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Abstract

As the foundation of double integral, we propose a triangular integral, which is an
antisymmetric double integral by single limit of double dependent sums of
triangularly divided areas. Extending integrand from scalar function to tensor one, we
derive the curl theorem based on this triangular double integral. It is derived by
substituting the total differentials in the transformation lemma, which is based on
this triangular double integral. We may thus infer that this triangular integral is the
inverse operation of the total differential.

1 Introduction
The variational principle of the 2D theory is conventionally given as

δ

∫∫
D
Ldx dy = 0, (1:1)

where the integrand L = L(X, Y, Xx, Xy, Yx, Yy) is a scalar functional and D is a

domain. Here, X = X(x, y), Y = Y(x, y), Xx ≡ ∂X
∂x

,Xy ≡ ∂X
∂y

, Yx ≡ ∂Y
∂x

andYy ≡ ∂Y
∂y

.

The double integral in (1.1) is conventionally defined as

∫∫
D
Ldx dy = lim

n→∞

n∑
i=1

lim
k→∞

k∑
j=1

L(xi, yj)�xi�yj, (1:2)

where Δxi ≡ xi - xi-1 and Δyj ≡ yj - yj-1. According to the conventional method of the

perpendicularly combined form of the Riemann and the Lebesgue integrals [1,2], the

area of double integral demands double limits at infinities, k ® ∞ and n ® ∞, of dou-

ble independent sums, j = 1,2, . . . , k and i = 1,2, . . . , n, of rectangularly divided areas

as shown in (1.2). Based on this definition of the conventional rectangular double inte-

gral (1.2), the curl theorem on the 2D plane is formulated as

∮
∂D
(X dx + Y dy) =

∫∫
D

(
∂Y
∂x

− ∂X
∂y

)
dx dy, (1:3)

where ∂D is an integral path.

Meanwhile, the total differential is widely used even in the exterior derivative [3].

However, it is not known how to derive the curl theorem (1.3) by substituting the total

differentials in an integral formula based on the conventional rectangular double integral
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method. Extending integrand from scalar function to tensor one, we may derive the curl

theorem by substituting the total differentials in an integral formula. It depends on how

to define a new kind of double integral. We extend the variational principle (1.1) to

δ

∫ ∫
D
Lαβdx

αdx′β = 0, (1:4)

where the integrand Lab = Lab(Xμ, Xμ,v) is a tensor functional and indices are

summed over a, b = 1, 2. Here, Xμ = Xμ(x
l) and Xμ,v ≡ ∂Xμ

∂xv
(λ,μ, v = 1, 2). A new

type of double integral in (1.4) is defined as

∫∫
D
Lαβdx

αdx′β = lim
n→∞

n∑
k=1

k∑
j=1

Lαβ

(
(xλ)k,j

)
�(xα)k�(xβ)j, (1:5)

where Δ(xa)k ≡ (xa)k - (x
a)k-1, Δ(x

b)j ≡ (xb)j - (x
b)j-1 and indices are summed over a,b =

1,2. It makes possible to introduce a new kind of triangular double integral by the fol-

lowing two properties:

1. replacing rectangular area by triangular one;

2. replacing double limits of independent double sums by single limit of dependent

double sums.

We propose an antisymmetric triangular double integral. It demands only single limit at

infinity n ® ∞ of double dependent sums, j = 1, 2, . . . , k and k = 1, 2, . . . , n, of triangu-

larly divided areas as shown in Definition 1. We succeed to define a new kind of triangular

integral method, which may derive the curl theorem by substituting the total differentials

in an integral formula. In this article, we formulate the curl theorem based on a new kind

of integral formula (1.5). We name it as the curl theorem of a triangular integral on the

2D plane as shown in the main theorem (4.6). In detail, we derive (4.1) by substituting the

total differentials (4.3) and (4.4) in (4.2). The curl theorem of a triangular integral on the

2D plane (4.6) is finally derived from (4.1) and (4.5) under the condition of a closed curve

(4.8). We may thus infer that this triangular integral is the inverse operation of the total

differential.

There are three advantages of this theory. One is the conceptual coherence despite of its

complicated procedure of calculation in the derivation of the curl theorem (see Section

4.1). Another one is that this theory is applicable for finite element method in the case of

1 <n < ∞ (see (2.12) and (2.18)). The other one is applicability to the integral in the varia-

tional principle of multiple variables in the case that the integrand is extended to tensor

(see (1.4) and (1.5)).

This article is structured as follows. In Section 2, a triangularly divided area is intro-

duced. This triangular double integral is defined by single limit of double sums of triangu-

larly divided areas. In Section 3, the combination and the transformation lemmata are

derived. In Section 4, the curl theorem on the 2D plane is derived by substituting the total

differentials in the transformation lemma. In Section 5, the curl theorems of a triangular

integral in the 3D space and the 4D hyper-space are presented.
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2 Single limit of double sums
A triangular integral as the foundation of double integral is proposed in Section 2.1

and its example is shown in Section 2.2.

2.1 Sum of triangular areas

The sum of triangular areas is introduced as follows.

First of all, the respective triangular area is introduced. Let f(x, y) = 0 be a piecewise

smooth curve of equation on the xy-plane, expressed in terms of the Cartesian coordi-

nates (x, y) Î ℝ2. Assume there are two fixed points of A(xA, yA) and B(xB, yB). Sup-

pose there is a sequence of points {Pk(xk, yk) | k = 0, 1, 2, . . . , n} on f(x, y) = 0, where

the initial and the terminal points are respectively P0 (x0, y0) = A(xA, yA) and Pn(xn, yn)

= B(xB, yB). The respective triangular area ΔSk (k = 1, 2, . . . , n), which is surrounded

by three vertices of O(0, 0), Pk-1(xk-1, yk-1) and Pk(xk, yk), is introduced as in Figure 1 by

�Sk =
1
2
(xkyk−1 − ykxk−1) (k = 1, 2, . . . ,n). (2:1)

The increments of xk and yk, i.e., Δxk and Δyk, are respectively denoted as

�xk ≡ xk − xk−1 (k = 1, 2, . . . ,n), (2:2)

�yk ≡ yk − yk−1 (k = 1, 2, . . . ,n). (2:3)

Substituting Δxk and Δyk in ΔSk of (2.1), it is modified to be

�Sk =
1
2
(yk�xk − xk�yk) (k = 1, 2, . . . ,n). (2:4)

Figure 1 Sum of triangularly divided areas. The respective triangular area ΔSk, which is surrounded by
three vertices of O(0, 0), Pk-1(xk-1, yk-1) and Pk(xk, yk), is introduced as

� Sk =
1
2

(
xk yk−1 − yk xk−1

)
(k = 1, 2, ...,n).
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Next, we introduce triangular sum Sn (n = 1, 2, 3, . . .) as a sum of n triangular

areas ΔSk, i.e.,

Sn =
n∑

k=1

�Sk. (2:5)

Substituting (2.4) in (2.5), it is modified to be

Sn =
1
2

n∑
k=1

(yk�xk − xk�yk). (2:6)

Furthermore, the sum of triangular areas is modified to be the sum of a triangular

area and double sums as follows. Using the notations of Δxk in (2.2) and Δyk in (2.3),

xk and yk are respectively expressed as

xk = x0 +
k∑
j=1

�xj (k = 1, 2, . . . ,n), (2:7)

yk = y0 +
k∑
j=1

�yj (k = 1, 2, . . . ,n). (2:8)

Substituting (2.7) and (2.8) in (2.6), it is finally modified to be

Sn =
1
2

n∑
k=1

k∑
j=1

(
�xk�yj − �yk�xj

)
+
1
2
(xByA − yBxA). (2:9)

The cases of n = 1, 2, 3 and n ® ∞ of

1
2

n∑
k=1

k∑
j=1

(
�xk�yj − �yk�xj

)
(2:10)

in (2.9) are shown in the following. Let the coordinates of point Q be (xn, y0).

1. In the case of n = 1, i.e., for two points of P0(x0, y0) and P1(x1, y1) = Pn(xn, yn), it

holds

1
2

1∑
k=1

k∑
j=1

(
�xk�yj − �yk�xj

)
= 0. (2:11)

2. In the case of n = 2, i.e., for three points of P0(x0, y0), P1(x1, y1) and P2(x2, y2) = Pn
(xn, yn), as shown in Figure 2, the area of P0P1P2 is

1
2

2∑
k=1

k∑
j=1

(
�xk�yj − �yk�xj

)
=
1
2
(�x2�y1 − �y2�x1). (2:12)

Introducing R2.0 as the area of triangle P0QPn, we obtain

R2.0 =
1
2
(x2 − x0)(y0 − y2)

= −1
2
(�x1 + �x2)(�y1 + �y2).

(2:13)
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Introducing R2.1 as the area of triangle P0P1Q, we obtain

R2.1 =
1
2
(x2 − x0)(y0 − y1)

= −1
2
(�x1 + �x2)�y1.

(2:14)

Introducing R2.2 as the area of triangle P1P2Q, we obtain

R2.2 =
1
2
(x2 − x1)(y0 − y2)

= −1
2

�x2(�y1 + �y2).
(2:15)

We introduce s2 as the area of triangle P0P1P2 as

σ2 = R2.0 − R2.1 − R2.2. (2:16)

Substituting (2.13), (2.14) and (2.15) in (2.16), it is modified to be

σ2 =
1
2
(�x2�y1 − �y2�x1). (2:17)

We thus see the coincidence of (2.12) and (2.17).

3. In the case of n = 3, i.e., for four points of P0(x0, y0), P1(x1, y1), P2(x2, y2) and P3
(x3, y3) = Pn(xn, yn), as shown in Figure 3, the area of P0P1P2P3 is

1
2

3∑
k=1

k∑
j=1

(
�xk�yj − �yk�xj

)
=
1
2
(�x2�y1 − �y2�x1) +

1
2
(�x3�y1 − �y3�x1) +

1
2
(�x3�y2 − �y3�x2). (2:18)

Figure 2 Triangularly divided areas in the case of n = 2. The area of triangle P0P1P2 is

σ2 = R2.0 − R2.1 − R2.2

=
1
2

(
�x2 �y1 − �y2 �x1

)
.
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Introducing R3.0 as the area of triangle P0QPn, we obtain

R3.0 =
1
2
(x3 − x0)(y0 − y3)

= −1
2
(�x1 + �x2 + �x3)(�y1 + �y2 + �y3).

(2:19)

Introducing R3.1 as the area of triangle P0P1Q, we obtain

R3.1 =
1
2
(x3 − x0)(y0 − y1)

= −1
2
(�x1 + �x2 + �x3)�y1.

(2:20)

Introducing R3.2 as the area of triangle P1P2Q, we obtain

R3.2 = (x3 − x1)(y0 − y2) − 1
2
(x3 − x1)(y0 − y1) − 1

2
(x2 − x1)(y1 − y2) − 1

2
(x3 − x2)(y0 − y2)

= −1
2

�x2�y1 − 1
2

�x2�y2 − 1
2

�x3�y2.
(2:21)

Introducing R3.3 as the area of triangle P2P3Q, we obtain

R3.3 =
1
2
(x3 − x2)(y0 − y3)

= −1
2

�x3(�y1 + �y2 + �y3).
(2:22)

We introduce s3 as the area of P0P1P2P3 as

σ3 = R3.0 − R3.1 − R3.2 − R3.3. (2:23)

Figure 3 Triangularly divided areas in the case of n = 3. The area of P0P1P2P3 is

σ3 = R3.0 − R3.1 − R3.2 − R3.3

=
1
2

(
�x2�y1 − �y2�x1

)
+
1
2

(
�x3�y1 − �y3�x1

)
+
1
2

(
�x3�y2 − �y3�x2

)
.

Tokunaga Advances in Difference Equations 2012, 2012:23
http://www.advancesindifferenceequations.com/content/2012/1/23

Page 6 of 22



Substituting (2.19), (2.20), (2.21) and (2.22) in (2.23), it is modified to be

σ3 =
1
2
(�x2�y1 − �y2�x1) +

1
2
(�x3�y1 − �y3�x1) +

1
2
(�x3�y2 − �y3�x2). (2:24)

We thus see the coincidence of (2.18) and (2.24).

4. In the case of n ® ∞, i.e., for a segment of AB and a piecewise smooth curve of

equation f(x, y) = 0, as shown in Figure 4, the area s surrounded by the segment and

the curve is

σ =
1
2

lim
n→∞

n∑
k=1

k∑
j=1

(
�xk�yj − �yk�xj

)
. (2:25)

Definition 1. (Definition of a triangular integral) The triangular double integral of

1
2

∫ ∫ [A,B]
f (x,y)≤0 (dx dy

′ − dy dx′) is defined in the case of a piecewise smooth curve of equa-

tion f(x, y) = 0 by the formula,

1
2

∫ ∫ [A,B]

f (x,y)≤0
(dx dy′ − dy dx′) =

1
2

lim
n→∞

n∑
k=1

k∑
j=1

(
�xk�yj − �yk�xj

)
, (2:26)

Figure 4 Single limit at infinity n ® ∞ of double sums of triangularly divided areas. The area
surrounded by f(x, y) = 0 and AB is

σ =
1
2
lim
n→∞

n∑
k=1

k∑
j=1

(
�xk�yj − �yk�xj

)

=
1
2

∫∫ [A,B]

f (x,y)≤0
(dx dy′ − dy dx′).

The area of the triangle OAB is
1
2

(
xB yA − yB xA

)
.
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where dx’ and dy’ respectively correspond to increments of Δxj and Δyj, while dx and

dy respectively correspond to those of Δxk and Δyk.

Suppose S is the limit of Sn at infinity n ® ∞, i.e.,

S = lim
n→∞ Sn. (2:27)

Theorem 1. The area S of OAB surrounded by OA , OB and the graph of a piecewise

smooth curve of equation f (x, y) = 0 is expressed as

S =
1
2

∫ ∫ [A,B]

f (x,y)≤0
(dx dy′ − dy dx′) +

1
2
(xByA − yBxA), (2:28)

where O(0,0), A(xA, yA), B(xB, yB), f(xA, yA) = 0 and f(xB, yB) = 0.

Proof. As n ® ∞ in (2.9), we obtain S as

S =
1
2

lim
n→∞

n∑
k=1

k∑
j=1

(
�xk�yj − �yk�xj

)
+
1
2
(xByA − yBxA) (2:29)

as shown in Figure 4. Q.E.D.

Remark. The antisymmetric double integral here introduced demands only single

limit of double sums of triangularly divided areas.

2.2 Two kinds of solutions of an example of a parabola

An example that the integrand is constant is shown in Example 1. An example that the

integrand is not constant is shown in Section 4.2. Two kinds of solutions of the pro-

blem of a parabola are shown in the following. The first and the second solutions are

respectively given by the arithmetic and the geometric sequences.

Example 1. An area surrounded by a parabola of

y = −x2 + 9 (2:30)

and a segment of AB , where A(xA, yA) = (1,8) and B(xB, yB) = (2,5).

1. Integration by the arithmetic sequence (The first kind of solution)

The arithmetic sequences xj and xk are respectively

xj = 1 +
j
n

(j = 0, 1, 2, ..., k), (2:31)

xk = 1 +
k
n

(k = 0, 1, 2, ...,n). (2:32)

Using (2.2), the increments of the arithmetic sequences xj and xk, i.e., Δx = Δxj =

Δxk, are

�x =
1
n
. (2:33)

Substituting (2.30) in (2.3), the increments of the arithmetic sequences yj and yk, i.e.,

Δyj and Δyk, are respectively
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�yj = −2
n

− 2j − 1
n2

(j = 0, 1, 2, . . . , k), (2:34)

�yk = −2
n

− 2k − 1
n2

(k = 0, 1, 2, . . . ,n). (2:35)

Thus, the antisymmetric double increment of the arithmetic sequence (2.31) and

(2.32) is

1
2
(�xk�yj − �yk�xj) =

k − j
n3

(j = 1, 2, . . . , k), (k = 1, 2, . . . ,n). (2:36)

The double dependent sums of (2.36) for j = 1,2, . . . , k and k = 1,2,. . . , n is

1
2

n∑
k=1

k∑
j=1

(
�xk�yj − �yk�xj

)
=

1
n3

n∑
k=1

k∑
j=1

(k − j)

=
1
6

(
1 − 1

n2

)
.

(2:37)

As n ® ∞ in (2.37), we obtain

1
2

lim
n→∞

n∑
k=1

k∑
j=1

(
�xk�yj − �yk�xj

)
=
1
6

lim
n→∞

(
1 − 1

n2

)

=
1
6
.

(2:38)

2. Integration by the geometric sequence (The second kind of solution)

The geometric sequences xj and xk are respectively

xj= 2
j
n (j = 0, 1, 2, . . . , k), (2:39)

xk= 2
k
n (k = 0, 1, 2, . . . ,n). (2:40)

The increments of the geometric sequences xj, xk, yj and yk, i.e., Δxj, Δxk, Δyj and

Δyk, are respectively

�xj= 2
j
n (1 − 2−1

n ) (j = 0, 1, 2, . . . , k), (2:41)

�yj= 2
2j
n

(
2−2

n − 1
)

(j = 0, 1, 2, . . . , k), (2:42)

�xk= 2
k
n (1 − 2− 1

n ) (k = 0, 1, 2, . . . ,n), (2:43)

�yk= 2
2k
n (2−2

n − 1) (k = 0, 1, 2, . . . ,n). (2:44)

Thus, the antisymmetric double increment of the geometric sequence (2.39) and

(2.40) is
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1
2

(
�xk�yj − �yk�xj

)
=
1
2

(
1 − 2−1

n

)(
2−2

n − 1
) (

2
k
n 2

2j
n − 2

2k
n 2

j
n

)
(j = 1, 2, . . . , k), (k = 1, 2, . . . ,n). (2:45)

The double dependent sums of (2.45) for j = 1,2, . . . , k and k = 1, 2, . . . , n is

1
2

n∑
k=1

k∑
j=1

(
�xk�yj − �yk�xj

)
=
1
2

n∑
k=1

k∑
j=1

(
1 − 2− 1

n

)(
2−2

n − 1
)(

2
k
n 2

2j
n − 2

2k
n 2

j
n

)
. (2:46)

As n ® ∞ in (2.46), we obtain

1
2

lim
n→∞

n∑
k=1

k∑
j=1

(
�xk�yj − �yk�xj

)
=
1
2

lim
n→∞

n∑
k=1

k∑
j=1

(
1 − 2−1

n

) (
2−2

n − 1
)(

2
k
n 2

2j
n − 2

2k
n 2

j
n

)

=
1
6
.

(2:47)

3 The combination lemma and the transformation lemma
The combination lemma is shown in Section 3.1 and the transformation lemma is

shown in Section 3.2.

Let y = f(x) be a differentiable function on the xy-plane. Assume there are two fixed

points of A = (xA, yA) and B = (xB, yB) on y = f(x), where yA = f(xA) and yB = f(xB). An

ordinary integral is denoted in accordance with the notation of double integral denoted

in Definition 1. New notation for an ordinary integral of y = f(x) in x Î [xA, xB] is

∫ [A,B]

y=f (x)
y dx ≡

∫ xB

xA
f (x)dx. (3:1)

3.1 The combination lemma on the 2D plane

The combination lemma shows that the sum of an integral along x-axis and that along

y-axis between [A, B] is equal to the subtraction of two rectangles, xByB and xAyA.

Lemma 1. (The combination lemma) Assume y = f(x) is a differentiable function on

the xy-plane, and x = f-1(y) is also a differentiable one, where f-1 is the inverse function

of f. Between A(xA, yA) = (x0, y0) and B(xB, yB) = (xn, yn), it holds

∫ [A,B]

y=f (x)
y dx +

∫ [A,B]

x=f−1(y)
x dy = xByB − xAyA, (3:2)

where yA = f(xA) and yB = f(xB).

We name (3.2) as the combination lemma.

Proof. It is divided into the following cases.

1. For a monotonically increasing function y = f(x) in x Î [xA, xB] or x = f-1(y) in y Î
[yA, yB], it is indicated that the first term of the left-hand side of (3.2) is an integral of

y = f(x) along x-axis i.e.,

∫ [A,B]

y=f (x)
y dx = lim

n→∞

n∑
k=1

yk�xk (3:3)

and the second term of the left-hand side of (3.2) is an integral of x = f-1(y) along y-

axis, i.e.,
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∫ [A,B]

x=f−1(y)
x dy = lim

n→∞

n∑
k=1

xk�yk (3:4)

as shown in Figure 5.

2. For a monotonically decreasing function y = f(x) in x Î [xA, xB] or x = f-1(y) in y Î
[yB, yA], it holds

∫ [B,A]

x=f−1(y)
x dy − xA

(
yA − yB

)
=

∫ [A,B]

y=f (x)
y dx − yB (xB − xA) (3:5)

as shown in Figure 6. We thus obtain (3.2). Q.E.D.

3.2 The transformation lemma on the 2D plane

The transformation lemma transforms an integrand to the second integral variable. It

transforms a single integral to an antisymmetric double integral of which integrand is

constant.

Proposition 1. (Integral along x-axis) For a piecewise smooth curve of equation f(x, y)

= 0, it holds

Figure 5 Two kinds of integrals for a monotonically increasing function. An integral along x-axis is∫ [A,B]

y=f (x)
y dx = lim

n→∞

n∑
k=1

yk�xk

and that along y-axis is∫ [A,B]

x=f−1(y)
x dy = lim

n→∞

n∑
k=1

xk�yk.

It holds∫ [A,B]

y=f (x)
y dx +

∫ [A,B]

x=f−1(y)
x dy = xByB − xAyA,

where yA = f(xA) and yB = f(xB).
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∫ [A,B]

f(x,y)=0
y dx =

∫ ∫ [A,B]

f(x,y)≤0
dx dy′ + xByA − xAyA. (3:6)

Proof. Substituting (2.8) into (3.3), it is modified to be

∫ [A,B]

f(x,y)=0
y dx = lim

n→∞

n∑
k=1

k∑
j=1

�yj�xk + yA (xB − xA). (3:7)

Q.E.D.

Proposition 2. (Integral along y-axis) For a piecewise smooth curve of equation f(x, y) =

0, it holds

∫ [B,A]

f(x,y)=0
x dy = −

∫ ∫ [A,B]

f(x,y)≤0
dy dx′ + xAyA − xAyB. (3:8)

Proof. Substituting (2.7) into (3.4), it is modified to be

∫ [B,A]

f(x,y)=0
x dy = − lim

n→∞

n∑
k=1

k∑
j=1

�xj�yk + xA
(
yA − yB

)
. (3:9)

Figure 6 Two kinds of integrals for a monotonically decreasing function. An integral along x-axis is∫ [A,B]

y=f (x)
y dx = lim

n→∞

n∑
k=1

yk�xk

and that along y-axis is∫ [B,A]

x=f−1(y)
x dy = − lim

n→∞

n∑
k=1

xk�yk.

It holds∫ [B,A]

x=f−1(y)
x dy − xA(yA − yB) =

∫ [A,B]

y=f (x)
y dx − yB(xB − xA),

where yA = f(xA) and yB = f(xB).
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Q.E.D.

Lemma 2. (The transformation lemma) For a piecewise smooth curve of equation f(x,

y) = 0, it holds

∫ [A,B]

f(x,y)=0
y dx =

1
2

∫ ∫ [A,B]

f(x,y)≤0

(
dx dy′ − dy dx′) + 1

2
(xB − xA)

(
yA + yB

)
. (3:10)

Proof. (Combining integral along x-axis with that along y-one) Combining (3.6) with

(3.8), we obtain

∫ [A,B]

f(x,y)=0
y dx +

∫ [B,A]

f(x,y)=0
x dy =

∫ ∫ [A,B]

f(x,y)≤0

(
dx dy′ − dy dx′) + xB yA − xA yB. (3:11)

Substituting (3.2) into (3.11), we obtain the lemma. Q.E.D.

4 The curl theorem of a triangular integral on the 2D plane
The curl theorem of the conventional rectangular integral (1.3) is modified to be that

of a new kind of triangular integral (4.6) in Section 4.1 and its example is shown in

Section 4.2.

4.1 Proof of the curl theorem on the 2D plane

We present two lemmata in the following before the proof of Theorem 2.

Lemma 3. Let X = X(x, y) be a partially differentiable function with respect to x and y.

It holds

∫ [A,B]

f(x,y)=0
X dx =

1
2

∫ ∫ [A,B]

f(x,y)≤0

(
∂X′

∂y′
dx dy′ − ∂X

∂y
dy dx′

)
+
1
2

∫ ∫ [A,B]

f(x,y)≤0

(
∂X′

∂x′ − ∂X
∂x

)
dx dx′

+
1
2
(xB − xA)(XA + XB)

(4:1)

for a piecewise smooth curve of equation f(x, y) = 0 between A(xA, yA) and B(xB, yB),

where XA = X(xA, yB) and XB = X(xB, yB).

Proof. Rewriting the transformation lemma (3.10) for X = X(x, y) and f(x, y) = 0, it is

expressed as

∫ [A,B]

f(x,y)=0
X dx =

1
2

∫ ∫ [A,B]

f(x,y)≤0
(dx dX′ − dX dx′) +

1
2
(xB − xA)(XA + XB). (4:2)

Substituting two kinds of the total differentials of X, i.e., dX and dX’,

dX =
∂X
∂x

dx +
∂X
∂y

dy, (4:3)

dX′ =
∂X′

∂x′ dx
′ +

∂X′

∂y′
dy′ (4:4)

in (4.2), it is modified to be (4.1). Q.E.D.

Remark. Precise modifications in the proof of Lemma 3 are shown in Appendix 1.

Lemma 4. Let Y = Y(x, y) be a partially differentiable function with respect to x and

y. It holds
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∫ [A,B]

f(x,y)=0
Y dy =

1
2

∫ ∫ [A,B]

f(x,y)≤0

(
∂Y ′

∂x′ dy dx
′ − ∂Y

∂x
dx dy′

)
+
1
2

∫ ∫ [A,B]

f(x,y)≤0

(
∂Y ′

∂y′
− ∂Y

∂y

)
dy dy′

+
1
2

(
yB − yA

)
(YA + YB)

(4:5)

for a piecewise smooth curve of equation f(x, y) = 0 between A(xA, yA) and B(xB, yB),

where YA = Y(xA, yA) and YB = Y(xB, yB).

Proof. In the similar procedure as Lemma 3, we obtain (4.5). Q.E.D.

Theorem 2. (The curl theorem of a triangular integral on the 2D plane) Let ∂D be a

piecewise smooth curve of equation f(x, y) = 0 on the xy-plane, which is expressed in

terms of the Cartesian coordinates (x, y) Î ℝ2. Let D be the region inside and on ∂D.

Let X1 = X = X(x, y) and X2 = Y = Y(x, y) be partially differentiable functions with

respect to x1 = x and x2 = y in D. It holds

∮
∂D

Xαdxα =
1
2

∫∫
D

(
∂X′

α

∂x′β − ∂Xβ

∂xα

)
dxαdx′β , (4:6)

where indices are summed over a, b = 1,2.

Proof. Combining (4.1) with (4.5), we obtain

∫ [A,B]

f(x,y)=0

(
X dx + Y dy

)
=
1
2

∫ ∫ [A,B]

f(x,y)≤0

[(
∂X′

∂y′
− ∂Y

∂x

)
dx dy′ +

(
∂Y ′

∂x′ − ∂X
∂y

)
dy dx′

]

+
1
2

∫ ∫ [A,B]

f(x,y)≤0

[(
∂X′

∂x′ − ∂X
∂x

)
dx dx′ +

(
∂Y ′

∂y′
− ∂Y

∂y

)
dy dy′

]

+
1
2
(xB − xA)(XA + XB) +

1
2
(yB − yA)(YA + YB).

(4:7)

For an integral on a closed curve, the initial point A(xA, yA) coincides with the term-

inal one B(xB, yB), i.e., A(xA, yA) = B(xB, yB). It then holds

1
2
(xB − xA)(XA + XB) +

1
2
(yB − yA)(YA + YB) = 0 (4:8)

regardless of values of XA, XB, YA and YB. We thus obtain (4.6). Q.E.D.

Remark.
∂X
∂x

and
∂X′

∂x′ must be rigorously distinguished as integrands. See (5.20) and

(5.19) in detail. An inequality holds for
∂X
∂x

and
∂X′

∂x′ in an integral form, i.e.,

∫∫
D

(
∂X
∂x

− ∂X′

∂x′

)
dx dx′ = lim

n→∞

n∑
k=1

k∑
j=1

(
�X[�xk]

�xk
− �X[�xj]

�xj

)
�xk�xj �= 0. (4:9)

Here, ΔX[Δxk] is denoted as ΔX[Δxk] ≡ X(xk, yk)-X(xk-1, yk). See an example in (5.23).

However, they coincide as explicit forms of derivatives. An equality holds for
∂X
∂x

and

∂X′

∂x′ in arbitrary derivative form, i.e.,

∂X
(
x, y

)
∂x

− ∂X′ (x, y)
∂x′ = lim

�xk→0

�X [�xk]
�xk

− lim
�xj→0

�X
[
�xj

]
�xj

= 0. (4:10)

Similar formulae hold for
∂X
∂y

and
∂X′

∂y′
, for

∂Y
∂x

and
∂Y ′

∂x′ and for
∂Y
∂y

and
∂Y ′

∂y′
.
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Corollary 1. In the case of which it holds
∮

∂D
Xαdx

α = − 1
2

∫ ∫
D
Eαβ dx

α dx′β , (4:11)

where indices are summed over a, b = 1, 2, a sufficient condition to hold (4.11) is

−Eαβ =
∂X′

α

∂x′β − ∂Xβ

∂xα
(α,β = 1, 2). (4:12)

Proof. Using (4.6), (4.11) is modified to be

1
2

∫∫
D

(
∂X′

α

∂x′β − ∂Xβ

∂xα

)
dxαdx′β = −1

2

∫∫
D
Eαβdxαdx′β , (4:13)

where indices are summed over a, b = 1, 2. A sufficient condition to hold (4.13) is

(4.12). Q.E.D.

Corollary 2. In the case of (4.11), we obtain an antisymmetric property of Eab as

−Eαβ = Eβα (α,β = 1, 2). (4:14)

Proof. Interchanging a and b in (4.12), it also holds

Eβα =
∂Xα

∂xβ
− ∂X′

β

∂x′α (α,β = 1, 2) . (4:15)

Comparing (4. 12) with (4. 15), we obtain (4. 14). Q.E.D.

4.2 An example of the curl theorem on the 2D plane

An example of Theorem 2 is shown in Example 2. The integral path of this problem is

an ellipse of

x = a cos θ , (4:16)

y = b sin θ . (4:17)

Definition 2. (Definition of elliptical sequence) Using (4.16) and (4.17), we may

respectively introduce elliptical sequences xj, yj, xk and yk as

xj = a cos θj, yj = b sin θj (j = 0, 1, 2, ..., k), (4:18)

xk = a cos θk, yk = b sin θk (k = 0, 1, 2, ...,n). (4:19)

The increments of xj and yj in (4.18), i.e., Δxj and Δyj, of the angular arithmetic

sequence θj are respectively

�xj = a
(
cos θj − cos θj−1

)
(j = 0, 1, 2, ..., k), (4:20)

�yj = b
(
sin θj − sin θj−1

)
(j = 0, 1, 2, ..., k). (4:21)

The increments of xk and yk in (4.19), i.e., Δxk and Δyk, of the angular arithmetic

sequence θk are respectively

�xk = a(cos θk − cos θk−1) (k = 0, 1, 2, ...,n), (4:22)
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�yk = b(sin θk − sin θk−1) (k = 0, 1, 2, ...,n). (4:23)

Example 2. We calculate both of the line integral and the area integral in the coun-

terclockwise direction. The example is the curl theorem of a triangular integral on the

2D plane in the case of X = X(x, y) = -x2y and Y = Y(x, y) = xy2, where the closed

curve is an ellipse of (4.16) and (4.17).

The arithmetic sequences of θj and θk are respectively

θj = j
2π

n
(j = 0, 1, 2, ..., k), (4:24)

θk = k
2π

n
(k = 0, 1, 2, ..., n) . (4:25)

The increments of θj and θk, i.e., Δθ = Δθj = Δθk, are

�θ =
2π

n
. (4:26)

1. Calculation by line integral

The line integral is calculated to be

∮ �

∂D

(
X dx + Y dy

)
=

∮ �

x2

a2 +
y2

b2 =1

(−x2y dx + xy2dy
)

= ab
(
a2 + b2

) ∫ 2π

0
sin2θ cos2θ dθ .

(4:27)

The integral in (4.27) is executed in the formula of

∫ 2π

0
sin2θ cos2θ dθ = lim

n→∞

n∑
k=1

sin2θk cos2θk �θ

= lim
n→∞

2π

n

n∑
k=1

sin2
(
k
2π

n

)
cos2

(
k
2π

n

)

=
π

4
.

(4:28)

Substituting (4.28) into (4.27), we finally obtain

∮ �

x2

a2 +
y2

b2 =1
(X dx + Y dy) =

π

4
ab

(
a2 + b2

)
. (4:29)

2. Calculation by area integral

The area double integral in the region of x2

a2 + y2

b2 ≤ 1 is calculated to be

1
2

∫ ∫ �

x2

a2 +
y2

b2 ≤1

(
∂X′

∂y′
− ∂Y

∂x

)
dx dy′ +

1
2

∫ ∫ �

x2

a2 +
y2

b2 ≤1

(
∂Y ′

∂x′ − ∂X
∂y

)
dy dx′

+
1
2

∫ ∫ �

x2

a2 +
y2

b2 ≤1

(
∂X′

∂x′ − ∂X

∂x

)
dx dx′ +

1
2

∫ ∫ �

x2

a2 +
y2

b2 ≤1

(
∂Y ′

∂y′
− ∂Y

∂y

)
dy dy′ =

π

4
ab

(
a2 + b2

)
.

(4:30)

Calculations of the respective terms of (4.30) are shown in Appendix 2. We hence

conclude that Theorem 2 holds for this problem.
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Remark. It is very complicated to execute this triangular integral only by human’s

brain. Computer and formula manipulation software are recommended to verify these

calculations in the case of n ® ∞. This theory is also applicable for numerical calcula-

tion in the case of 1 <n < ∞.

5 The curl theorem of a triangular integral in the higher dimensions
The curl theorem of a triangular integral in the 3D space is derived in Section 5.1 and

that in the 4D hyper-space is derived in Section 5.2.

5.1 The curl theorem in the 3D space

We extend the curl theorem of a triangular integral in the 3D space. We present three

lemmata in the following before the proof of Theorem 3.

Lemma 5. Let X = X(x, y, z) be a partially differentiable function with respect to x, y

and z. It holds

∫ [A,B]

g(x,y,z)=0
X dx =

1
2

∫∫ [A,B]

g(x,y,z)≤0

(
∂X′

∂y′
dx dy′ − ∂X

∂y
dy dx′ +

∂X′

∂z′
dx dz′ − ∂X

∂z
dz dx′

)

+
1
2

∫∫ [A,B]

g(x,y,z)≤0

(
∂X′

∂x′ − ∂X

∂x

)
dx dx′ +

1
2
(xB − xA) (XA + XB)

(5:1)

for a piecewise smooth curve of equation g(x, y, z) = 0 between A(xA, yA, zA) and B(xB,

yB, zB), where XA = X(xA, yA, zA) and XB = X(xB, yB, zB).

Proof. Rewriting the transformation lemma (3.10) for X = X(x, y, z) and g(x, y, z) = 0,

it is expressed as

∫ [A,B]
g(x,y,z)=0 X dx =

1
2

∫∫ [A,B]
g(x,y,z)≤0(dx dX

′ − dX dx′) +
1
2
(xB − xA)(XA + XB). (5:2)

Substituting two kinds of the total differentials of X, i.e., dX and dX’,

dX =
∂X
∂x

dx +
∂X
∂y

dy +
∂X
∂z

dz, (5:3)

dX′ =
∂X′

∂x′ dx
′ +

∂X′

∂y′
dy′ +

∂X′

∂z′
dz′ (5:4)

in (5.2), it is modified to be (5.1). Q.E.D.

Lemma 6. Let Y = Y(x, y, z) be a partially differentiable function with respect to x, y

and z. It holds

∫ [A,B]

g(x,y,z)=0
Y dy =

1
2

∫∫ [A,B]

g(x,y,z)≤0

(
∂Y ′

∂x′ dy dx
′ − ∂Y

∂x
dx dy′ +

∂Y ′

∂z′
dy dz′ − ∂Y

∂z
dz dy′

)

+
1
2

∫∫ [A,B]

g(x,y,z)≤0

(
∂Y ′

∂y′
− ∂Y

∂y

)
dy dy′ +

1
2
(yB − yA)(YA + YB)

(5:5)

for a piecewise smooth curve of equation g(x, y, z) = 0 between A(xA, yA, zA) and B(xB,

yB, zB), where YA = Y(xA, yA, zA) and YB = Y(xB, yB, zB).

Proof. In the similar procedure as Lemma 5, we obtain (5.5). Q.E.D.

Lemma 7. Let Z = Z(x, y, z) be a partially differentiable function with respect to x, y

and z. It holds
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∫ [A,B]

g(x,y,z)=0
Z dz =

1
2

∫∫ [A,B]

g(x,y,z)≤0

(
∂Z′

∂y′
dz dy′ − ∂Z

∂y
dy dz′ +

∂Z′

∂x′ dz dx
′ − ∂Z

∂x
dx dz′

)

+
1
2

∫∫ [A,B]

g(x,y,z)≤0

(
∂Z′

∂z′
− ∂Z

∂z

)
dz dz′ +

1
2
(zB − zA)(ZA + ZB)

(5:6)

for a piecewise smooth curve of equation g(x, y, z) = 0 between A(xA, yA, zA) and B(xB,

yB, zB), where ZA = Z(xA, yA, zA) and ZB = Z(xB, yB, zB).

Proof. In the similar procedure as Lemma 5, we obtain (5.6). Q.E.D.

Theorem 3. (The curl theorem of a triangular integral in the 3D space) Let D be a

piecewise smooth surface in the xyz-space, which is expressed in terms of the Cartesian

coordinates (x, y, z) Î ℝ3. Let ∂D be the boundary of D. Let X1 = X = X(x, y, z), X2 = Y

= Y(x, y, z) and X3 = Z = Z(x, y, z) be partially differentiable functions with respect to

x1 = x, x2 = y and x3 = z in D. It holds

∮
∂D

Xαdxα =
1
2

∫∫
D

(
∂X′

α

∂x′β − ∂Xβ

∂xα

)
dxαdx′β , (5:7)

where indices are summed over a, b = 1,2,3.

Proof. Combining (5.1) with (5.5) and (5.6), we obtain

∫ [A,B]

g(x,y,z)=0

(
X dx + Y dy + Z dz

)

=
1
2

∫∫ [A,B]

g(x,y,z)≤0

[(
∂X′

∂y′
− ∂Y

∂x

)
dx dy′ +

(
∂Y ′

∂x′ − ∂X
∂y

)
dy dx′

+
(

∂Y ′

∂z′
− ∂Z

∂y

)
dy dz′ +

(
∂Z′

∂y′
− ∂Y

∂z

)
dz dy′ +

(
∂Z′

∂x′ − ∂X
∂z

)
dz dx′ +

(
∂X′

∂z′
− ∂Z

∂x

)
dx dz′

+
(

∂X′

∂x′ − ∂X

∂x

)
dx dx′ +

(
∂Y ′

∂y′
− ∂Y

∂y

)
dy dy′ +

(
∂Z′

∂z′
− ∂Z

∂z

)
dz dz′

]

+
1
2
(xB − xA)(XA + XB) +

1
2
(yB − yA)(YA + YB) +

1
2
(zB − zA)(ZA + ZB)

(5:8)

for a piecewise smooth curve of equation g(x, y, z) = 0 between A(xA, yA, zA) and B

(xB, yB, zB), where XA = X(xA, yA, zA), XB = X(xB, yB, zB), YA = Y(xA, yA, zA), YB = Y(xB,

yB, zB), ZA = Z(xA, yA, zA) and ZB = Z(xB, yB, zB). For an integral on a closed curve, the

initial point A(xA, yA, zA) coincides with the terminal one B(xB, yB, zB), i.e., A(xA, yA,

zA) = B(xB, yB, zB). It then holds

1
2
(xB − xA)(XA + XB) +

1
2
(yB − yA)(YA + YB) +

1
2
(zB − zA)(ZA + ZB) = 0 (5:9)

regardless of the values of XA, XB, YA, YB, ZA and ZB. We thus obtain (5.7). Q.E.D.

Corollaries 1 and 2 also hold for a, b = 1,2,3.

5.2 The curl theorem in the 4D hyper-space

We extend the curl theorem of a triangular integral in the 4D hyper-space.

Theorem 4. (The curl theorem of a triangular integral in the 4D hyper-space) Let D

be a piecewise smooth surface in the txyz-hyper-space, which is expressed in terms of

the Cartesian coordinates (t, x, y, z) Î ℝ4. Let ∂D be the boundary of D. Let X0 = T =

T(t, x, y, z), X1 = X = X(t, x, y, z), X2 = Y = Y(t, x, y, z) and X3 = Z = Z(t, x, y, z) be
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partially differentiable functions with respect to x0 = t, x1 = x, x2 = y and x3 = z in D. It

holds

∮
∂D

Xαdxα =
1
2

∫∫
D

(
∂X′

α

∂x′β − ∂Xβ

∂xα

)
dxαdx′β , (5:10)

where indices are summed over a, b = 0,1,2,3.

Proof. In the 4D, it holds

∫ [A,B]

h(t,x,y,z)=0

(
T dt + X dx + Y dy + Z dz

)

=
1
2

∫∫ [A,B]

h(t,x,y,z)≤0

[(
∂X′

∂y′
− ∂Y

∂x

)
dx dy′ +

(
∂Y ′

∂x′ − ∂X
∂y

)
dy dx′

+
(

∂Y ′

∂z′
− ∂Z

∂y

)
dy dz′ +

(
∂Z′

∂y′
− ∂Y

∂z

)
dz dy′ +

(
∂Z′

∂x′ − ∂X
∂z

)
dz dx′ +

(
∂X′

∂z′
− ∂Z

∂x

)
dx dz′

+
(

∂X′

∂x′ − ∂X

∂x

)
dx dx′ +

(
∂Y ′

∂y′
− ∂Y

∂y

)
dy dy′ +

(
∂Z′

∂z′
− ∂Z

∂z

)
dz dz′ +

(
∂T′

∂t′
− ∂T

∂t

)
dt dt′

+
(

∂X′

∂t′
− ∂T

∂x

)
dx dt′ +

(
∂Y ′

∂t′
− ∂T

∂y

)
dy dt′ +

(
∂Z′

∂t′
− ∂T

∂z

)
dz dt′

+
(

∂T′

∂x′ − ∂X

∂t

)
dt dx′ +

(
∂T′

∂y′
− ∂Y

∂t

)
dt dy′ +

(
∂T′

∂z′
− ∂Z

∂t

)
dt dz′

]

+
1
2
(tB − tA)(TA + TB) +

1
2
(xB − xA)(XA + XB) +

1
2
(yB − yA)(YA + YB) +

1
2
(zB − zA)(ZA + ZB)

(5:11)

for a piecewise smooth curve of equation h(t, x, y, z) = 0 between A(tA, xA, yA, zA)

and B(tB, xB, yB, zB), where TA = T(tA, xA, yA, zA), TB = T(tB, xB, yB, zB), XA = X(tA, xA,

yA, zA), XB = X(tB, xB, yB, zB), YA = Y(tA, xA, yA, zA), YB = Y(tB, xB, yB, zB), ZA = Z(tA,

xA, yA, zA) and ZB = Z(tB, xB, yB, zB). For an integral on a closed curve, the initial point

A(tA, xA, yA, zA) coincides with the terminal one B(tB, xB, yB, zB), i.e., A(tA, xA, yA, zA) =

B(tB, xB, yB, zB). It then holds

1
2
(tB−tA)(TA+TB)+

1
2
(xB−xA)(XA+XB)+

1
2
(yB−yA)(YA+YB)+

1
2
(zB−zA)(ZA+ZB) = 0 (5:12)

regardless of the values of TA, TB, XA, XB, YA, YB, ZA and ZB. We thus obtain (5.10).

Q.E.D.

Corollaries 1 and 2 also hold for a, b = 0 1,2,3.

Appendix 1
Using Definition 1, the first term of the right-hand side of (4.2) in the proof of Lemma

3 is expressed as

1
2

∫∫ [A,B]

f (x,y)≤0
(dx dX′ − dX dx′) =

1
2
lim
n→∞

n∑
k=1

k∑
j=1

(�xk�Xj − �Xk�xj). (5:13)

The total increments ΔXj and ΔXk in the right-hand side of (5.13) are respectively

expressed as

�Xj ≡ X(xj, yj) − X(xj−1, yj−1)

=
X(xj, yj) − X(xj−1, yj)

xj − xj−1
�xj +

X(xj−1, yj) − X(xj−1, yj−1)

yj − yj−1
�yj,

(5:14)
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�Xk ≡ X(xk, yk) − X(xk−1, yk−1)

=
X(xk, yk) − X(xk−1, yk)

xk − xk−1
�xk +

X(xk−1, yk) − X(xk−1, yk−1)
yk − yk−1

�yk.
(5:15)

Substituting (5.14) and (5.15) in the right-hand side of (5.13), it is modified to be

1
2

lim
n→∞

n∑
k=1

k∑
j=1

(�xk�Xj − �Xk�xj) =
1
2

lim
n→∞

n∑
k=1

k∑
j=1

X
(
xj−1, yj

) − X
(
xj−1, yj−1

)
yj − yj−1

�xk�yj

− 1
2

lim
n→∞

n∑
k=1

k∑
j=1

X(xk−1, yk) − X(xk−1, yk−1)
yk − yk−1

�yk�xj

+
1
2

lim
n→∞

n∑
k=1

k∑
j=1

X
(
xj, yj

) − X
(
xj−1, yj

)
xj − xj−1

�xk�xj

− 1
2

lim
n→∞

n∑
k=1

k∑
j=1

X(xk, yk) − X(xk−1, yk)
xk − xk−1

�xk�xj.

(5:16)

Each term of (5.16) is respectively expressed as

1
2

∫∫ [A,B]

f (x,y)≤0

∂X′

∂y′
dx dy′ =

1
2
lim
n→∞

n∑
k=1

k∑
j=1

X
(
xj−1, yj

) − X
(
xj−1, yj−1

)
yj − yj−1

�xk�yj, (5:17)

1
2

∫∫ [A,B]

f (x,y)≤0

∂X
∂y

dy dx′ =
1
2
lim
n→∞

n∑
k=1

k∑
j=1

X(xk−1, yk) − X(xk−1, yk−1)
yk − yk−1

�yk�xj, (5:18)

1
2

∫∫ [A,B]

f (x,y)≤0

∂X′

∂x′ dx dx
′ =

1
2
lim
n→∞

n∑
k=1

k∑
j=1

X
(
xj, yj

) − X
(
xj−1, yj

)
xj − xj−1

�xk�xj, (5:19)

1
2

∫∫ [A,B]

f (x,y)≤0

∂X
∂x

dx dx′ =
1
2
lim
n→∞

n∑
k=1

k∑
j=1

X(xk, yk) − X(xk−1, yk)
xk − xk−1

�xk�xj. (5:20)

We thus obtain (4.1) in Lemma 3.

Appendix 2
Substituting (4.24) in (4.20) and (4.21), substituting (4.25) in (4.22) and (4.23), the

respective terms of (4.30) are calculated as follows.

1. The first term of the left-hand side of (4.30) is

1
2

∫ ∫ �

x2

a2 +
y2

b2 ≤1

(
∂X′

∂y′
− ∂Y

∂x

)
dx dy′

= −1
2

∫ ∫ �

x2

a2 +
y2

b2 ≤1

[
(x′)2 + y2

]
dx dy′

= −1
2
lim
n→∞

n∑
k=1

k∑
j=1

[
(xj)

2 + (yk)
2
]
�xk�yj

=
−ab
2

lim
n→∞

n∑
k=1

k∑
j=1

(
a2cos2θj + b2sin2θk

)
(cos θk − cos θk−1)

(
sin θj − sin θj−1

)

=
−ab
2

lim
n→∞

n∑
k=1

k∑
j=1

[
a2cos2

(
j
2π

n

)
+ b2sin2

(
k
2π

n

)]

×
{
cos

[
k
2π

n

]
− cos

[
(k − 1)

2π

n

]} {
sin

[
j
2π

n

]
− sin

[
(j − 1)

2π

n

]}

=
3
8

πab(a2 + b2).

(5:21)
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2. The second term of the lefthand side of (4.30) is

1
2

∫ ∫ �

x2

a2 +
y2

b2 ≤1

(
∂Y ′

∂x′ − ∂X
∂y

)
dy dx′

=
1
2

∫ ∫ �

x2

a2 +
y2

b2 ≤1

[
(y′)2 + x2

]
dy dx′

=
1
2
lim
n→∞

n∑
k=1

k∑
j=1

[
(yj)

2 + (xk)
2
]
�yk�xj

=
ab
2

lim
n→∞

n∑
k=1

k∑
j=1

(
b2sin2θj + a2cos2θk

)
(sin θk − sin θk−1)

(
cos θj − cos θj−1

)

=
ab
2

lim
n→∞

n∑
k=1

k∑
j=1

[
b2sin2

(
j
2π

n

)
+ a2cos2

(
k
2π

n

)]

×
{
sin

[
k
2π

n

]
− sin

[
(k − 1)

2π

n

]}{
cos

[
j
2π

n

]
− cos

[
(j − 1)

2π

n

]}

=
3
8

πab(a2 + b2).

(5:22)

3. The third term of the left-hand side of (4.30) is

1
2

∫ ∫ �

x2

a2 +
y2

b2 ≤1

(
∂X′

∂x′ − ∂X
∂x

)
dx dx′

=
∫ ∫ �

x2

a2 +
y2

b2 ≤1
(−x′y′ + xy)dx dx′

= lim
n→∞

n∑
k=1

k∑
j=1

(−xjyj + xkyk)�xk�xj

= a3b lim
n→∞

n∑
k=1

k∑
j=1

(− cos θj sin θj + cos θk sin θk
)
(cos θk − cos θk−1)

(
cos θj − cos θj−1

)

= a3b lim
n→∞

n∑
k=1

k∑
j=1

[
− cos

(
j
2π

n

)
sin

(
j
2π

n

)
+ cos

(
k
2π

n

)
sin

(
k
2π

n

)]

×
{
cos

[
k
2π

n

]
− cos

[
(k − 1)

2π

n

]}{
cos

[
j
2π

n

]
− cos

[
(j − 1)

2π

n

]}

= −1
2

πa3b.

(5:23)

4. The fourth term of the left-hand side of (4.30) is

1
2

∫ ∫ �

x2

a2 +
y2

b2 ≤1

(
∂Y ′

∂y′
− ∂Y

∂y

)
dy dy′

=
∫ ∫ �

x2

a2 +
y2

b2 ≤1
(x′y′ − xy)dy dy′

= lim
n→∞

n∑
k=1

k∑
j=1

(xjyj − xkyk)�yk�yj

= ab3 lim
n→∞

n∑
k=1

k∑
j=1

(
cos θj sin θj − cos θk sin θk

)
(sin θk − sin θk−1)

(
sin θj − sin θj−1

)

= ab3 lim
n→∞

n∑
k=1

k∑
j=1

[
cos

(
j
2π

n

)
sin

(
j
2π

n

)
− cos

(
k
2π

n

)
sin

(
k
2π

n

)]

×
{
sin

[
k
2π

n

]
− sin

[
(k − 1)

2π

n

]}{
sin

[
j
2π

n

]
− sin

[
(j − 1)

2π

n

]}

= −1
2

πab3.

(5:24)
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