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Abstract
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1 Introduction
Let p be a fixed prime number. Throughout this paper Zp, Qp and Cp will denote the ring
of p-adic integers, the field of p-adic rational numbers and the completion of algebraic
closure of Qp, respectively.
For f ∈N with (f ,p) = , let

X = lim←–N
Z�f pNZ;

a + fpNZp =
{
x ∈ X | x ≡ a

(
mod fpN

)}
,  ≤ a≤ fpN – ,

X* =
⋃

<a<fp,(a,p)=

(
a + fpNZp

)
, N ∈N (see [–]).

Note that the natural map Z�fpNZ → Z�pNZ induces

π : X → Zp.

If g is a function on Zp, we denote by the same g the function g ◦ π on X. Namely, we can
consider g as a function on X.
For k ≥  and λ ∈Cp with | – λ|p > , the Frobenius-Euler measure on X is defined by

μλ

(
x + fpNZp

)
=

λfpN–x

 – λfpN
(see [, ]), (.)

where the p-adic absolute value on Cp is normalized by |p|p = 
p .

As is well known, the Frobenius-Euler polynomials are defined by the generating func-
tion to be

(
 – λ

et – λ

)
ext = eH(x|λ)t =

∞∑
n=

Hn(x|λ) t
n

n!
(see [, , ]), (.)
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with the usual convention about replacing Hn(x|λ) by Hn(x|λ). In the special case, x = ,
Hn(|λ) =Hn(λ) are called the nth Frobenius-Euler numbers

Hn(x|λ) =
(
H(λ) + x

)n = ∞∑
l=

(
n
l

)
Hl(λ)xn–l (see [, , ]). (.)

Thus, by (.) and (.), we easily get

(
H(λ) + 

)n – λHn(λ) = ( – λ)δ,n (see [–]), (.)

where δn,k is the Kronecker symbol.
For r ∈ N, the Frobenius-Euler polynomials of order r are defined by the generating

function
(
 – λ

et – λ

)r

ext =
(
 – λ

et – λ

)
× · · · ×

(
 – λ

et – λ

)
︸ ︷︷ ︸

r-times

ext

=
∞∑
n=

H (r)
n (x|λ) t

n

n!
(see [, ]). (.)

In the special case, x = , H (r)
n (|λ) = H (r)

n (λ) are called the nth Frobenius-Euler numbers
of order r. The nth Frobenius-Euler polynomials can be represented by (.) as follows:

λHn(x|λ)
 – λ

=
∫
X
(x + y)n dμλ(y) =

∫
Zp

(x + y)n dμλ(y)

= lim
N→∞


 – λpN

pN–∑
y=

(x + y)nλpN–y (see [, ]). (.)

Let F be the set of all formal power series in the variable t over Cp with

F =

{
f (t) =

∞∑
k=

ak
k!
tk

∣∣∣ ak ∈Cp

}
. (.)

Let P =Cp[x] and P* denote the vector space of all linear functionals on P.
The formal power series

f (t) =
∞∑
k=

ak
k!
tk ∈F (see [, ]) (.)

defines a linear functional on P by setting

〈
f (t)|xn〉 = an for all n≥ . (.)

From (.) and (.), we have

〈
tn|xn〉 = n!δn,k (n,k ≥ ). (.)
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Here, F denotes both the algebra of formal power series in t and the vector space of all
linear functionals on P, and so an element f (t) of F will be thought of as both a formal
power series and a linear functional (see [, ]). We will call F the umbral algebra. The
umbral calculus is the study of umbral algebra (see [, ]).
The order o(f (t)) of power series f (t) ( 
= ) is the smallest integer k for which ak does not

vanish (see [, ]). A series f (t) for which o(f (t)) =  is called a delta series. If a series f (t)
has o(f (t)) = , then f (t) is called an invertible series (see [, ]). Let f (t), g(t) ∈F . Then
we easily see that 〈f (t)g(t)|p(x)〉 = 〈f (t)|g(t)p(x)〉 = 〈g(t)|f (t)p(x)〉. From (.), we note that

〈
eyt|xn〉 = yn,

〈
eyt|p(x)〉 = p(y), (.)

f (t) =
∞∑
k=

〈f (t)|xk〉
k!

tk , f (t) ∈F , (.)

and

p(x) =
∞∑
k=

〈tk|p(x)〉
k!

xk , p(x) ∈ P (see []). (.)

For f(t), f(t), . . . , fm(t) ∈F , we have

〈
f(t)f(t) · · · fm(t)|xn

〉
=

∑
i+···+im=n

(
n

i, . . . , im

)〈
f(t)|xi

〉 · · · 〈fm(t)|xim 〉
. (.)

By (.), we get

p(k)(x) =
dkp(x)
dxk

=
n∑
l=k

〈
tl|p(x)〉( l

k

)
k!
l!
xl–k (.)

and

p(k)() =
〈
tk|p(x)〉 = 〈

|p(k)(x)〉.
Thus, by (.), we get

tkp(x) = p(k)(x) =
dkp(x)
dxk

(see [, ]). (.)

By (.), we easily see that

eytp(x) = p(x + y) (see []). (.)

Let Sn(x) denote a polynomial of degree n. Suppose that f (t), g(t) ∈ F with o(f (t)) = 
and o(g(t)) = . Then there exists a unique sequence Sn(x) of polynomials satisfying
〈g(t)f (t)k|Sn(x)〉 = n!δn,k for all n,k ≥ . The sequence Sn(x) is called the Sheffer sequence
for (g(t), f (t)), which is denoted by Sn(x)∼ (g(t), f (t)). If Sn(x)∼ (g(t), t), then Sn(x) is called
the Appell sequence for g(t) (see []).
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For p(x) ∈ P, we have

〈
f (t)|xp(x)〉 = 〈

∂t f (t)|p(x)
〉
=

〈
f ′(t)|p(x)〉, (.)〈

eyt – |p(x)〉 = p(y) – p(). (.)

If Sn(x)∼ (g(t), f (t)), then we have

h(t) =
∞∑
k=

〈h(t)|Sk(x)〉
k!

g(t)f (t)k , h(t) ∈F , (.)

p(x) =
∞∑
k=

〈g(t)f (t)k|p(x)〉
k!

Sk(x), p(x) ∈ P, (.)

f (t)Sn(x) = nSn–(x), (.)

and


g(f̄ (t))

eyf̄ (t) =
∞∑
k=

Sk(y)
k!

tk for all y ∈Cp, (.)

where f̄ (t) is compositional inverse of f (t) (see [, ]). In [], Kim and Kim have stud-
ied some identities of Frobenius-Euler polynomials arising from umbral calculus. In this
paper, we study some p-adic Frobenius-Euler integral on Zp related to umbral calculus in
the p-adic case. Finally, we derive some new and interesting identities of Frobenius-Euler
polynomials from our study.

2 Frobenius-Euler polynomials associated with umbral calculus
Let

g(t;λ) =
et – λ

 – λ
∈F . (.)

Then we see that g(t;λ) is an invertible series. From (.), we have

∞∑
k=

Hk(x|λ) t
k

k!
=


g(t;λ)

ext . (.)

Hence, by (.), we get

(
 – λ

et – λ

)
xn =


g(t;λ)

xn =Hn(x|λ). (.)

By (.) and (.), we get

Hn(x|λ)∼
(
g(t;λ), t

)
.

From (.), we have
∫
Zp

e(x+y)t dμλ(y) =
λ

et – λ
ext , (.)
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and
∫
Zp

e(x+y+)t dμλ(y) – λ

∫
Zp

e(x+y)t dμλ(y) = λext . (.)

By (.), we get

∫
Zp

(x + y + )n dμλ(y) – λ

∫
Zp

(x + y)n dμλ(y) = λxn. (.)

From (.) and (.), we have

λ

 – λ
Hn(x + |λ) – λ

 – λ
Hn(x|λ) = λxn. (.)

From (.), we can easily derive

Hn+(x|λ) =
(
x –

g ′(t;λ)
g(t;λ)

)
Hn(x|λ). (.)

By (.), we get

g(t;λ)Hn+(x|λ) = g(t;λ)xHn(x|λ) – g ′(t;λ)Hn(x|λ). (.)

Thus, from (.), we have

(
et – λ

)
Hn+(x|λ) =

(
et – λ

)
xHn(x|λ) – etHn(x|λ). (.)

By (.), we get

Hn+(x + |λ) – λHn+(x|λ) = x
(
Hn(x + |λ) – λHn(x|λ)

)
. (.)

From (.), we note that

Hn(x + |λ) – λHn(x|λ) = x
(
Hn–(x + |λ) – λHn–(x|λ)

)
= x

(
Hn–(x + |λ) – λHn–(x|λ)

)
= · · ·

= xn
(
H(x + |λ) – λH(x|λ)

)
= xn( – λ). (.)

Let us consider the linear functional f (t) such that

〈
f (t)|p(x)〉 = ∫

Zp

p(u)dμλ(u) (.)

for all polynomials p(x) can be determined from (.) to be

f (t) =
∞∑
k=

〈f (t)|xk〉
k!

tk =
∞∑
k=

∫
Zp

uk dμλ(u)
tk

k!
=

∫
Zp

eut dμλ(u). (.)
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By (.) and (.), we get

f (t) =
∫
Zp

eut dμλ(u) =
λ

et – λ
. (.)

Therefore, by (.), we obtain the following theorem.

Theorem . For p(x) ∈ P, we have

〈
λ

et – λ

∣∣∣p(x)〉 = ∫
Zp

p(u)dμλ(u).

In particular,

λ

 – λ
Hn(λ) =

〈∫
Zp

eyt dμλ(y)
∣∣∣xn〉.

From (.), we have

∞∑
n=

∫
Zp

(x + y)n dμλ(y)
tn

n!
=

∫
Zp

e(x+y)t dμλ(y) =
∞∑
n=

∫
Zp

eyt dμλ(y)xn
tn

n!
. (.)

By (.), (.) and (.), we get

λ

 – λ
Hn(x|λ) =

∫
Zp

eyt dμλ(y)xn =
λ

et – λ
xn, for n≥ . (.)

Therefore, by (.), we obtain the following theorem.

Theorem . For p(x) ∈ P, we have

∫
Zp

p(x + y)dμλ(y) =
∫
Zp

eyt dμλ(y)p(x) =
λ

et – λ
p(x).

In particular,

λ

 – λ
Hn(x|λ) =

∫
Zp

eyt dμλ(y)xn =
λ

et – λ
xn (n≥ ).

By (.) and (.), we get

λ

 – λ
Hn(x|λ)∼

(
et – λ

λ
, t

)
. (.)

From Appell identity and (.), we can derive the following identities:

Hn(x + y|λ) =
n∑

k=

(
n
k

)
Hk(x|λ)yn–k . (.)

http://www.advancesindifferenceequations.com/content/2012/1/222
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Let

gr(t;λ) =
(
et – λ

λ

)r

=
(
et – λ

λ

)
× · · · ×

(
et – λ

λ

)
︸ ︷︷ ︸

r-times

∈F . (.)

Then gr(t;λ) is an invertible functional in F . By (.) and (.), we get


gr(t;λ)

ext =
λr

( – λ)r

∞∑
k=

H (r)
n (x|λ) t

n

n!
. (.)

Thus, from (.), we have


gr(t;λ)

xn =
(

λ

 – λ

)r

H (r)
n (x|λ), (.)

and
(

λ

 – λ

)r

tH (r)
n (x|λ) = n

gr(t;λ)
xn– = n

(
λ

 – λ

)r

H (r)
n–(x|λ). (.)

By (.) and (.), we see that

(
λ

 – λ

)r

H (r)
n (x|λ)∼ (

gr(t;λ), t
)
. (.)

From (.), we can derive the following identity:

∫
Zp

· · ·
∫
Zp︸ ︷︷ ︸

r-times

e(x+x+···+xr+x)t dμλ(x) · · · dμλ(xr)

=
(

λ

et – λ

)r

ext =
(

λ

 – λ

)r ∞∑
n=

H (r)
n (x|λ) t

n

n!
. (.)

By (.) and (.), we get

(
λ

 – λ

)r

H (r)
n (x|λ)

=
〈∫

Zp

· · ·
∫
Zp︸ ︷︷ ︸

r-times

e(x+x+···+xr+x)t dμλ(x) · · · dμλ(xr)
∣∣∣xn〉. (.)

From (.), we have

〈∫
Zp

· · ·
∫
Zp︸ ︷︷ ︸

r-times

e(x+x+···+xr )t dμλ(x) · · · dμλ(xr)
∣∣∣xn〉

=
∑

n=i+···+ir

(
n

i, . . . , ir

)〈∫
Zp

ext dμλ(x)
∣∣∣xi〉 × · · ·

http://www.advancesindifferenceequations.com/content/2012/1/222
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×
〈∫

Zp

exrt dμλ(xr)
∣∣∣xir〉

=
∑

n=i+···+ir

(
n

i, . . . , ir

)(
λ

 – λ

)r

Hi (x|λ) · · ·Hir (x|λ). (.)

By (.) and (.), we get

H (r)
n (x|λ) =

∑
n=i+···+ir

(
n

i, . . . , ir

)
Hi (x|λ) · · ·Hir (x|λ),

where
( n
i,...,ir

)
= n!

i!···ir ! . From (.), we note that

gr(t;λ) =
∫

Zp
· · · ∫

Zp︸ ︷︷ ︸
r-times

e(x+x+···+xr)t dμλ(x) · · · dμλ(xr)
=

(
et – λ

λ

)r

. (.)

Thus, by (.), we get


gr(t;λ)

ext =
∫
Zp

· · ·
∫
Zp

e(x+x+···+xr)t dμλ(x) · · · dμλ(xr)ext

=
∫
Zp

· · ·
∫
Zp

e(x+x+···+xr+x)t dμλ(x) · · · dμλ(xr)

=
(

λ

 – λ

)r ∞∑
n=

H (r)
n (x|λ) t

n

n!
. (.)

By (.), we see that

(
λ

 – λ

)r

H (r)
n (x|λ)

=
∫
Zp

· · ·
∫
Zp︸ ︷︷ ︸

r-times

(x + x + · · · + xr)n dμλ(x) · · · dμλ(xr)

=
∫
Zp

· · ·
∫
Zp︸ ︷︷ ︸

r-times

e(x+x+···+xr )t dμλ(x) · · · dμλ(xr)xn

=


gr(t;λ)
xn. (.)

Therefore, by (.), we obtain the following theorem.

Theorem . For p(x) ∈ P and r ∈N, we have

∫
Zp

· · ·
∫
Zp︸ ︷︷ ︸

r-times

p(x + x + · · · + xr + x)dμλ(x) · · · dμλ(xr) =
(

λ

et – λ

)r

p(x).

http://www.advancesindifferenceequations.com/content/2012/1/222
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In particular,(
λ

 – λ

)r

H (r)
n (x|λ) =

∫
Zp

· · ·
∫
Zp

e(x+x+···+xr)t dμλ(x) · · · dμλ(xr)xn.

Moreover,(
λ

 – λ

)r

H (r)
n (x|λ)∼

(
∫

Zp
· · · ∫

Zp
e(x+x+···+xr )t dμλ(x) · · · dμλ(xr)

, t
)
.

Let us consider the function f *(t) in F such that

〈
f *(t)|p(x)〉 = ∫

Zp

· · ·
∫
Zp

p(x + x + · · · + xr)dμλ(x) · · · dμλ(xr) (.)

for all polynomials p(x) can be determined from (.) to be

f *(t) =
∞∑
k=

〈f *(t)|xk〉
k!

tk

=
∞∑
k=

∫
Zp

· · ·
∫
Zp︸ ︷︷ ︸

r-times

(x + · · · + xr)k dμλ(x) · · · dμλ(xr)
tk

k!

=
∫
Zp

· · ·
∫
Zp︸ ︷︷ ︸

r-times

e(x+···+xr)t dμλ(x) · · · dμλ(xr). (.)

Therefore, by (.) and (.), we obtain the following theorem.

Theorem . For p(x) ∈ P, we have〈∫
Zp

· · ·
∫
Zp︸ ︷︷ ︸

r-times

e(x+x+···+xr)t dμλ(x) · · · dμλ(xr)
∣∣∣p(x)〉

=
∫
Zp

· · ·
∫
Zp︸ ︷︷ ︸

r-times

p(x + x + · · · + xr)dμλ(x) · · · dμλ(xr).

In particular,〈(
λ

et – λ

)r∣∣∣p(x)〉 = ∫
Zp

· · ·
∫
Zp︸ ︷︷ ︸

r-times

p(x + x + · · · + xr)dμλ(x) · · · dμλ(xr).

Indeed, the nth Frobenius-Euler number of order r is given by

(
λ

 – λ

)r

H (r)
n (x|λ) =

〈∫
Zp

· · ·
∫
Zp︸ ︷︷ ︸

r-times

e(x+x+···+xr )t dμλ(x) · · · dμλ(xr)
∣∣∣xn〉,

where n≥ .

http://www.advancesindifferenceequations.com/content/2012/1/222
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Remark From (.) and (.), we note that

d
dλ

(
 – λ

et – λ

)
=

 – et

(et – λ)
=


( – λ)

(
( – λ)

(et – λ)
–

 – λ

et – λ

)

=


 – λ

∞∑
n=

(
H ()

n (λ) –Hn(λ)
) tn
n!
, (.)

and

d

dλ

(
 – λ

et – λ

)
= !

 – et

(et – λ)
=

!
( – λ)

(
( – λ)

(et – λ)
–

( – λ)

(et – λ)

)

=
!

( – λ)

∞∑
n=

(
H ()

n (λ) –H ()
n (λ)

) tn
n!
. (.)

Continuing this process, we obtain the following equation:

dk

dλk

(
 – λ

et – λ

)
=

k!
( – λ)k

(
( – λ)k+

(et – λ)k+
–

( – λ)k

(et – λ)k

)

=
k!

( – λ)k

∞∑
n=

(
H (k+)

n (λ) –H (k)
n (λ)

) tn
n!
. (.)

By (.), (.) and (.), we get

dk

dλk Hn(λ) =
k!

( – λ)k
(
H (k+)

n (λ) –H (k)
n (λ)

)
,

where k is a positive integer.
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