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Abstract
In this paper the authors classified all solutions of the second-order nonlinear neutral
differential equations of mixed type,

(a(t)(x(t) + bx(t – τ1) + cx(t + τ2))
′
)
′ + p(t)xα (t – σ1) + q(t)xβ (t + σ2) = 0,

into four classes and obtained conditions for the existence/non-existence of solutions
in these classes. Examples are provided to illustrate the main results.
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1 Introduction
This paper is concerned with the second-order nonlinear neutral differential equations of
mixed type of the form

(
a(t)

(
x(t) + bx(t – τ) + cx(t + τ)

)′)′ + p(t)xα(t – σ) + q(t)xβ (t + σ) = , (.)

t ≥ t > , subject to the following conditions:

(c) a ∈ C([t,∞),R) and is positive for all t ≥ t;
(c) b and c are constants; τ, τ, σ and σ are nonnegative constants;
(c) α and β are the ratio of odd positive integers;
(c) p,q ∈ C([t,∞),R).

By a solution of equation (.), we mean a function x ∈ C([Tx,∞),R) for some Tx ≥ t,
which has the properties x(t) + bx(t – τ) + cx(t + τ) ∈ C([Tx,∞),R) and a(t)(x(t) + bx(t –
τ) + cx(t + τ)) ∈ C((Tx,∞),R) and satisfies equation (.) on [Tx,∞). As is customary,
a solution of equation (.) is oscillatory if it is neither eventually positive nor eventually
negative; otherwise, it is called non-oscillatory. A non-oscillatory solution x(t) of equation
(.) is said to be weakly oscillatory if x(t) is non-oscillatory and x′(t) is oscillatory for large
value of t.
Second-order neutral delay differential equations have applications in problems dealing

with vibratingmasses attached to an elastic and also appear, as the Euler equation, in some
vibrational problems (see [] and []).
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In [] the authors considered equation (.) with q(t) = , b = h(t), c =  and α =  for
all t ≥ t, and classified all solutions of (.) into four classes and obtained criteria for
the existence/non-existence of solutions in these classes. In [] the authors considered
equation (.) with q ≤ , b = c(t), c = , α = , β =  for all t ≥ t, and classified all solutions
into four classes and obtained the solutions in these classes. For p(t) =  or q(t) =  and
c =  for all t ≥ t, the oscillatory and asymptotic behavior of solutions of equation (.) is
discussed in [, ] and [].
In [–] the authors considered equation (.) with a(t) ≡ , α = β =  or α = β

and obtained conditions for the oscillation of all solutions of equation (.). Motivated
by this observation, in this paper we consider the cases p,q ≥  and p, q changes
sign for all large t, to give sufficient conditions in order that every solution of equa-
tion (.) is either oscillatory or weakly oscillatory and to study the asymptotic na-
ture of non-oscillatory solutions of equation (.) with respect to their asymptotic be-
havior. All the solutions of equation (.) may be a priori divided into the following
classes:

M+ =
{
x = x(t) solution of (.): there exists tx ≥ t such that x(t)x′(t) ≥ , t ≥ tx

}
,

M– =
{
x = x(t) solution of (.): there exists tx ≥ t such that x(t)x′(t) ≤ , t ≥ tx

}
,

OS =
{
x = x(t) solution of (.): there exists {tn}, tn → ∞ such that x(tn) = 

}
,

WOS =
{
x = x(t) solution of (.) x(t) 	=  for all large t but x′(t) oscillates

}
.

In Section , we obtain sufficient conditions for the existence/non-existence in the above
said classes. In Section , we discuss the asymptotic behavior of solutions in the solutions
M+ andM–. Examples are provided to illustrate the main results.

2 Existence results
First, we examine the existence of solutions of equation (.) in the classM+.

Theorem . With respect to the differential equation (.), assume that

(H) b ≥  and c ≥ ;
(H) p(t) ≥  for all t ≥ t;
(H) α > β and σ ≤ σ.

If

lim sup
t→∞

∫ t

t

(
Lp(s) + q(s)

)
ds = ∞, (.)

for every L > , then M+ = ∅.

Proof Suppose that equation (.) has a solution x ∈ M+. Without loss of generality, we
may assume that there exists t ≥ t such that x(t) >  and x′(t) ≥  for all t ≥ t. (The
proof if x(t) <  and x′(t) ≤  is similar for large t.) Let z(t) = x(t) + bx(t – τ) + cx(t +
τ) for t ≥ t. Then by assumption (H) we have z(t) >  and z′(t) ≥  for all t ≥ t.
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Now,

(
a(t)z′(t)
xβ(t – σ)

)′
=

(a(t)z′(t))′

xβ (t – σ)
–

βa(t)z′(t)x′(t – σ)
xβ+(t – σ)

≤ –p(t)
xα(t – σ)
xβ (t – σ)

– q(t)

≤ –p(t)
xα(t – σ)
xβ (t – σ)

– q(t)

≤ –p(t)xα–β (t – σ) – q(t), t ≥ t.

Since x(t) >  and x′(t) ≥ , we have x(t) ≥ L >  and by (H), xα–β (t) ≥ L >  for all
t ≥ t ≥ t. Thus

(
a(t)z′(t)
xβ(t – σ)

)′
≤ –

(
Lp(t) + q(t)

)
, t ≥ t.

Integrating the last inequality from t to t, we obtain

a(t)z′(t)
xβ (t – σ)

–
a(t)z′(t)
xβ (t – σ)

≤ –
∫ t

t

(
Lp(s) + q(s)

)
ds.

From condition (.), we obtain

lim inf
t→∞

a(t)z′(t)
xβ (t – σ)

= –∞,

which contradicts the fact that z′(t) ≥  for all large t. This completes the proof of the
theorem. �

Theorem . Assume that condition (H) holds. Further assume that

(H) q(t)≥  for all t ≥ t;
(H) β > α.

If

lim sup
t→∞

∫ t

t

(
p(s) + Lq(s)

)
ds = ∞, (.)

for every L > , then M+ = ∅.

Proof Suppose that equation (.) has a solution x ∈ M+. Without loss of generality, we
may assume that there exists t ≥ t such that x(t) >  and x′(t) ≥  for all t ≥ t. (The
proof is similar if x(t) <  and x′(t) ≤  for large t.) Let z(t) = x(t) + bx(t – τ) + cx(t + τ) for
t ≥ t. Then by assumption (H) we have z(t) >  and z′(t) ≥  for all t ≥ t. Now,

(
a(t)z′(t)
xα(t – σ)

)′
=

(a(t)z′(t))′

xα(t – σ)
–

αa(t)z′(t)x′(t – σ)
xα+(t – σ)

≤ –p(t) – q(t)
xβ (t + σ)
xα(t – σ)

≤ –p(t) – q(t)xβ–α(t – σ), t ≥ t.
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As in the proof of Theorem ., we have xβ–α(t – σ) ≥ L >  for t ≥ t ≥ t by condition
(H). Thus

(
a(t)z′(t)
xα(t – σ)

)′
≤ –

(
p(t) + Lq(t)

)
, t ≥ t.

Integrating the last inequality from t to t, we have

a(t)z′(t)
xα(t – σ)

–
a(t)z′(t)
xα(t – σ)

≤ –
∫ t

t

(
p(s) + Lq(s)

)
ds.

From condition (.), we obtain

lim inf
t→∞

a(t)z′(t)
xα(t – σ)

= –∞,

which contradicts the fact that z′(t) ≥  for all large t. This completes the proof of the
theorem. �

Theorem . Assume that conditions (H) and (H) hold. Further assume that

(H) α = β .

If

lim sup
t→∞

∫ t

t

(
p(s) + q(s)

)
ds = ∞, (.)

then M+ = ∅.

Proof Suppose that equation (.) has a solution x ∈ M+. Without loss of generality, we
may assume that there exists t ≥ t such that x(t) >  and x′(t) ≥  for all t ≥ t. (The
proof is similar if x(t) <  and x′(t) ≤  for large t.) Let z(t) = x(t) + bx(t – τ) + cx(t + τ) for
t ≥ t. Then by assumption (H) we have z(t) >  and z′(t) ≥  for all t ≥ t. Now,

(
a(t)z′(t)
xα(t – σ)

)′
=

(a(t)z′(t))′

xα(t – σ)
–

αa(t)z′(t)x′(t – σ)
xα+(t – σ)

≤ –p(t) – q(t)
xα(t + σ)
xα(t – σ)

≤ –
(
p(t) + q(t)

)
, t ≥ t ≥ t.

Integrating the last inequality from t to t, we have

a(t)z′(t)
xα(t – σ)

–
a(t)z′(t)
xα(t – σ)

≤ –
∫ t

t

(
p(s) + q(s)

)
ds.

From condition (.), we obtain

lim inf
t→∞

a(t)z′(t)
xα(t – σ)

= –∞,
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which contradicts the fact that z′(t) ≥  for all large t. This completes the proof of the
theorem. �

Theorem . Assume that conditions (H)-(H) hold. Further assume that

(H) – < b + c≤ , with b <  and c > .

If

∫ ∞

t


a(s)

ds = ∞ and
∫ ∞

t

(
Lp(s) + q(s)

)
ds = ∞, (.)

for every L≥ , then M+ = ∅.

Proof Suppose that equation (.) has a solution x ∈ M+. Without loss of generality, we
may assume that there exists t ≥ t such that x(t) >  and x′(t) ≥  for all t ≥ t. (The
proof if x(t) <  and x′(t)≤  is similar for large t.) Let z(t) = x(t) + bx(t – τ) + cx(t + τ) ≥
( + b + c)x(t – τ) > , for t ≥ t. From equation (.), we have

(
a(t)z′(t)

)′ = –
(
p(t)

xα(t – σ)
xβ (t – σ)

+ q(t)
xβ (t + σ)
xβ (t – σ)

)
xβ (t – σ)

≤ –
(
Lp(t) + q(t)

)
xβ (t – σ)

≤ , t ≥ t.

Hence, a(t)z′(t) is non-increasing for t ≥ t, and we claim that a(t)z′(t) ≥  for t ≥ t. If
a(t)z′(t) <  for t ≥ t, then a(t)z′(t) ≤ a(t)z′(t) <  for t ≥ t > . Now,

z′(t)≤ a(t)z′(t)
a(t)

< 

and integrating the last inequality from t to t, we obtain

z(t) – z(t) ≤
∫ t

t

a(t)z′(t)
a(s)

ds.

This implies that z(t) → –∞ as t → ∞, which is a contradiction. Thus a(t)z′(t)≥ . Now,
proceeding as in the proof of Theorem . and using condition (.), we have

lim
t→∞

a(t)z′(t)
xβ(t – σ)

= –∞.

This contradicts the fact that z′(t) ≥  for all large t. This completes the proof of the the-
orem. �

Theorem . Assume that conditions (H), (H), (H) and (H) hold. If

∫ ∞

t


a(s)

ds = ∞ and
∫ ∞

t

(
p(s) + Lq(s)

)
ds = ∞, (.)

for every L ≥ , then M+ = ∅.

http://www.advancesindifferenceequations.com/content/2012/1/226


Thandapani et al. Advances in Difference Equations 2012, 2012:226 Page 6 of 13
http://www.advancesindifferenceequations.com/content/2012/1/226

Proof The proof is similar to that of Theorem . and hence the details are omitted. �

Theorem . Assume that conditions (H), (H), (H) and (H) hold. If

∫ ∞

t


a(s)

ds = ∞ and
∫ ∞

t

(
p(s) + q(s)

)
ds = ∞, (.)

then M+ = ∅.

Proof The proof is similar to that of Theorem . and hence the details are omitted. �

Next, we examine the problem of the existence of solutions of equation (.) in the class
M–.

Theorem . Assume that conditions (H)-(H) and (H) hold. Further assume that

(H) τ ≤ σ;
(H)

∫ γ


du
uβ < ∞ and

∫ 
–γ

du
uβ > –∞ for some γ > .

If

lim sup
t→∞

∫ t

T


a(s)

(∫ s

T

(
Lp(v) + q(v)

)
dv

)
ds = ∞ (.)

for all T ≥ t and for every L > , then M– = ∅.

Proof Suppose that equation (.) has a solution x ∈ M–. Without loss of generality, we
may assume that there exists t ≥ t such that x(t) >  and x′(t) ≤  for all t ≥ t. (The
proof is similar if x(t) <  and x′(t) ≥  for large t.) Let z(t) = x(t) + bx(t – τ) + cx(t + τ),
then in view of (H), z(t) >  and z′(t)≤  for all t ≥ t. As in the proof of Theorem ., we
obtain

a(t)z′(t)
xβ (t – σ)

–
a(t)z′(t)
xβ (t – σ)

≤ –
∫ t

t

(
Lp(s) + q(s)

)
ds, t ≥ t

or

z′(t)
xβ (t – σ)

≤ –
a(t)

∫ t

t

(
Lp(s) + q(s)

)
ds, t ≥ t. (.)

Since x is non-increasing and by (H), we see that z(t) ≤ ( + b + c)x(t – σ) ≥  and

zβ (t)≤ ( + b + c)βxβ (t – σ). (.)

Combining (.) and (.), we have

z′(t)
zβ (t)

≤ z′(t)
( + b + c)βxβ (t – σ)

≤ –
a(t)( + b + c)β

∫ t

t

(
Lp(s) + q(s)

)
ds, t ≥ t.

http://www.advancesindifferenceequations.com/content/2012/1/226


Thandapani et al. Advances in Difference Equations 2012, 2012:226 Page 7 of 13
http://www.advancesindifferenceequations.com/content/2012/1/226

Integrating the last inequality from t to t, yields

∫ z(t)

z(t)

ds
sβ

≤ –
∫ t

t


a(s)( + b + c)β

(∫ s

t

(
Lp(v) + q(v)

)
dv

)
ds

or
∫ z(t)

z(t)

ds
sβ

≥
∫ t

t


a(s)( + b + c)β

(∫ s

t

(
Lp(v) + q(v)

)
dv

)
ds

and by condition (.) we see that

lim sup
t→∞

∫ z(t)

z(t)

ds
sβ

= ∞, (.)

which contradicts condition (H). This completes the proof of the theorem. �

Theorem. Assume that conditions (H), (H), (H) and (H) hold. Further assume that

(H) τ ≤ σ;
(H)

∫ γ


du
uα < ∞ and

∫ 
–γ

du
uα > –∞, for some γ > .

If

lim sup
t→∞

∫ t

T


a(s)

(∫ s

T

(
p(v) + Lq(v)

)
dv

)
ds = ∞ (.)

for all T ≥ t and for every L > , then M– = ∅.

Proof Suppose that equation (.) has a solution x ∈ M–. Without loss of generality, we
may assume that there exists t ≥ t such that x(t) >  and x′(t) ≤  for all t ≥ t. (The
proof is similar if x(t) <  and x′(t)≥  for all large t.) Let z(t) = x(t) + bx(t – τ) + cx(t + τ),
then in view of (H), z(t) >  and z′(t) ≤  for all t ≥ t. As in the proof of Theorem ., we
obtain the inequality

a(t)z′(t)
xα(t – σ)

–
a(t)z′(t)
xα(t – σ)

≤ –
∫ t

t

(
p(s) + Lq(s)

)
ds, t ≥ t

or

z′(t)
xα(t – σ)

≤ –
a(t)

∫ t

t

(
p(s) + Lq(s)

)
ds, t ≥ t. (.)

Since x is non-increasing and by (H), we see that z(t) ≤ ( + b + c)x(t – σ) ≥  and then

zα(t) ≤ ( + b + c)αxα(t – σ). (.)

Combining (.) and (.), we have

z′(t)
zα(t)

≤ z′(t)
( + b + c)αxα(t – σ)

≤ –
a(t)( + b + c)α

∫ t

t

(
p(s) + Lq(s)

)
ds, t ≥ t.

http://www.advancesindifferenceequations.com/content/2012/1/226
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The rest of the proof is similar to that of Theorem . and hence the details are omitted.
This completes the proof of the theorem. �

Theorem . Assume that conditions (H), (H), (H), (H), (H) and (H) hold. If

lim sup
t→∞

∫ t

T


a(s)

(∫ s

T

(
p(v) + q(v)

)
dv

)
ds = ∞ (.)

for all T ≥ t, then M– = ∅.

Proof The proof is similar to that of Theorem . and hence the details are omitted. �

Next, we establish sufficient conditions under which any solution of equation (.) is
either oscillatory or weakly oscillatory.

Theorem . If conditions (H), (H), (H), (H) and (.) hold, then every solution of
equation (.) is either oscillatory or weakly oscillatory.

Proof From Theorem ., it follows that for equation (.) we have M+ = ∅. To complete
the proof, it suffices to show that for equation (.),M– = ∅. Let x be a solution of equation
(.) belonging to the classM–, say that x(t) >  and x′(t) ≤  for t ≥ t ≥ t. (The proof is
similar if x(t) <  and x′(t) ≥  for all large t.) Let z(t) = x(t) + bx(t – τ) + cx(t + τ); then
in view of (H), we have z(t) >  and z′(t) ≤  for all t ≥ t. Proceeding as in the proof of
Theorem ., we obtain

a(t)z′(t)
xβ (t – σ)

–
a(t)z′(t)
xβ (t – σ)

+
∫ t

t

βa(s)z′(s)x′(s – σ)
xβ+(s – σ)

ds≤ –
∫ t

t

(
Lp(s) + q(s)

)
ds.

Set

w(t) =
a(t)z′(t)
xβ (t – σ)

, t ≥ t.

Then w(t) <  and for t ≥ t,

w′(t) =
(a(t)z′(t))′

xβ (t – σ)
– β

a(t)z′(t)
xβ+(t – σ)

x′(t – σ) ≤ –
(
Lp(t) + q(t)

)
– βw(t)

x′(t – σ)
x(t – σ)

.

Integrating the last inequality from t to t and using condition (.), we have

w(t) ≤ w(t) +
∫ t

t
w(s)

(
–β

x′(s – σ)
x(s – σ)

)
ds, t ≥ t ≥ t.

By Gronwall’s inequality, we obtain

w(t) ≤ w(t)
(
x(t – σ)
x(t – σ)

)β

,

and so

a(t)z′(t)≤ w(t)xβ (t – σ) =M < 

http://www.advancesindifferenceequations.com/content/2012/1/226
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or

z′(t)≤ M

a(t)
, t ≥ t.

The integration yields

z(t) ≤ z(t) +M

∫ t

t


a(s)

ds→ –∞

as t → ∞ by condition (.). This contradiction completes the proof. �

Theorem. If conditions (H), (H), (H) and (.) hold, then every solution of equation
(.) is either oscillatory or weakly oscillatory.

Proof The proof is similar to that of Theorem . and hence the details are omitted. �

Theorem. If conditions (H), (H), (H) and (.) hold, then every solution of equation
(.) is either oscillatory or weakly oscillatory.

Proof The proof is similar to that of Theorem . and hence the details are omitted. �

3 Behavior of solutions in the classesM+ andM–

First, we study the asymptotic behavior of solutions in the classM–.

Theorem . Assume that conditions (H)-(H) and (H) hold. If condition (.) holds,
then for every solution x(t) ∈M–, we have limt→∞ x(t) = .

Proof The argument used in the proof of Theorem . again leads to (.). This implies
that limt→∞ z(t) = . But z(t) ≥ x(t) for all t ≥ t implies that limt→∞ x(t) =  and the proof
is complete. �

Theorem . Assume that conditions (H), (H), (H) and (H) hold. If condition (.)
holds, then for every solution x(t) ∈M–, we have limt→∞ x(t) = .

Proof The argument used in the proof of Theorem . again leads to (.). This implies
that limt→∞ z(t) = . But z(t) ≥ x(t) for all t ≥ t implies that limt→∞ x(t) =  and the proof
is complete. �

Theorem . Assume that conditions (H), (H), (H) and (H) hold. If condition (.)
holds, then for every solution x(t) ∈M–, we have limt→∞ x(t) = .

Proof The argument used in the proof of Theorem . again leads to (.). This implies
that limt→∞ z(t) = . But z(t) ≥ x(t) for all t ≥ t implies that limt→∞ x(t) =  and the proof
is complete. �

Finally, we examine the asymptotic behavior of solutions in the classM+.

http://www.advancesindifferenceequations.com/content/2012/1/226
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Theorem . If the assumptions (H)-(H) hold and

lim sup
t→∞

∫ t

T

(
Lp(s) + q(s)

)(∫ s

T


a(v)

dv
)
ds = ∞ (.)

for all T ≥ t, and any L >  is satisfied, then every solution in the class M+ is unbounded.

Proof Let x be a solution of equation (.) such that x ∈ M+. Without loss of generality,
we assume that there exists t ≥ t such that x(t) >  and x′(t) >  for all t ≥ t, for some
t ≥ t. (The proof is similar if x(t) <  and x′(t) ≤  for all large t.) Let z(t) = x(t) + bx(t –
τ) + cx(t + τ); then in view of condition (H), z(t) >  and z′(t) ≥  for all t ≥ t. Consider
the function

w(t) = –
a(t)z′(t)
xβ (t – σ)

∫ t

t


a(s)

ds, t ≥ t ≥ t.

Then we have for t ≥ t

w′(t) = –
z′(t)

xβ (t – σ)
–
(a(t)z′(t))′

xβ (t – σ)

∫ t

t


a(s)

ds +
βa(t)z′(t)x′(t – σ)

xβ+(t – σ)

∫ t

t


a(s)

ds

≥ –
z′(t)

xβ (t – σ)
+

(
Lp(s) + q(s)

)∫ t

t


a(s)

ds.

Integrating the last inequality, we obtain

w(t) ≥ w(t) +
∫ t

t

(
Lp(s) + q(s)

)(∫ s

t


a(v)

dv
)
ds –

∫ t

t

z′(s)
xβ (s – σ)

ds. (.)

As the function z′(t)
xβ (t–σ)

is positive for t > t, then the limit limt→∞
∫ t
t

z′(s)
xβ (s–σ)

ds exists. We
claim that it is ∞. Assume that

lim
t→∞

∫ t

t

z′(s)
xβ (s – σ)

ds =M < ∞.

In view of (.) and (.), we have lim supt→∞ w(t) = ∞, which contradicts w(t) being neg-
ative for all large values of t. Thus

lim
t→∞

∫ t

t

z′(s)
xβ (s – σ)

ds = ∞. (.)

Now, for all values of t ≥ t, we have xβ (t – σ) ≥ xβ (t – σ), or 
xβ (t–σ)

≤ 
xβ (t–σ)

=M,
and consequently

∫ t

t

z′(s)
xβ (t – σ)

ds ≤ M

∫ t

t
z′(s)ds

= M
(
z(t) – z(t)

)
.

From (.) we obtain

lim
t→∞ z(t) = ∞. (.)
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Since z(t) = x(t) + bx(t – τ) + cx(t + τ) and x(t) is nondecreasing, we have z(t) ≤ ( + b +
c)x(t + τ). In view of (.) we get limt→∞ x(t) = ∞. This completes the proof. �

Theorem . If the assumptions (H), (H) and (H) hold and

lim sup
t→∞

∫ t

T

(
p(s) + Lq(s)

)(∫ s

T


a(v)

dv
)
ds = ∞ (.)

for all T ≥ t, and for any L >  is satisfied, then every solution in the class M+ is un-
bounded.

Proof The proof is similar to that of Theorem . and hence the details are omitted. �

Theorem . If the assumptions (H), (H) and (H) hold and

lim sup
t→∞

∫ t

T

(
p(s) + q(s)

)(∫ s

T


a(v)

dv
)
ds = ∞ (.)

for all T ≥ t is satisfied, then every solution in the class M+ is unbounded.

Proof The proof is similar to that of Theorem . and hence the details are omitted. �

4 Examples
In this section we present some examples to illustrate the main results.

Example  Consider the differential equation

(

t
(
x(t) + x(t – ) + x(t + )

)′
)′

+


t(t – )
x(t – ) +


t(t + )

x(t + ) =  (.)

for t ≥ . All the conditions of Theorem . are satisfied except condition (.). We see
that equation (.) has a solution x(t) = t ∈M+ since it satisfies equation (.).

Example  Consider the differential equation

(

t
(
x(t) + x(t – ) + x(t + )

)′
)′

+


t(t – )
x(t – ) +


t(t + )

x(t + ) =  (.)

for t ≥ . All the conditions of Theorem . are satisfied except condition (.). We see
that equation (.) has a solution x(t) = t ∈M+ since it satisfies equation (.).

Example  Consider the differential equation

(

t
(
x(t) + x(t – ) + x(t + )

)′
)′

+


t(t – )
x(t – ) +


t(t + )

x(t + ) =  (.)

for t ≥ . All the conditions of Theorem . are satisfied except condition (.). We see
that equation (.) has a solution x(t) = t ∈M+ since it satisfies equation (.).
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Example  Consider the differential equation

(
t

(
x(t) – x(t – ) + x(t + )

)′)′ +
t

(t – )
x(t – ) +

t
(t + )

x(t + ) =  (.)

for t ≥ . All the conditions of Theorem . are satisfied except conditions (H) and (.).
In fact, it has a solution x(t) = t ∈ M+.

Example  Consider the differential equation

(
et

(
x(t) +


e
x(t – ) + ex(t + )

)′)′
+ et–x(t – ) + et+x(t + ) =  (.)

for t ≥ . Since the function x(t) = e–t is a solution of equation (.), we have M– 	= ∅.
Moreover, condition (.) holds in Theorem ., while condition (H) is not satisfied.

Example  Consider the differential equation

(
et

(
x(t) +


e
x(t – ) + ex(t + )

)′)
+ e


 (t–)x


 (t – ) + et+x(t + ) =  (.)

for t ≥ . Since the function x(t) = e–t is a solution of equation (.), we have M– 	= ∅.
For this equation condition (.) does not hold in Theorem ., while condition (H) is
satisfied.

Example  Consider the differential equation (.). It is easy to see that all the conditions
of Theorem . are satisfied. In fact, x(t) = e–t ∈ M– is a solution of equation (.) such
that x(t) = e–t →  as t → ∞.

Example  Consider the differential equation (.). It can easily be seen that all the con-
ditions of Theorem . are satisfied. Here x(t) = t ∈M+ is a solution of equation (.) such
that x(t)→ ∞ as t → ∞.

We conclude this paper with the following remark.

Remark  In this paper we obtained conditions for the non-existence of solutions in the
classesM+ andM– and the existence of solutions in the classes OS andWOS. It would be
interesting to extend the results of this paper to the following equation:

(
a(t)

(
x(t) + b(t)x(t – τ) + c(t)x(t + τ)

)′)′ + p(t)xα(t – σ) + q(t)xβ(t + σ) = r(t),

where r(t) is a real valued continuous function.
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