Approximate perfect differential equations of second order

Mohammad Reza Abdollahpour ${ }^{1}$, Abbas Najati ${ }^{1}$, Choonkil Park², Themistocles M Rassias ${ }^{3}$ and Dong Yun Shin ${ }^{4 *}$

*Correspondence: dyshin@uos.ac.kr
${ }^{4}$ Department of Mathematics, University of Seoul, Seoul, 130-743, Korea
Full list of author information is available at the end of the article

Abstract

In this paper we prove the Hyers-Ulam stability of the perfect linear differential equation $f(t) y^{\prime \prime}(t)+f_{1}(t) y^{\prime}(t)+f_{2}(t) y(t)=Q(t)$, where $f, y \in C^{2}[a, b], Q \in C[a, b]$, $f_{2}(t)=f_{1}^{\prime}(t)-f^{\prime \prime}(t)$ and $-\infty<a<b<+\infty$.
MSC: 34K20; 26D10; 39B82; 34K06; 39B72
Keywords: Hyers-Ulam stability; differential equation

1 Introduction

The question concerning the stability of group homomorphisms was posed by Ulam [1]. Hyers [2] solved the case of approximately additive mappings in Banach spaces and T.M. Rassias generalized the result of Hyers [3].

Definition 1.1 Let X be a normed space over a scalar field \mathbb{K} and let I be an open interval. Assume that $a_{0}, a_{1}, \ldots, a_{n}, h: I \rightarrow \mathbb{K}$ are continuous functions. We say that the differential equation

$$
\begin{equation*}
a_{n}(t) y^{(n)}(t)+a_{n-1}(t) y^{(n-1)}(t)+\cdots+a_{1}(t) y^{\prime}(t)+a_{0}(t) y(t)+h(t)=0 \tag{1.1}
\end{equation*}
$$

has the Hyers-Ulam stability if, for any function $f: I \rightarrow X$ satisfying the differential inequality

$$
\left\|a_{n}(t) y^{(n)}(t)+a_{n-1}(t) y^{(n-1)}(t)+\cdots+a_{1}(t) y^{\prime}(t)+a_{0} y(t)+h(t)\right\| \leq \varepsilon
$$

for all $t \in I$ and some $\varepsilon \geq 0$, there exists a solution $g: I \rightarrow X$ of (1.1) such that $\|f(t)-g(t)\| \leq$ $K(\varepsilon)$ for all $t \in I$, where $K(\varepsilon)$ is a function depending only on ε.

Obłoza $[4,5]$ was the first author who investigated the Hyers-Ulam stability of differential equations (also see [6]).

Jung [7] solved the inhomogeneous differential equation of the form $y^{\prime \prime}+2 x y^{\prime}-2 n y=$ $\sum_{m=0}^{\infty} a_{m} x^{m}$, where n is a positive integer, and he used this result to prove the Hyers-Ulam stability of the differential equation $y^{\prime \prime}+2 x y^{\prime}-2 n y=0$ in a special class of analytic functions.

Li and Shen [8] proved that if the characteristic equation $\lambda^{2}+\alpha \lambda+\beta=0$ has two different positive roots, then the linear differential equation of second order with constant

[^0]coefficients $y^{\prime \prime}(x)+\alpha y^{\prime}(x)+\beta y(x)=f(x)$ has the Hyers-Ulam stability where $y \in C^{2}[a, b]$, $f \in C[a, b]$ and $-\infty<a<b<+\infty$ (see also [9, 10]). Abdollahpour and Najati [11] proved that the third-order differential equation $y^{(3)}(t)+\alpha y^{\prime \prime}(t)+\beta y^{\prime}(t)+\gamma y(t)=f(t)$ has the HyersUlam stability. Ghaemi et al. [12] proved the Hyers-Ulam stability of the exact secondorder linear differential equation
$$
p_{0}(x) \gamma^{\prime \prime}+p_{1}(x) \gamma^{\prime}+p_{2}(x) \gamma+f(x)=0
$$
with $p_{0}^{\prime \prime}(x)-p_{1}^{\prime}(x)+p_{2}(x)=0$. Here $p_{0}, p_{1}, p_{2}, f:(a, b) \rightarrow \mathbb{R}$ are continuous functions. For more results about the Hyers-Ulam stability of differential equations, we can refer to [13-21].

Definition 1.2 We say that the differential equation

$$
\begin{equation*}
f(t) y^{\prime \prime}(t)+f_{1}(t) y^{\prime}(t)+f_{2}(t) y(t)=Q(t) \tag{1.2}
\end{equation*}
$$

is perfect if it can be written as $\frac{d}{d t}\left[f(t) y^{\prime}(t)+\left(f_{1}(t)-f^{\prime}(t)\right) y(t)\right]=Q(t)$.

It is clear that the differential equation (1.2) is perfect if and only if $f_{2}(t)=f_{1}^{\prime}(t)-f^{\prime \prime}(t)$. The aim of this paper is to investigate the Hyers-Ulam stability of the perfect differential equation (1.2), where $f, y \in C^{2}[a, b], Q \in C[a, b], f_{1} \in C^{1}[a, b], f_{2}(t)=f_{1}^{\prime}(t)-f^{\prime \prime}(t)$ and $-\infty<$ $a<b<+\infty$. More precisely, we prove that the equation (1.2) has the Hyers-Ulam stability.

2 Hyers-Ulam stability of the perfect differential equation

$f(t) y^{\prime \prime}(t)+f_{1}(t) y^{\prime}(t)+f_{2}(t) y(t)=Q(t)$
In the following theorem, we prove the Hyers-Ulam stability of the differential equation (1.2).

Throughout this section, a and b are real numbers with $-\infty<a<b<+\infty$.

Theorem 2.1 The perfect differential equation

$$
f(t) y^{\prime \prime}(t)+f_{1}(t) y^{\prime}(t)+f_{2}(t) y(t)=Q(t)
$$

has the Hyers-Ulam stability, where $f, y \in C^{2}[a, b], f_{1} \in C^{1}[a, b], Q \in C[a, b]$ and $f(t) \neq 0$ for all $t \in[a, b]$.

Proof Let $\varepsilon>0$ and $y \in C^{2}[a, b]$ with

$$
\left|f(t) y^{\prime \prime}(t)+f_{1}(t) y^{\prime}(t)+f_{2}(t) y(t)-Q(t)\right| \leq \varepsilon .
$$

Let $g(t)=f(t) y^{\prime}+\left(f_{1}(t)-f^{\prime}(t)\right) y$ for all $t \in[a, b]$. It is clear that

$$
\left|g^{\prime}(t)-Q(t)\right|=\left|f(t) y^{\prime \prime}(t)+f_{1}(t) y^{\prime}(t)+f_{2}(t) y(t)-Q(t)\right| \leq \varepsilon .
$$

We define

$$
z(x)=g(b)-\int_{x}^{b} Q(t) d t, \quad x \in[a, b] .
$$

Then

$$
\begin{equation*}
z^{\prime}(x)=Q(x), \quad x \in[a, b] . \tag{2.1}
\end{equation*}
$$

Also, we have

$$
\begin{aligned}
|z(x)-g(x)| & =\left|g(b)-g(x)-\int_{x}^{b} Q(t) d t\right|=\left|\int_{x}^{b} g^{\prime}(t) d t-\int_{x}^{b} Q(t) d t\right| \\
& \leq \int_{x}^{b}\left|g^{\prime}(t)-Q(t)\right| d t \leq \varepsilon(b-a)
\end{aligned}
$$

for all $x \in[a, b]$. Now we define

$$
F(x)=\frac{1}{f(x)} \exp \left\{\int_{a}^{x} \frac{f_{1}(t)}{f(t)} d t\right\}, \quad u(x)=\frac{y(b) F(b)}{F(x)}-\frac{1}{F(x)} \int_{x}^{b} \frac{z(t) F(t)}{f(t)} d t
$$

for all $x \in[a, b]$. It is clear that $u \in C^{2}[a, b]$ and

$$
u^{\prime}(x) F(x)+u(x) F^{\prime}(x)=\frac{z(x) F(x)}{f(x)}, \quad F^{\prime}(x)=\frac{f_{1}(x)-f^{\prime}(x)}{f(x)} F(x) .
$$

Therefore,

$$
\begin{equation*}
f(x) u^{\prime}(x)+\left[f_{1}(x)-f^{\prime}(x)\right] u(x)=z(x), \quad x \in[a, b] . \tag{2.2}
\end{equation*}
$$

Hence, (2.1) implies that

$$
f(x) u^{\prime \prime}(x)+f_{1}(x) u^{\prime}(x)+f_{2}(x) u(x)=Q(x), \quad x \in[a, b] .
$$

Also, we have

$$
\begin{align*}
&|y(x)-u(x)|=\left|y(x)-\frac{y(b) F(b)}{F(x)}+\frac{1}{F(x)} \int_{x}^{b} \frac{z(t) F(t)}{f(t)} d t\right| \\
&=\frac{1}{|F(x)|}\left|y(x) F(x)-y(b) F(b)+\int_{x}^{b} \frac{z(t) F(t)}{f(t)} d t\right| \\
&=\frac{1}{|F(x)|}\left|\int_{x}^{b} \frac{z(t) F(t)}{f(t)} d t-\int_{x}^{b}[y(t) F(t)]^{\prime} d t\right| \\
&=\frac{1}{|F(x)|}\left|\int_{x}^{b}\left(\frac{z(t) F(t)}{f(t)}-y^{\prime}(t) F(t)-y(t) F^{\prime}(t)\right) d t\right| \\
&=\frac{1}{|F(x)|} \left\lvert\, \int_{x}^{b} \frac{\left.F(t)\left(\frac{z(t)}{f(t)}-y^{\prime}(t)-\frac{f_{1}(t)-f^{\prime}(t)}{f(t)} y(t)\right) d t \right\rvert\,}{}\right. \\
& \leq \frac{1}{|F(x)|} \int_{x}^{b}\left|\frac{F(t)}{f(t)}\right|\left|z(t)-y^{\prime}(t) f(t)-\left[f_{1}(t)-f^{\prime}(t)\right] y(t)\right| d t \\
&=\frac{1}{|F(x)|} \int_{x}^{b}\left|\frac{F(t)}{f(t)}\right||z(t)-g(t)| d t \\
& \leq \varepsilon(b-a) \frac{1}{|F(x)|} \int_{x}^{b}\left|\frac{F(t)}{f(t)}\right| d t \tag{2.3}
\end{align*}
$$

for all $x \in[a, b]$. Since $\frac{f_{1}}{f} \in C[a, b]$, there exist constants m^{\prime} and M^{\prime} such that $m^{\prime} \leq \frac{f_{1}(x)}{f(x)} \leq$ M^{\prime}. Thus

$$
\begin{cases}1 \leq \exp \left\{\int_{a}^{x} \frac{f_{1}(t)}{f(t)} d t\right\} \leq e^{M^{\prime}(b-a)} & \text { if } m^{\prime} \geq 0 \tag{2.4}\\ e^{m^{\prime}(b-a)} \leq \exp \left\{\int_{a}^{x} \frac{f_{1}(t)}{f(t)} d t\right\} \leq e^{M^{\prime}(b-a)} & \text { if } m^{\prime}<0 \leq M^{\prime} ; \\ e^{m^{\prime}(b-a)} \leq \exp \left\{\int_{a}^{x} \frac{f_{1}(t)}{f(t)} d t\right\} \leq 1 & \text { if } M^{\prime}<0\end{cases}
$$

for all $x \in[a, b]$. Since $f \in C[a, b]$ and $|f|>0$, there exist constants $0<m \leq M$ such that $m \leq|f(x)| \leq M$ for all $x \in[a, b]$. Hence, (2.4) implies that

$$
\frac{1}{M} e^{\left|m^{\prime}\right|(a-b)} \leq|F(x)| \leq \frac{1}{m} e^{\left|M^{\prime}\right|(b-a)}
$$

for all $x \in[a, b]$. It follows from (2.3) that

$$
\begin{aligned}
|y(x)-u(x)| & \leq \varepsilon(b-a) \frac{1}{|F(x)|} \int_{x}^{b}\left|\frac{F(t)}{f(t)}\right| d t \\
& \leq \varepsilon(b-a)^{2} \frac{M}{m^{2}} e^{\left(\left|m^{\prime}\right|+\left|M^{\prime}\right|\right)(b-a)}
\end{aligned}
$$

for all $x \in[a, b]$.

Competing interests

The authors declare that they have no competing interests.

Authors' contributions

All authors conceived of the study, participated in its design and coordination, drafted the manuscript, participated in the sequence alignment, and read and approved the final manuscript.

Author details

${ }^{1}$ Department of Mathematics, Faculty of Sciences, University of Mohaghegh Ardabili, Ardabil, 56199-11367, Iran.
${ }^{2}$ Department of Mathematics, Research Institute for Natural Sciences, Hanyang University, Seoul, 133-791, Korea.
${ }^{3}$ Department of Mathematics, National Technical University of Athens, Zografou Campus, Athens, 15780, Greece.
${ }^{4}$ Department of Mathematics, University of Seoul, Seoul, 130-743, Korea.

Acknowledgements

CP was supported by the Basic Science Research Program through the National Research Foundation of Korea funded by the Ministry of Education, Science and Technology (NRF-2012R1A1A2004299) and DYS was supported by the Basic Science Research Program through the National Research Foundation of Korea funded by the Ministry of Education, Science and Technology (NRF-2010-0021792).

Received: 3 September 2012 Accepted: 21 November 2012 Published: 27 December 2012

References

1. Ulam, SM: Problems in Modern Mathematics. Wiley, New York (1940)
2. Hyers, DH: On the stability of the linear functional equation. Proc. Natl. Acad. Sci. USA 27, 222-224 (1941)
3. Rassias, TM: On the stability of linear mapping in Banach spaces. Proc. Am. Math. Soc. 72, 297-300 (1978)
4. Obłoza, M: Hyers stability of the linear differential equation. Rocznik Nauk.-Dydakt. Prace Mat. 13, 259-270 (1993)
5. Obłoza, M: Connections between Hyers and Lyapunov stability of the ordinary differential equations. Rocznik Nauk.-Dydakt. Prace Mat. 14, 141-146 (1997)
6. Alsina, C, Ger, R: On some inequalities and stability results related to the exponential function. J. Inequal. Appl. 2, 373-380 (1998)
7. Jung, S: Hyers-Ulam stability of differential equation $y^{\prime \prime}+2 x y^{\prime}-2 n y=0$. J. Inequal. Appl. 2010, Article ID 793197 (2010)
8. Li, Y, Shen, Y: Hyers-Ulam stability of linear differential equations of second order. Appl. Math. Lett. 23, 306-309 (2010)
9. Eshaghi Gordji, M, Cho, Y, Ghaemi, MB, Alizadeh, B: Stability of the exact second order partial differential equations. J. Inequal. Appl. 2011, Article ID 306275 (2011)
10. Najati, A, Abdollahpour, MR, Cho, Y: Superstability of linear differential equations of second order. Preprint
11. Abdollahpour, MR, Najati, A: Stability of linear differential equations of third order. Appl. Math. Lett. 24, 1827-1830 (2011)
12. Ghaemi, MB, Eshaghi Gordji, M, Alizadeh, B, Park, C: Hyers-Ulam stability of exact second order linear differential equations. Adv. Differ. Equ. 2012, Article No. 36 (2012)
13. Gavruta, P, Jung, S, Li, Y: Hyers-Ulam stability for second-order linear differential equations with boundary conditions. Electron. J. Differ. Equ. 2011 (80), 1-5 (2011)
14. Jung, S: Hyers-Ulam stability of linear differential equations of first order. Appl. Math. Lett. 17, 1135-1140 (2004)
15. Jung, S: Hyers-Ulam stability of linear differential equations of first order, III. J. Math. Anal. Appl. 311, 139-146 (2005)
16. Jung, S: Hyers-Ulam stability of linear differential equations of first order, II. Appl. Math. Lett. 19, 854-858 (2006)
17. Miura, T: On the Hyers-Ulam stability of a differentiable map. Sci. Math. Jpn. 55, 17-24 (2002)
18. Miura, T, Miyajima, S, Takahasi, SE: Hyers-Ulam stability of linear differential operators with constant coefficients. Math. Nachr. 258, 90-96 (2003)
19. Miura, T, Jung, S, Takahasi, SE: Hyers-Ulam-Rassias stability of the Banach space valued differential equations $y^{\prime}=\lambda y$. J. Korean Math. Soc. 41, 995-1005 (2004)
20. Popa, D, Rasa, I: On the Hyers-Ulam stability of the differential equation. J. Math. Anal. Appl. 381, 530-537 (2011)
21. Popa, D, Rasa, I: On the Hyers-Ulam stability of the differential operator with nonconstant coefficients. Appl. Math. Comput. 219, 1562-1568 (2012)

doi:10.1186/1687-1847-2012-225

Cite this article as: Abdollahpour et al.: Approximate perfect differential equations of second order. Advances in Difference Equations 2012 2012:225.

Submit your manuscript to a SpringerOpen ${ }^{\ominus}$ journal and benefit from:

- Convenient online submission
- Rigorous peer review
- Immediate publication on acceptance
- Open access: articles freely available online

High visibility within the field

- Retaining the copyright to your article

Submit your next manuscript at $>$ springeropen.com

[^0]: © 2012 Abdollahpour et al.; licensee Springer. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

