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Abstract
In this paper we prove the Hyers-Ulam stability of the perfect linear differential
equation f (t)y′′(t) + f1(t)y′(t) + f2(t)y(t) = Q(t), where f , y ∈ C2[a,b], Q ∈ C[a,b],
f2(t) = f ′1(t) – f ′′(t) and –∞ < a < b < +∞.
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1 Introduction
The question concerning the stability of group homomorphisms was posed by Ulam [].
Hyers [] solved the case of approximately additive mappings in Banach spaces and T.M.
Rassias generalized the result of Hyers [].

Definition . Let X be a normed space over a scalar fieldK and let I be an open interval.
Assume that a,a, . . . ,an, h : I → K are continuous functions. We say that the differential
equation

an(t)y(n)(t) + an–(t)y(n–)(t) + · · · + a(t)y′(t) + a(t)y(t) + h(t) =  (.)

has the Hyers-Ulam stability if, for any function f : I → X satisfying the differential in-
equality

∥∥an(t)y(n)(t) + an–(t)y(n–)(t) + · · · + a(t)y′(t) + ay(t) + h(t)
∥∥ ≤ ε

for all t ∈ I and some ε ≥ , there exists a solution g : I → X of (.) such that ‖f (t)–g(t)‖ ≤
K(ε) for all t ∈ I , where K(ε) is a function depending only on ε.

Obłoza [, ] was the first author who investigated the Hyers-Ulam stability of differen-
tial equations (also see []).
Jung [] solved the inhomogeneous differential equation of the form y′′ + xy′ – ny =∑∞
m= amxm, where n is a positive integer, and he used this result to prove the Hyers-Ulam

stability of the differential equation y′′ + xy′ – ny =  in a special class of analytic func-
tions.
Li and Shen [] proved that if the characteristic equation λ + αλ + β =  has two dif-

ferent positive roots, then the linear differential equation of second order with constant
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coefficients y′′(x) + αy′(x) + βy(x) = f (x) has the Hyers-Ulam stability where y ∈ C[a,b],
f ∈ C[a,b] and –∞ < a < b < +∞ (see also [, ]). Abdollahpour and Najati [] proved
that the third-order differential equation y()(t)+αy′′(t)+βy′(t)+γ y(t) = f (t) has theHyers-
Ulam stability. Ghaemi et al. [] proved the Hyers-Ulam stability of the exact second-
order linear differential equation

p(x)γ ′′ + p(x)γ ′ + p(x)γ + f (x) = 

with p′′
(x) – p′

(x) + p(x) = . Here p, p, p, f : (a,b) → R are continuous functions.
For more results about the Hyers-Ulam stability of differential equations, we can refer to
[–].

Definition . We say that the differential equation

f (t)y′′(t) + f(t)y′(t) + f(t)y(t) =Q(t), (.)

is perfect if it can be written as d
dt [f (t)y

′(t) + (f(t) – f ′(t))y(t)] =Q(t).

It is clear that the differential equation (.) is perfect if and only if f(t) = f ′
 (t) – f ′′(t).

The aim of this paper is to investigate the Hyers-Ulam stability of the perfect differential
equation (.), where f , y ∈ C[a,b], Q ∈ C[a,b], f ∈ C[a,b], f(t) = f ′

 (t) – f ′′(t) and –∞ <
a < b < +∞. More precisely, we prove that the equation (.) has the Hyers-Ulam stability.

2 Hyers-Ulam stability of the perfect differential equation
f (t)y′′(t) + f1(t)y′(t) + f2(t)y(t) = Q(t)

In the following theorem, we prove the Hyers-Ulam stability of the differential equation
(.).
Throughout this section, a and b are real numbers with –∞ < a < b < +∞.

Theorem . The perfect differential equation

f (t)y′′(t) + f(t)y′(t) + f(t)y(t) =Q(t)

has the Hyers-Ulam stability, where f , y ∈ C[a,b], f ∈ C[a,b], Q ∈ C[a,b] and f (t) 	= 
for all t ∈ [a,b].

Proof Let ε >  and y ∈ C[a,b] with

∣∣f (t)y′′(t) + f(t)y′(t) + f(t)y(t) –Q(t)
∣∣ ≤ ε.

Let g(t) = f (t)y′ + (f(t) – f ′(t))y for all t ∈ [a,b]. It is clear that

∣∣g ′(t) –Q(t)
∣∣ = ∣∣f (t)y′′(t) + f(t)y′(t) + f(t)y(t) –Q(t)

∣∣ ≤ ε.

We define

z(x) = g(b) –
∫ b

x
Q(t)dt, x ∈ [a,b].
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Then

z′(x) =Q(x), x ∈ [a,b]. (.)

Also, we have

∣∣z(x) – g(x)
∣∣ =

∣∣∣∣g(b) – g(x) –
∫ b

x
Q(t)dt

∣∣∣∣ =
∣∣∣∣
∫ b

x
g ′(t)dt –

∫ b

x
Q(t)dt

∣∣∣∣
≤

∫ b

x

∣∣g ′(t) –Q(t)
∣∣dt ≤ ε(b – a)

for all x ∈ [a,b]. Now we define

F(x) =


f (x)
exp

{∫ x

a

f(t)
f (t)

dt
}
, u(x) =

y(b)F(b)
F(x)

–


F(x)

∫ b

x

z(t)F(t)
f (t)

dt

for all x ∈ [a,b]. It is clear that u ∈ C[a,b] and

u′(x)F(x) + u(x)F ′(x) =
z(x)F(x)
f (x)

, F ′(x) =
f(x) – f ′(x)

f (x)
F(x).

Therefore,

f (x)u′(x) +
[
f(x) – f ′(x)

]
u(x) = z(x), x ∈ [a,b]. (.)

Hence, (.) implies that

f (x)u′′(x) + f(x)u′(x) + f(x)u(x) =Q(x), x ∈ [a,b].

Also, we have

∣∣y(x) – u(x)
∣∣ =

∣∣∣∣y(x) – y(b)F(b)
F(x)

+


F(x)

∫ b

x

z(t)F(t)
f (t)

dt
∣∣∣∣

=


|F(x)|
∣∣∣∣y(x)F(x) – y(b)F(b) +

∫ b

x

z(t)F(t)
f (t)

dt
∣∣∣∣

=


|F(x)|
∣∣∣∣
∫ b

x

z(t)F(t)
f (t)

dt –
∫ b

x

[
y(t)F(t)

]′ dt
∣∣∣∣

=


|F(x)|
∣∣∣∣
∫ b

x

(
z(t)F(t)
f (t)

– y′(t)F(t) – y(t)F ′(t)
)
dt

∣∣∣∣
=


|F(x)|

∣∣∣∣
∫ b

x
F(t)

(
z(t)
f (t)

– y′(t) –
f(t) – f ′(t)

f (t)
y(t)

)
dt

∣∣∣∣
≤ 

|F(x)|
∫ b

x

∣∣∣∣F(t)f (t)

∣∣∣∣
∣∣z(t) – y′(t)f (t) –

[
f(t) – f ′(t)

]
y(t)

∣∣dt

=


|F(x)|
∫ b

x

∣∣∣∣F(t)f (t)

∣∣∣∣
∣∣z(t) – g(t)

∣∣dt

≤ ε(b – a)


|F(x)|
∫ b

x

∣∣∣∣F(t)f (t)

∣∣∣∣dt (.)
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for all x ∈ [a,b]. Since f
f ∈ C[a,b], there exist constants m′ and M′ such that m′ ≤ f(x)

f (x) ≤
M′. Thus

⎧⎪⎪⎨
⎪⎪⎩

 ≤ exp{∫ x
a

f(t)
f (t) dt} ≤ eM′(b–a) ifm′ ≥ ;

em′(b–a) ≤ exp{∫ x
a

f(t)
f (t) dt} ≤ eM′(b–a) ifm′ <  ≤ M′;

em′(b–a) ≤ exp{∫ x
a

f(t)
f (t) dt} ≤  ifM′ < 

(.)

for all x ∈ [a,b]. Since f ∈ C[a,b] and |f | > , there exist constants  < m ≤ M such that
m ≤ |f (x)| ≤ M for all x ∈ [a,b]. Hence, (.) implies that


M

e|m′|(a–b) ≤ ∣∣F(x)∣∣ ≤ 
m
e|M′|(b–a)

for all x ∈ [a,b]. It follows from (.) that

∣∣y(x) – u(x)
∣∣ ≤ ε(b – a)


|F(x)|

∫ b

x

∣∣∣∣F(t)f (t)

∣∣∣∣dt

≤ ε(b – a)
M
m e

(|m′|+|M′|)(b–a)

for all x ∈ [a,b]. �
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