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Abstract
In this article, we consider the Liénard system of the form

ẋ = y, ẏ = x(x – 1)(x + 1)(x2 – 3) + ε(α + βx2 + γ x4)y

with 0 < ε � 1, a, b and c are real bounded parameters. We prove that the least upper
bound of the number of isolated zeros of the corresponding Abelian integral

I(h) =
∮

�h

(α + βx2 + γ x4)y dx

is four (counting the multiplicity). This implies that the number of limit cycles that
bifurcated from periodic orbits of the unperturbed system for ε = 0 is less than or
equal to four.
MSC: 34C05; 34C07; 34C08

Keywords: limit cycle; Liénard system; Chebyshev system; heteroclinic loops;
bifurcation

1 Introduction
Let H(x, y), p(x, y) and q(x, y) be polynomials of x and y, and suppose that deg(H) = n + 
and max{def(p),deg(q)} = n. H(x, y) defines at least one family of closed curves (or ovals)
Lh, where h is a parameter on an open interval J . Then ω = q(x, y)dx – p(x, y)dy is called
-form of degree n and the so-called Abelian integral (also called a first-order Melnikov
function) defined on all ovals of H(x, y) is as follows:

A(h) =
∮

�h

ω, h ∈ J . (.)

For a given n, which is the maximal number of zeros of A(h), this is the famous weak
Hilbert’s th problem proposed by Arnold in . It is well known that this problem is
very difficult and still remains unresolved, its research advance and the recent popular and
efficient method for special Abelian integral (.) can be found in the summary works [,
]. Using the above H(x, y), p(x, y) and q(x, y), we can obtain the following system:

ẋ =Hy + εp(x, y, δ), ẏ = –Hx + εq(x, y, δ), (.)
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which is called a near-Hamiltonian system, ε is a small positive parameter. Taking ε = ,
we obtain the corresponding Hamiltonian system

ẋ =Hy, ẏ = –Hx. (.)

The closed curves Lh correspond to the periodic orbits of system (.) which form the an-
nulus of system (.). If A(h) is not identically zero, the number of zeros of A(h) provides
an upper bound of the number of limit cycles of (.) bifurcated from the periodic annulus
of (.) by the Poincaré-Pontryagin theorem []. Therefore, system (.) is also an impor-
tant and main research system in the second part of Hilbert’s th problem which asks
for the maximum number and position of limit cycles for polynomial planar vector fields
depending on the degree of the vector field. However, it is still an open problem to find
the maximum number of limit cycles even for quadratic systems; see a recent summary
work [] for its research advance.
In the progress to solve the weak Hilbert’s th problem and the second part of Hilbert’s

th problem, many mathematicians are more interested in the following special near-
Hamiltonian system that is called the Liénard system:

ẋ = y, ẏ = g(x) + εf (x)y (.)

of type (m,n), where g(x) and f (x) are polynomials of degree, respectively, m and n, ε is
positive and very small, and the corresponding Hamiltonian function is as follows:

H(x, y) =
y


–

∫
g(x)dx.

When the degree of H(x, y) is three or four, system (.) is of elliptic Hamiltonian sys-
tems,when the degree of H(x, y) is more than five, (.) is of hyperelliptic Hamiltonian
systems. A comprehensive study has been made in [] for the cases m + n ≤ , except for
(m,n) = (, ). In all these cases, it has been proven that at most one limit cycle can appear,
and for (m,n) = (, ), the same result has been conjectured (see []).
Taking g(x) is a polynomial of degree three and f (x) = a + bx + cx, system (.) is of

type (, ), there are several cases according to the portraits of the unperturbed system.
Dumortier and Li [–] havemade a complete study on these cases and obtained different
sharp upper bounds of the number of zeros of Abelian integrals for different cases. Li,
Pavao and Roussarieb [] investigated some Liénard systems of type (, ) with symmetry
and also obtained their sharp bound of the corresponding Abelian integral. For the type
(, ), Wang and Xiao [] have investigated some Liénard system of type (, ), combined
with the PhD thesis []. They have proved that four is the least upper bound and three
is maximum lower bound of the number of zeros for the corresponding Abelian integral.
The results of the maximum lower bound of the number of zeros for the Abelian integral
corresponding to this kind system can be found in [–].
For the type (, ),mathematicians have studied the following Liénard systemswith sym-

metry of the form

ẋ = y, ẏ = ηx
(
x – a

)(
x – b

)
+ ε

(
α + βx + γ x

)
y, (.)

http://www.advancesindifferenceequations.com/content/2012/1/224
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Figure 1 Six cases for (1.5) have at least one annulus surrounding an elementary center.

where η = ±, α, β and γ are real bounded numbers.Without loss of generality, we assume
b ≥ a≥ .When the portraits of system (.) with ε =  have at least one periodic annulus
surrounding an element center, there are several cases according to the value of a and b;
see Figure .
For case , Asheghi and Zangeneh [] studied (.) by taking a = , b =  and proved that

the corresponding Abelian integral has at most two zeros inside the double cuspidal loop.
For case , Qi and Zhao [] proved that system (.) with a = –

√


 and b = +
√


 has
at most two limit cycles bifurcated from each annulus. For case , Xu and Li [] proved
that system (.) has at least five limit cycles bifurcated from three annuluses of system
(.)ε= with a = 

 , b = . For case , Zhang et al. [] proved that system (.) with a = 
 ,

b =  has at most three limit cycles bifurcated from the annuluses. For case , Asheghi
and Zangeneh studied (.) with a = b =  and proved that the least upper bound for the
number of zeros of the related Abelian integral inside the eye-figure loop is two in [] and
both inside and outside the eye-figure loop is four in [].
In this article, we study case  by a very new algebra method. Without loss of generality,

we take η = , a = , b = , then system (.) becomes

ẋ = y, ẏ = x
(
x – 

)(
x – 

)
+ ε

(
α + βx + γ x

)
y, (.)

with the Hamiltonian function of the unperturbed system

H̃(x, y) =
y


–


x + x –



x. (.)

The level sets (i.e., H̃(x, y) = h) of Hamiltonian function (.) are sketched in Figure . It is
easy to check H̃(x, y) = h defines two families of ovals with symmetry which correspond to
two symmetric period annuluses that consist of closed clockwise orbits of system (.)ε=

http://www.advancesindifferenceequations.com/content/2012/1/224


Sun Advances in Difference Equations 2012, 2012:224 Page 4 of 11
http://www.advancesindifferenceequations.com/content/2012/1/224

Figure 2 The level set of ˜H(x,y).

denoted by �h. H(x, y) =  defines two symmetric -polycycles � = {(x, y)|H(x, y) = ,x >
} and � = {(x, y)|H(x, y) = ,x < } which are formed by heteroclinic orbits.
On the right half-plane, the closed orbits �h inside � are defined by

�h =
{
(x, y)

∣∣∣H̃(x, y) = h,h ∈
(
–


,

)}
,

�h shrinks to the center C(, ) defined by H(x, y) = –
 when h → –


+, �h expands to

the -polycycles � when h→ –. The Abelian integral on �h of the right half-plane is as
follows:

I(h, δ) =
∮

�h

(
α + βx + γ x

)
ydx ≡ αI(h) + βI(h) + γ I(h) (.)

for h ∈ (–
 , ), where δ = (α,β ,γ ), Ii(h) =

∮
�h

xiy dx, i = , , . By symmetry, we can only
investigate the right half-plane. Without loss of generality, we fix γ =  and obtain the
following main results.

Theorem A For all α and β , the least upper bound of the number of zeros of the Abelian
integral I(h, δ) is two (counting the multiplicity) for h ∈ (–

 , ) with �h inside one saddle
polycycle�i for i = , . System (.) has atmost two limit cycles bifurcated from each period
annulus and at most four limit cycles from the two period annuluses.

The rest of the article is organized as follows. In Section , we introduce some definitions
and the new criteria which are used to determine the number of zeros of the Abelian
integral I(h, δ). In Section , we prove the main result.

2 Preliminary lemmas and definitions
Themethod we introduce proposes some criterion functions defined directly by Hamilto-
nian and integrands of Abelian integrals, through which the problem whether the basis of
the vector space generated by an Abelian integral is a Chebyshev system could be reduced
to the problem whether the family of criterion functions form a Chebyshev system, since

http://www.advancesindifferenceequations.com/content/2012/1/224
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the latter can be tackled by checking the non-vanishing properties of its Wronskians. For
this paper to be self-contained, we list some related definitions and criterions. For more
details, refer to [, ].

Definition . Suppose f, f, f, . . . , fn– are analytic functions on a real open interval J .
(i) The family of sets {f, f, f, . . . , fn–} is called a Chebyshev system (T-system for short)

provided that any nontrivial linear combination

kf(x) + kf(x) + · · · + kn–fn–(x)

has at most n –  isolated zeros on J .
(ii) An ordered set of n functions {f, f, f, . . . , fn–} is called a complete Chebyshev system

(CT-system for short) provided any nontrivial linear combination kf(x) + kf(x) + · · · +
ki–fi–(x) has at most i –  zeros for all i = , , . . . ,n. Moreover, it is called an extended
complete Chebyshev system (ECT-system for short) if the multiplicities of zeros are taken
into account.
(iii) The continuous Wronskian of {f, f, f, . . . , fn–} at x ∈ R is

W [f, f, f, . . . , fk–] = det
(
f ji

)
≤i,j≤k– =

∣∣∣∣∣∣∣∣∣

f(x) f(x) · · · fk–
f ′
(x) f ′

 (x) · · · f ′
k–(x)

· · · · · · · · · · · ·
f (k–) (x) f (k–) (x) · · · f (k–)k– (x)

∣∣∣∣∣∣∣∣∣
,

where f ′(x) is the first-order derivative of f (x) and f (i)(x) is the ith-order derivative of f (x),
i ≥ . The definitions imply that the function tuple {f, f, . . . , fk–} is an ECT-system on J ,
therefore it is a CT-system on J , and then a T-system on J ; however, the inverse implica-
tions are all not true.

Recall that the authors of [] studied the number of isolated zeros of Abelian integrals
in a purely algebraic criteria which are developed from the idea introduced in []. Let
H(x, y) = A(x)+ 

y
 be an analytic function in some open subset of the plane that has a local

minimumat (x, ). Then there exists a punctured neighborhood P of the origin foliated by
ovals Lh =H(x, y) = h which correspond to the clockwise closed orbits of (.). The set of
ovals Lh inside the period annulus is parameterized by the energy levels h ∈ (h,h) = J for
some hi ∈ (, +∞]. The projection of P on the x-axis is an interval (xl,xr) with xl < x < xr .
Under the above assumptions, it is easy to verify that xA′(x) >  for all x ∈ (xl,xr) \ {x}.
ThenA(x) has a zero of evenmultiplicity at x = x, and so there exists an analytic involution
z(x) such that

A(x) = A
(
z(x)

)

for all x ∈ (xl,xr).
For the number of isolated zeros of nontrivial linear combination of some Abelian inte-

grals, the algebraic criterion in [] (Theorem B) can be stated as follows.

http://www.advancesindifferenceequations.com/content/2012/1/224
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Lemma. Assume that function fi(x) is analytic on the interval (xl,xr) for i = , , . . . ,n–,
and considering

Ai(h) =
∫
Lh
fi(x)ys– dx, i = , , . . . ,n – ,

where for each h ∈ (,h), Lh is the oval surrounding the origin inside the level curve {A(x)+

y

m = h}, we define

li(x) :=
fi(x)
A′(x)

–
fi(z(x))
A′(z(x))

.

Then {A,A, . . . ,An–} is an extended complete Chebyshev system on (h,h) if {l, l, . . . ,
ln–} is a complete Chebyshev system on (xl,x) or (x,xr) and s > (n–).And {l, l, . . . , ln–}
is an ECT-system on (x,xr) or (xl,x) if and only if the continuous Wronskian of {l, l, . . . ,
lk–} does not vanish for x ∈ (x,xr) or for z ∈ (xl,x) and k = , . . . ,n.

Usually s is not big enough (s > n –  does not hold), we cannot apply Lemma . di-
rectly. To overcome this problem, we can use the following result (see [], Lemma .) to
increase the power of y in Ai(h).

Lemma . Let Lh be an oval inside the level curve A(x) + 
 (x)y

 = h and consider a func-
tion F(x) such that F(x)

A′(x) is analytic at x = . Then for any k ∈N ,

∮
Lh
F(x)yk– dx =

∮
Lh
G(x)yk dx,

where G(x) = 
k (

F
A′ )′(x).

3 Proof of themain result
In what follows, we shall apply Lemma . to study if Abelian integrals

Ii(h) =
∫

�h

xiy dx, i = , , 

have the Chebyshev property in the interval (–
 , ). Following the notation in Lemma .,

we haveA(x) = H̃(x, ) = –
x

 +x – 
x

, and s = , n = . The period annulus is foliated by
the ovals �h, and the projection of the period annulus on the right half-plane is an open
interval (,

√
) satisfying A() = A(

√
). Noting that xA′(x) >  for all x ∈ (,

√
) \ {},

therefore there exists an analytic involution z(x) as  < x <  and  < z(x) <
√
 such that

A(x) = A
(
z(x)

)
as  < x < , the involution is represented in Figure .
Our goal is to prove that the vector space generated by an Abelian integral Ii(h) has the

Chebyshev property for x ∈ (,
√
) by Lemma .. However, note that s =  and n = ,

which does not satisfy the hypothesis s > n –  in Lemma .. Thus, we have to promote
the power s of y in the integrand of Ii(h) such that the condition s > n –  holds.

http://www.advancesindifferenceequations.com/content/2012/1/224
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Figure 3 The involution z(x) defined by A(x) = A(z(x)).

Lemma . For i = , , , we have

hIi(h) =
∫

�h

fi(x)y dx,

where fi(x) = 


xĩ fi(x)
(x–)(x+) and f̃i(x) = x – x +  + ix – ix + i.

Proof It is clear that on every periodic orbit �h = {H̃(x, y) = h}, A(x)+yh =  holds, therefore

Ii(h) =

h

∫
�h

(
A(x) + y

)
xiy dx

=

h

∫
�h

xiA(x)ydx +

h

∫
�h

xiy dx, i = , , . (.)

Note that the functions xiA(x)
A′(x) are analytic on x = . Applying Lemma ., we have

∫
�h

xiA(x)ydx =
∫

�h

Gi(x)y dx,

where Gi(x) = 

(x+ix–ix++i)xi

(x–)(x+) . Combined with (.), we proved Lemma .. �

Let

Ĩi(h) =
∫

�h

fi(x)y dx,

then {I, I, I} is an ECT-system on (–
 , ) if and only if {̃I,̃ I,̃ I} is as well. Since s = ,

n =  and the condition s > n –  holds, we can now study if {̃I,̃ I,̃ I} is an ECT-system in
the interval (–

 , ) by Lemma .. Thus, set the criteria functions

li(x) =
(
fi
A′

)
(x) –

(
fi
A′

)(
z(x)

)
,  < x < , i = , , ,

where z(x) is the analytic involution z(x) defined by A(x) = A(z). Note that for  < x <  <
z <

√
,

A(x) –A(z) = –


(x – z)(x + z)

(
x –  + xz + z

)
q(x, z) = ,

http://www.advancesindifferenceequations.com/content/2012/1/224
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where

q(x, z) = x –  – xz + z.

It is not difficult to find z(x) is implicitly determined by q(x, z), therefore z′(x) = – x–z
–x+z .

In the following, we check if the ordered set of criterion functions {l(x), l(x), l(x)}
is an ECT-system as x ∈ (, ) by verifying the non-vanishing property of continuous
WronskiansW [l],W [l, l],W [l, l, l].

Lemma . The function tuple {l(x), l(x), l(x)} is an ECT-system for x ∈ (, ).

Proof From Definition .(iii) about continuous Wronskian and with the aid of Maple ,
we have

W
[
l(x)

]
=

(x – z)p(x, z)
(x – )(x + )x(x – )(z – )(z + )z(z – )

,

W
[
l(x), l(x)

]
=

(x – z)(x + z)p(x, z)
xz(x – z)(z – )(z + )(z – )(x – )(x + )(x – )

,

W
[
l(x), l(x), l(x)

]
=

(x + z)(x – z)p(x, z)
(x – )x(x + )(x – )z(z – )(z + )(z – )(x – z)

,

where z = z(x) is implicitly determined by the equation q(x, z) =  for  < x <  < z <
√
,

while p(x, z), p(x, z) and p(x, z) are polynomials of (x, z) with very long expressions of
degree ,  and , respectively; their expressions are shown in theAppendix. It is crucial
to check if pi(x, z) �=  for all (x, z) satisfies q(x, z) =  and  < x <  < z <

√
 for i = , , 

one by one, i.e., to check if pi(x, z) =  and q(x, z) =  have a common root on {(x, z)| < x <
 < z <

√
} for i = , , .

Firstly, calculating the resultant with respect to z between q(x, z) and p(x, z) (i.e., elimi-
nating z from q(x, z) =  and p(x, z) = ) gives

R(q,p, z) = x
(
x – 

)
(x – )(x + )wr ,

where wr(x) = x – x + x – ,x + . Applying Sturm’s theorem to wr

gives wr(x) �=  for all x ∈ (, ), hence R(q,p, z) �=  on (, ). Therefore, p(x, z) =  and
q(x, z) =  have no common roots, which implies thatW [l] �=  for all x ∈ (, ).
Secondly, calculating the resultant with respect to z between q(x, z) and p(x, z) gives

R(q,p, z) = ,x
(
x – 

)(x – )(x + )wr ,

where wr(x) =  – ,x + x – x + x. Applying Sturm’s theorem to wr

gives wr(x) �=  for all x ∈ (, ), hence R(q,p, z) �=  on (, ). Therefore, p(x, z) =  and
q(x, z) =  have no common roots, which implies thatW [l, l] �=  for all x ∈ (, ).
Lastly, calculating the resultant with respect to z between q(x, z) and p(x, z) gives

R(q,p, z) = ,x
(
x – 

)(x – )(x + )wr ,

http://www.advancesindifferenceequations.com/content/2012/1/224
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where wr(x) = ,, – ,,x + ,,x – ,,x + ,,x –
,x + ,x – ,x + ,x. Applying Sturm’s theorem to wr gives
wr(x) �=  for all x ∈ (, ), hence R(q,p, z) �=  on (, ). Therefore, p(x, z) =  and
q(x, z) =  have no common roots, which implies thatW [l, l,L] �=  for all x ∈ (, ).
From the discussion above, three Wronskians do not vanish for x ∈ (, ), therefore

Lemma . is proved. �

By Lemma . and Lemma ., we have proved that {̃I(h),̃ I(h),̃ I(h)} is an ECT-system
on (–

 , ), therefore {I, I, I} is an ECT-system on (–
 , ) as well. Therefore, I(h, δ) has

at most two zeros on the right half-plane; by symmetry, I(h, δ) has at most four zeros on
the two period annuluses. By the Poincaré-Pontryagin theorem, system (.) has at most
four limit cycles bifurcated from two annuluses.

4 Conclusion
In this work, we study case  for the Liénard system of type (, ) given above by a new
algebra method which is different from the geometrical method used in [, , –]. It
is proved that four is the least upper bound of the number of limit cycles bifurcated from
two annuluses. Up to now, the least upper bound of the number of limit cycles has been
given for six cases of (.) except for case . By the result of [], the maximal lower bound
of the number of limit cycles for this case is five, therefore the least upper bound is more
than or equal to five.

Appendix
As an appendix, we give the expression of the long polynomials p(x, z), p(x, z) and p(x, z).

p(x, z) = xz + xz + xz + xz + xz – xz – xz – xz – xz

– xz – xz – xz + x + xz + xz + xz + xz

+ xz + xz + xz + z – x – xz – xz – xz

– xz – xz – z + x + xz + xz + xz + z – x

– xz – z + ,

p(x, z) = xz + xz + xz + xz + xz + xz + xz – xz

– xz – xz – xz – xz – xz – xz – xz

– xz + xz + xz + xz + xz + xz + xz

+ xz + xz + xz + xz + xz – xz – xz

– ,xz – xz – ,xz – xz – ,xz – xz

– xz – x + xz + xz + ,xz + xz + ,xz

+ xz + xz – z + x – ,xz – xz – ,xz

– xz – ,xz + z – x + ,xz – xz + ,xz

– z + x – xz + z – ,

http://www.advancesindifferenceequations.com/content/2012/1/224
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p(x, z) = xz – xz + xz – xz + xz – xz

+ xz – xz + xz – ,xz + ,xz

– ,xz + ,xz – ,xz + xz – xz

+ ,xz – ,xz + ,xz – ,xz + ,xz

– ,xz + ,xz – ,xz + ,xz – ,xz

+ ,xz – ,xz + ,xz – ,xz + ,xz

– ,xz + ,xz – ,xz + ,xz

– ,xz + ,xz – ,xz + ,xz – ,xz

+ xz – ,xz + ,xz – ,xz + ,xz

– ,xz + ,xz – ,xz + ,xz

– ,xz + ,xz – ,xz + ,xz – ,xz

+ xz + xz – ,xz + ,xz – ,xz

+ ,xz – ,xz + ,xz – ,,xz

+ ,xz – ,xz + ,xz – ,xz

+ ,xz – ,xz + xz + x + xz – ,xz

+ ,xz – ,xz + ,xz – ,xz

+ ,,xz – ,,xz + ,,xz – ,xz

+ ,xz – ,xz + ,xz – ,xz + xz

+ z – ,x – ,xz + ,xz – ,xz

+ ,xz – ,,xz + ,,xz – ,,xz

+ ,,xz – ,,xz + ,xz – ,xz

+ ,xz – ,xz – ,z + ,x + ,xz

– ,xz + ,xz – ,xz + ,,xz

– ,,xz + ,,xz – ,xz + ,xz

– ,xz + ,xz + ,z – ,x – ,xz

+ ,xz – ,xz + ,xz – ,,xz

+ ,xz – ,xz + ,xz – ,xz – ,z

+ ,x + ,xz – ,xz + ,xz – ,xz

+ ,xz – ,xz + ,xz + ,z – ,x

– ,xz – ,xz – ,xz – ,xz – ,xz

– ,z + ,x + ,xz + ,xz + ,xz + ,z

– ,x – ,z + ,.

http://www.advancesindifferenceequations.com/content/2012/1/224
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