{p}} e^{y t} d \mu_{\lambda}(y) p(x)=\frac{\lambda}{e^{t}-\lambda} p(x)
$$

In particular,

$$
\frac{\lambda}{1-\lambda} H_{n}(x \mid \lambda)=\int_{\mathbb{Z}_{p}} e^{y t} d \mu_{\lambda}(y) x^{n}=\frac{\lambda}{e^{t}-\lambda} x^{n} \quad(n \geq 0)
$$

By (1.6) and (2.16), we get

$$
\begin{equation*}
\frac{\lambda}{1-\lambda} H_{n}(x \mid \lambda) \sim\left(\frac{e^{t}-\lambda}{\lambda}, t\right) . \tag{2.18}
\end{equation*}
$$

From Appell identity and (2.18), we can derive the following identities:

$$
\begin{equation*}
H_{n}(x+y \mid \lambda)=\sum_{k=0}^{n}\binom{n}{k} H_{k}(x \mid \lambda) y^{n-k} \tag{2.19}
\end{equation*}
$$

Let

$$
\begin{equation*}
g^{r}(t ; \lambda)=\left(\frac{e^{t}-\lambda}{\lambda}\right)^{r}=\underbrace{\left(\frac{e^{t}-\lambda}{\lambda}\right) \times \cdots \times\left(\frac{e^{t}-\lambda}{\lambda}\right)}_{r \text {-times }} \in \mathcal{F} . \tag{2.20}
\end{equation*}
$$

Then $g^{r}(t ; \lambda)$ is an invertible functional in \mathcal{F}. By (1.5) and (2.20), we get

$$
\begin{equation*}
\frac{1}{g^{r}(t ; \lambda)} e^{x t}=\frac{\lambda^{r}}{(1-\lambda)^{r}} \sum_{k=0}^{\infty} H_{n}^{(r)}(x \mid \lambda) \frac{t^{n}}{n!} \tag{2.21}
\end{equation*}
$$

Thus, from (2.21), we have

$$
\begin{equation*}
\frac{1}{g^{r}(t ; \lambda)} x^{n}=\left(\frac{\lambda}{1-\lambda}\right)^{r} H_{n}^{(r)}(x \mid \lambda), \tag{2.22}
\end{equation*}
$$

and

$$
\begin{equation*}
\left(\frac{\lambda}{1-\lambda}\right)^{r} t H_{n}^{(r)}(x \mid \lambda)=\frac{n}{g^{r}(t ; \lambda)} x^{n-1}=n\left(\frac{\lambda}{1-\lambda}\right)^{r} H_{n-1}^{(r)}(x \mid \lambda) . \tag{2.23}
\end{equation*}
$$

By (2.22) and (2.23), we see that

$$
\begin{equation*}
\left(\frac{\lambda}{1-\lambda}\right)^{r} H_{n}^{(r)}(x \mid \lambda) \sim\left(g^{r}(t ; \lambda), t\right) \tag{2.24}
\end{equation*}
$$

From (2.4), we can derive the following identity:

$$
\begin{align*}
& \underbrace{\int_{\mathbb{Z}_{p}} \cdots \int_{\mathbb{Z}_{p}}}_{r \text {-times }} e^{\left(x_{1}+x_{2}+\cdots+x_{r}+x\right) t} d \mu_{\lambda}\left(x_{1}\right) \cdots d \mu_{\lambda}\left(x_{r}\right) \\
& \quad=\left(\frac{\lambda}{e^{t}-\lambda}\right)^{r} e^{x t}=\left(\frac{\lambda}{1-\lambda}\right)^{r} \sum_{n=0}^{\infty} H_{n}^{(r)}(x \mid \lambda) \frac{t^{n}}{n!} . \tag{2.25}
\end{align*}
$$

By (1.10) and (2.25), we get

$$
\begin{align*}
& \left(\frac{\lambda}{1-\lambda}\right)^{r} H_{n}^{(r)}(x \mid \lambda) \\
& \quad=\langle\underbrace{\int_{\mathbb{Z}_{p}} \cdots \int_{\mathbb{Z}_{p}} e^{\left(x_{1}+x_{2}+\cdots+x_{r}+x\right) t} d \mu_{\lambda}\left(x_{1}\right) \cdots d \mu_{\lambda}\left(x_{r}\right)\left|x^{n}\right\rangle .}_{r \text {-times }} . \tag{2.26}
\end{align*}
$$

From (1.14), we have

$$
\begin{aligned}
& \langle\underbrace{\left\langle\int_{\mathbb{Z}_{p}} \cdots \int_{\mathbb{Z}_{p}} e^{\left(x_{1}+x_{2}+\cdots+x_{r}\right) t} d \mu_{\lambda}\left(x_{1}\right) \cdots d \mu_{\lambda}\left(x_{r}\right) \mid x^{n}\right\rangle}_{r \text {-times }} \\
& \quad=\sum_{n=i_{1}+\cdots+i_{r}}\binom{n}{i_{1}, \ldots, i_{r}}\left\langle\int_{\mathbb{Z}_{p}} e^{x_{1} t} d \mu_{\lambda}\left(x_{1}\right) \mid x^{i_{1}}\right\rangle \times \cdots
\end{aligned}
$$

$$
\begin{align*}
& \times\left\langle\int_{\mathbb{Z}_{p}} e^{x_{r} t} d \mu_{\lambda}\left(x_{r}\right) \mid x^{i_{r}}\right\rangle \\
= & \sum_{n=i_{1}+\cdots+i_{r}}\binom{n}{i_{1}, \ldots, i_{r}}\left(\frac{\lambda}{1-\lambda}\right)^{r} H_{i_{1}}(x \mid \lambda) \cdots H_{i_{r}}(x \mid \lambda) . \tag{2.27}
\end{align*}
$$

By (2.26) and (2.27), we get

$$
H_{n}^{(r)}(x \mid \lambda)=\sum_{n=i_{1}+\cdots+i_{r}}\binom{n}{i_{1}, \ldots, i_{r}} H_{i_{1}}(x \mid \lambda) \cdots H_{i_{r}}(x \mid \lambda),
$$

where $\left(\begin{array}{c}{ }_{i_{1}}, \ldots, i_{r}\end{array}\right)=\frac{n!}{i_{1}!\cdots i_{!}!}$. From (2.25), we note that

$$
\begin{equation*}
g^{r}(t ; \lambda)=\underbrace{\frac{1}{\int_{\mathbb{Z}_{p}} \cdots \int_{\mathbb{Z}_{p}}} e^{\left(x_{1}+x_{2}+\cdots+x_{r}\right) t} d \mu_{\lambda}\left(x_{1}\right) \cdots d \mu_{\lambda}\left(x_{r}\right)}_{r \text {-times }}=\left(\frac{e^{t}-\lambda}{\lambda}\right)^{r} . \tag{2.28}
\end{equation*}
$$

Thus, by (2.28), we get

$$
\begin{align*}
\frac{1}{g^{r}(t ; \lambda)} e^{x t} & =\int_{\mathbb{Z}_{p}} \cdots \int_{\mathbb{Z}_{p}} e^{\left(x_{1}+x_{2}+\cdots+x_{r}\right) t} d \mu_{\lambda}\left(x_{1}\right) \cdots d \mu_{\lambda}\left(x_{r}\right) e^{x t} \\
& =\int_{\mathbb{Z}_{p}} \cdots \int_{\mathbb{Z}_{p}} e^{\left(x_{1}+x_{2}+\cdots+x_{r}+x\right) t} d \mu_{\lambda}\left(x_{1}\right) \cdots d \mu_{\lambda}\left(x_{r}\right) \\
& =\left(\frac{\lambda}{1-\lambda}\right)^{r} \sum_{n=0}^{\infty} H_{n}^{(r)}(x \mid \lambda) \frac{t^{n}}{n!} . \tag{2.29}
\end{align*}
$$

By (2.29), we see that

$$
\begin{align*}
& \left(\frac{\lambda}{1-\lambda}\right)^{r} H_{n}^{(r)}(x \mid \lambda) \\
& \quad=\underbrace{\int_{\mathbb{Z}_{p}} \cdots \int_{\mathbb{Z}_{p}}\left(x+x_{1}+\cdots+x_{r}\right)^{n} d \mu_{\lambda}\left(x_{1}\right) \cdots d \mu_{\lambda}\left(x_{r}\right)}_{r \text {-times }} \\
& \quad=\underbrace{\int_{\mathbb{Z}_{p}} \cdots \int_{\mathbb{Z}_{p}} e^{\left(x_{1}+x_{2}+\cdots+x_{r}\right) t} d \mu_{\lambda}\left(x_{1}\right) \cdots d \mu_{\lambda}\left(x_{r}\right) x^{n}}_{r \text {-times }} \\
& \quad=\frac{1}{g^{r}(t ; \lambda)} x^{n} . \tag{2.30}
\end{align*}
$$

Therefore, by (2.30), we obtain the following theorem.

Theorem 2.3 For $p(x) \in \mathbb{P}$ and $r \in \mathbb{N}$, we have

$$
\underbrace{\int_{\mathbb{Z}_{p}} \cdots \int_{\mathbb{Z}_{p}} p\left(x_{1}+x_{2}+\cdots+x_{r}+x\right) d \mu_{\lambda}\left(x_{1}\right) \cdots d \mu_{\lambda}\left(x_{r}\right)=\left(\frac{\lambda}{e^{t}-\lambda}\right)^{r} p(x)}_{r \text {-times }}
$$

In particular,

$$
\left(\frac{\lambda}{1-\lambda}\right)^{r} H_{n}^{(r)}(x \mid \lambda)=\int_{\mathbb{Z}_{p}} \cdots \int_{\mathbb{Z}_{p}} e^{\left(x_{1}+x_{2}+\cdots+x_{r}\right) t} d \mu_{\lambda}\left(x_{1}\right) \cdots d \mu_{\lambda}\left(x_{r}\right) x^{n}
$$

Moreover,

$$
\left(\frac{\lambda}{1-\lambda}\right)^{r} H_{n}^{(r)}(x \mid \lambda) \sim\left(\frac{1}{\int_{\mathbb{Z}_{p}} \cdots \int_{\mathbb{Z}_{p}} e^{\left(x_{1}+x_{2}+\cdots+x_{r}\right) t} d \mu_{\lambda}\left(x_{1}\right) \cdots d \mu_{\lambda}\left(x_{r}\right)}, t\right)
$$

Let us consider the function $f^{*}(t)$ in \mathcal{F} such that

$$
\begin{equation*}
\left\langle f^{*}(t) \mid p(x)\right\rangle=\int_{\mathbb{Z}_{p}} \cdots \int_{\mathbb{Z}_{p}} p\left(x_{1}+x_{2}+\cdots+x_{r}\right) d \mu_{\lambda}\left(x_{1}\right) \cdots d \mu_{\lambda}\left(x_{r}\right) \tag{2.31}
\end{equation*}
$$

for all polynomials $p(x)$ can be determined from (1.12) to be

$$
\begin{align*}
f^{\prime \prime}(t) & =\sum_{k=0}^{\infty} \frac{\left\langle f^{* \prime}(t) \mid x^{k}\right\rangle}{k!} t^{k} \\
& =\sum_{k=0}^{\infty} \underbrace{\int_{\mathbb{Z}_{p}} \cdots \int_{\mathbb{Z}_{p}}}_{r \text {-times }}\left(x_{1}+\cdots+x_{r}\right)^{k} d \mu_{\lambda}\left(x_{1}\right) \cdots d \mu_{\lambda}\left(x_{r}\right) \frac{t^{k}}{k!} \\
& =\underbrace{\int_{\mathbb{Z}_{p}} \cdots \int_{\mathbb{Z}_{p}} e^{\left(x_{1}+\cdots+x_{r}\right) t} d \mu_{\lambda}\left(x_{1}\right) \cdots d \mu_{\lambda}\left(x_{r}\right) .}_{r \text {-times }} \tag{2.32}
\end{align*}
$$

Therefore, by (2.31) and (2.32), we obtain the following theorem.

Theorem 2.4 For $p(x) \in \mathbb{P}$, we have

$$
\begin{aligned}
& \langle\underbrace{\int_{\mathbb{Z}_{p}} \cdots \int_{\mathbb{Z}_{p}} e^{\left(x_{1}+x_{2}+\cdots+x_{r}\right) t} d \mu_{\lambda}\left(x_{1}\right) \cdots d \mu_{\lambda}\left(x_{r}\right)|p(x)\rangle}_{r \text {-times }} \\
& \quad=\underbrace{\int_{\mathbb{Z}_{p}} \cdots \int_{\mathbb{Z}_{p}}}_{r \text {-times }} p\left(x_{1}+x_{2}+\cdots+x_{r}\right) d \mu_{\lambda}\left(x_{1}\right) \cdots d \mu_{\lambda}\left(x_{r}\right) .
\end{aligned}
$$

In particular,

$$
\left\langle\left.\left(\frac{\lambda}{e^{t}-\lambda}\right)^{r} \right\rvert\, p(x)\right\rangle=\underbrace{\int_{\mathbb{Z}_{p}} \cdots \int_{\mathbb{Z}_{p}}}_{r \text {-times }} p\left(x_{1}+x_{2}+\cdots+x_{r}\right) d \mu_{\lambda}\left(x_{1}\right) \cdots d \mu_{\lambda}\left(x_{r}\right) .
$$

Indeed, the nth Frobenius-Euler number of order r is given by
where $n \geq 0$.

Remark From (1.2) and (1.5), we note that

$$
\begin{align*}
\frac{d}{d \lambda}\left(\frac{1-\lambda}{e^{t}-\lambda}\right) & =\frac{1-e^{t}}{\left(e^{t}-\lambda\right)^{2}}=\frac{1}{(1-\lambda)}\left(\frac{(1-\lambda)^{2}}{\left(e^{t}-\lambda\right)^{2}}-\frac{1-\lambda}{e^{t}-\lambda}\right) \\
& =\frac{1}{1-\lambda} \sum_{n=0}^{\infty}\left(H_{n}^{(2)}(\lambda)-H_{n}(\lambda)\right) \frac{t^{n}}{n!}, \tag{2.33}
\end{align*}
$$

and

$$
\begin{align*}
\frac{d^{2}}{d \lambda^{2}}\left(\frac{1-\lambda}{e^{t}-\lambda}\right) & =2!\frac{1-e^{t}}{\left(e^{t}-\lambda\right)^{3}}=\frac{2!}{(1-\lambda)^{2}}\left(\frac{(1-\lambda)^{3}}{\left(e^{t}-\lambda\right)^{3}}-\frac{(1-\lambda)^{2}}{\left(e^{t}-\lambda\right)^{2}}\right) \\
& =\frac{2!}{(1-\lambda)^{2}} \sum_{n=0}^{\infty}\left(H_{n}^{(3)}(\lambda)-H_{n}^{(2)}(\lambda)\right) \frac{t^{n}}{n!} . \tag{2.34}
\end{align*}
$$

Continuing this process, we obtain the following equation:

$$
\begin{align*}
\frac{d^{k}}{d \lambda^{k}}\left(\frac{1-\lambda}{e^{t}-\lambda}\right) & =\frac{k!}{(1-\lambda)^{k}}\left(\frac{(1-\lambda)^{k+1}}{\left(e^{t}-\lambda\right)^{k+1}}-\frac{(1-\lambda)^{k}}{\left(e^{t}-\lambda\right)^{k}}\right) \\
& =\frac{k!}{(1-\lambda)^{k}} \sum_{n=0}^{\infty}\left(H_{n}^{(k+1)}(\lambda)-H_{n}^{(k)}(\lambda)\right) \frac{t^{n}}{n!} \tag{2.35}
\end{align*}
$$

By (1.2), (1.5) and (2.35), we get

$$
\frac{d^{k}}{d \lambda^{k}} H_{n}(\lambda)=\frac{k!}{(1-\lambda)^{k}}\left(H_{n}^{(k+1)}(\lambda)-H_{n}^{(k)}(\lambda)\right)
$$

where k is a positive integer.

Competing interests

The authors declare that they have no competing interests.

Authors' contributions

All authors contributed equally to the manuscript and typed, read, and approved the final manuscript.

Author details

${ }^{1}$ Department of Mathematics, Sogang University, Seoul, 121-741, Republic of Korea. ${ }^{2}$ Department of Mathematics, Kwangwoon University, Seoul, 139-701, Republic of Korea. ${ }^{3}$ Division of General Education, Kwangwoon University, Seoul, 139-701, Republic of Korea. ${ }^{4}$ Department of Mathematics Education, Kyungpook National University, Taegu, 702-701, Republic of Korea.

Acknowledgements

This research was supported by the Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education, Science and Technology 2012R1A1A2003786.

Received: 21 November 2012 Accepted: 6 December 2012 Published: 20 December 2012

References

1. Araci, S, Acikgoz, M: A note on the Frobenius-Euler numbers and polynomials associated with Bernstein polynomials. Adv. Stud. Contemp. Math. 22, 399-406 (2012)
2. Can, M, Cenkci, M, Kurt, V, Simsek, Y: Twisted Dedekind type sums associated with Barnes' type multiple Frobenius-Euler l-functions. Adv. Stud. Contemp. Math. 18, 135-160 (2009)
3. Carlitz, L: The product of two Eulerian polynomials. Math. Mag. 368, 37-41 (1963)
4. Dere, R, Simsek, Y: Applications of umbral algebra to some special polynomials. Adv. Stud. Contemp. Math. 22, 433-438 (2012)
5. Kim, T: On explicit formulas of p-adic q-L-functions. Kyushu J. Math. 48, 73-86 (1994)
6. Kim, T, Choi, J: A note on the product of Frobenius-Euler polynomials arising from the p-adic integral on \mathbb{Z}_{p}. Adv. Stud. Contemp. Math. 22, 215-223 (2012)
7. Kim, T, Lee, B: Some identities of the Frobenius-Euler polynomials. Abstr. Appl. Anal. 2009, Article ID 639439 (2009)
8. Shiratani, K, Yamamoto, S: On a p-adic interpolation function for the Euler numbers and its derivatives. Mem. Fac. Sci., Kyushu Univ., Ser. A 39, 113-125 (1985)
9. Kim, DS, Kim, T: Some identities of Frobenius-Euler polynomials arising from umbral calculus. Adv. Differ. Equ. 2012, 196 (2012). doi:10.1186/1687-1847-2012-196
10. Ryoo, CS: A note on the Frobenius-Euler polynomials. Proc. Jangjeon Math. Soc. 14, 495-501 (2014)
11. Kim, T: Identities involving Frobenius-Euler polynomials arising from non-linear differential equations. J. Number Theory 132(12), 2854-2865 (2012)
12. Kim, T : An identity of the symmetry for the Frobenius-Euler polynomials associated with the fermionic p-adic invariant q-integrals on \mathbb{Z}_{p}. Rocky Mt. J. Math. 41, 239-247 (2011)
13. Rim, S-H, Joung, J, Jin, J-H, Lee, S-J: A note on the weighted Carlitz's type q-Euler numbers and q-Bernstein polynomials. Proc. Jangjeon Math. Soc. 15, 195-201 (2012)
14. Rim, S-H, Lee, S-J: Some identities on the twisted (h,q)-Genocci numbers and polynomials associated with q-Bernstein polynomials. Int. J. Math. Sci. 2011, Article ID 482840 (2011)
15. Roman, S: The Umbral Calculus. Dover, New York (2005)
16. Ryoo, CS, Agarwal, RP: Calculating zeros of the Frobenius-Euler polynomials. Neural Parallel Sci. Comput. 17, 351-361 (2009)
17. Simsek, Y, Bayad, A, Lokesha, V: q-Bernstein polynomials related to q-Frobenius-Euler polynomials, l-functions, and q-Stirling numbers. Math. Methods Appl. Sci. 35, 877-884 (2012)
18. Simsek, Y, Yurekli, O, Kurt, V: On interpolation functions of the twisted generalized Frobenius-Euler numbers. Adv. Stud. Contemp. Math. 15, 187-194 (2007)
19. Simsek, Y: Special functions related to Dedekind-type DC-sums and their applications. Russ. J. Math. Phys. 17, 495-508 (2010)
[^0]
Submit your manuscript to a SpringerOpen ${ }^{\bullet}$ journal and benefit from:

Convenient online submission

- Rigorous peer review
- Immediate publication on acceptance

Open access: articles freely available online
High visibility within the field
Retaining the copyright to your article

Submit your next manuscript at $>$ springeropen.com

[^0]: doi:10.1186/1687-1847-2012-222
 Cite this article as: Kim et al.: Frobenius-Euler polynomials and umbral calculus in the p-adic case. Advances in Difference Equations 2012 2012:222.

