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Abstract

In this article, we prove the Hyers-Ulam stability of exact second-order linear
differential equations. As a consequence, we show the Hyers-Ulam stability of the
following equations: second-order linear differential equation with constant
coefficients, Euler differential equation, Hermite’s differential equation, Cheybyshev’s
differential equation, and Legendre’s differential equation. The result generalizes the
main results of Jung and Min, and Li and Shen.
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1. Introduction
The stability of functional equations was first introduced by Ulam [1]. Hyers [2] gave a

partial solution of Ulam’s problem for the case of approximate additive mappings in

the context of Banach spaces. Rassias [3] generalized the theorem of Hyers by consid-

ering the stability problem with unbounded Cauchy differences ║f(x + y) - f(x) - f(y)║
≤ ε(║x║p+║y║p) (ε > 0, p Î [0, 1)).

Let X be a normed space over a scalar field K and let I be an open interval. Assume

that for any function f : I ® X (y = f(x)) satisfying the differential inequality
∥∥∥an(t)y(n)(t) + an−1(t)y(n−1)(t) + · · · + a1(t)y′(t) + a0(t)y(t) + h(t)

∥∥∥ ≤ ε

for all t Î I and some ε ≥ 0, there exists a function f0 : I ® X (y = f0(x)) satisfying

an(t)y(n)(t) + an−1(t)y(n−1)(t) + · · · + a1(t)y′(t) + a0(t)y(t) + h(t) = 0.

and ║f(t) - f0(t)║ ≤ K(ε) for all t Î I. Here limε®0 K(ε) = 0. Then we say that the

above differential equation has the Hyers-Ulam stability.

If the above statement is also true when we replace ε and K(ε) by �(t) and j(t),
where �, j : I ® [0, ∞) are functions not depending on f and f0 explicitly, then we say

that the corresponding differential equation has the Hyers-Ulam stability.

The Hyers-Ulam stability of the differential equation y’ = y was first investigated by

Alsina and Ger [4]. This result has been generalized by Takahasi et al. [5] for the

Banach space-valued differential equation y’ = ly. Jung [6] proved the Hyers-Ulam sta-

bility of a linear differential equation of first-order.

Theorem 1.1. ([6]) Let y : I → Rbe a continuously differentiable function satisfying

the differential inequality
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∣∣y′(t) + g(t)y(t) + h(t)
∣∣ ≤ ϕ(t)

for all t Î I, where g, h : I → Rare continuous functions and � : I ® [0, ∞) is a function.

Assume that

(a) g(t) and exp
{∫ t

a
g(u)du

}
h(t)are integrable on (a, c) for each c Î I;

(b) ϕ(t) exp
{∫ t

a
g(u)du

}
is integrable on I.

Then there exists a unique real number x such that
∣∣∣∣∣∣y(t) − exp

⎧⎨
⎩−

t∫
a

g(u)du

⎫⎬
⎭

⎡
⎣x −

t∫
a

exp

⎧⎨
⎩

υ∫
a

g(u)du

⎫⎬
⎭ h(υ)dυ

⎤
⎦

∣∣∣∣∣∣

≤
∣∣∣∣∣∣exp

⎧⎨
⎩−

⎛
⎝

t∫
a

g(u)du

⎞
⎠

⎫⎬
⎭

b∫
t

ϕ(υ) exp

⎧⎨
⎩

⎛
⎝

υ∫
a

g(u)du

⎞
⎠

⎫⎬
⎭ dυ

∣∣∣∣∣∣
for all t Î I.

In this article, we prove the Hyers-Ulam stability of exact second-order linear differ-

ential equations (see [7]). A general second-order differential equation is of the form

p0(x)y′′ + p1(x)y′ + p2(x)y + f (x) = 0 (1)

and it is exact if

p
′′
0(x) − p′

1(x) + p2(x) = 0. (2)

2. Main results
In this section, let I = (a, b) be an open interval with -∞ ≤ a < b ≤ ∞. In the following

theorem, p(x) = (p0(x))−1(p1(x) − p′
0(x)) and k = −[p0(a)y′(a) − p′

0(a)y(a) + p1(a)y(a)].

Taking some idea from [6], we investigate the Hyers-Ulam stability of exact second-

order linear differential equations. For the sake of convenience, we assume that all the

integrals and derivations exist.

Theorem 2.1. Let p0, p1, p2, f : I → Rbe continuous functions with p0(x) ≠ 0 for all x

Î I, and let � : I ® [0, ∞) be a function. Assume that y : I → Ris a twice continuously

differentiable function satisfying the differential inequality
∣∣p0(x)y′′ + p1(x)y′ + p2(x)y + f (x)

∣∣ ≤ ϕ(x) (3)

for all x Î I and (2) is true. Then there exists a solution y0 : I → Rof (1) such that
∣∣y(x) − y0(x)

∣∣

≤ exp

⎧⎨
⎩−

⎛
⎝

x∫
a

p(u)du

⎞
⎠

⎫⎬
⎭

b∫
x

⎛
⎝∣∣p0(υ)∣∣−1

υ∫
a

ϕ(t)dt

⎞
⎠ exp

⎧⎨
⎩

⎛
⎝

υ∫
a

p(u)du

⎞
⎠

⎫⎬
⎭ dυ

for all x Î I.
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Proof. It follows from (2) and (3) that
∣∣p0(x)y′′ + p1(x)y′ + p2(x)y + f (x)

∣∣
=

∣∣∣(p0(x)y′ − p′
0(x)y)

′ + (p1(x)y)′ + [p
′′
0(x) − p′

1(x) + p2(x)]y + f (x)
∣∣∣

=
∣∣(p0(x)y′ − p′

0(x)y)
′ + (p1(x)y)′ + f (x)

∣∣ ≤ ϕ(x)

So we have

−ϕ(x) ≤ (p0(x)y′ − p′
0(x)y)

′ + (p1(x)y)′ + f (x) ≤ ϕ(x). (4)

Integrating (4) from a to x for each x Î I, we get
∣∣∣∣∣∣p0(x)y

′ − p′
0(x)y + p1(x)y + k +

x∫
a

f (t)dt

∣∣∣∣∣∣

=
∣∣p0(x)∣∣

∣∣∣∣∣∣y
′ + (p0(x))

−1(p1(x) − p′
o(x))y + (p0(x))

−1

⎛
⎝k +

x∫
a

f (t)dt

⎞
⎠

∣∣∣∣∣∣

≤
x∫

a

ϕ(t)dt.

(5)

Dividing both sides of the inequality (5) by │p0(x)│, we obtain
∣∣∣∣∣∣y

′ + (p0(x))
−1(p1(x) − p′

o(x))y + (p0(x))
−1

⎛
⎝k +

x∫
a

f (t)dt

⎞
⎠

∣∣∣∣∣∣

≤ ∣∣p0(x)∣∣−1
x∫

a

ϕ(t)dt.

(6)

If we set

p(x) = (p0(x))−1(p1(x) − p′
0(x)), h(x) = (p0(x))−1

⎛
⎝k +

x∫
a

f (t)dt

⎞
⎠

and ϕ1(x) =
∣∣p0(x)∣∣−1

∫ x

a
ϕ(t)dt in (6), then we have

∣∣y′ + p(x)y + h(x)
∣∣ ≤ ϕ1(x).

Now we are in the situation of Theorem 1.1, that is, there exists a unique z ∈ R such

that
∣∣∣∣∣∣y(x) − exp

⎧⎨
⎩−

x∫
a

p(u)du

⎫⎬
⎭

⎡
⎣z −

x∫
a

exp

⎧⎨
⎩

υ∫
a

p(u)du

⎫⎬
⎭ h(υ)dυ

⎤
⎦

∣∣∣∣∣∣

≤ exp

⎧⎨
⎩−

⎛
⎝

x∫
a

p(u)du

⎞
⎠

⎫⎬
⎭

b∫
x

ϕ1(υ) exp

⎧⎨
⎩

⎛
⎝

υ∫
a

p(u)du

⎞
⎠

⎫⎬
⎭ dυ

= exp

⎧⎨
⎩−

⎛
⎝

x∫
a

p(u)du

⎞
⎠

⎫⎬
⎭

b∫
x

⎛
⎝∣∣p0(υ)∣∣−1

υ∫
a

ϕ(t)dt

⎞
⎠ exp

⎧⎨
⎩

⎛
⎝

υ∫
a

p(u)du

⎞
⎠

⎫⎬
⎭ dυ
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for all x Î I.

It is easy to show that

y0(x) = exp

⎧⎨
⎩−

x∫
a

p(u)du

⎫⎬
⎭

⎡
⎣z −

x∫
a

exp

⎧⎨
⎩

υ∫
a

p(u)du

⎫⎬
⎭ h(υ)dυ

⎤
⎦ (11a)

is a solution of (1) with the condition (2). □
If (1) is multiplied by a function μ(x) such that the resulting equation is exact, that is,

(μ(x))[p0(x)y′′ + p1(x)y′ + p2(x)y + f (x)] = 0 (7)

and

(μ(x)p0(x))′′ − (p1(x)μ(x))′ + p2(x)μ(x) = 0, (8)

then we say that μ(x) is an integrating factor of the Equation (1) (see [7]).

Corollary 2.2. Let p0, p1, p2,μ : I → Rbe continuous functions with p0(x) ≠ 0 and

μ(x) ≠ 0 for all x Î I, and let � : I ® [0, ∞) be a function. Assume that y : I → Ris a

twice continuously differentiable function satisfying the differential inequality
∣∣(μ(x))[p0(x)y′′ + p1(x)y′ + p2(x)y + f (x)]

∣∣ ≤ ϕ(x) (9)

for all x Î I and (8) is true. Then there exists a solution y0 : I → Rof (7) such that
∣∣y(x) − y0(x)

∣∣

≤ exp

⎧⎨
⎩−

⎛
⎝

x∫
a

p(u)du

⎞
⎠

⎫⎬
⎭

b∫
x

⎛
⎝∣∣μ(v)p0(v)∣∣−1

v∫
a

ϕ(t)dt

⎞
⎠ exp

⎧⎨
⎩

⎛
⎝

v∫
a

p(u)du

⎞
⎠

⎫⎬
⎭ dυ

for all x Î I, where p(x) = (μ(x)p0(x))
-1 [μ(x)p1(x) - (μ(x)p0(x))’ ].

Proof. It follows from Theorem 2.1 that there exists a unique z ∈ R such that

y0(x) = exp

⎧⎨
⎩−

x∫
a

p(u)du

⎫⎬
⎭

⎡
⎣z −

x∫
a

exp

⎧⎨
⎩

υ∫
a

p(u)du

⎫⎬
⎭ h(v)dv

⎤
⎦

is a solution of (7) with the condition (8), where

p(x) = (μ(x)p0(x))−1[μ(x)p1(x) − (μ(x)p0(x))′]

and

h(x) = (μ(x)p0(x))−1

⎛
⎝k +

x∫
a

μ(t)f (t)dt

⎞
⎠

with

k = −[μ(a)p0(a)y′(a) − (μ(a)p0(a))′y(a) + μ(a)p1(a)y(a)],

as desired. □

1. Li and Shen [8] proved the Hyers-Ulam stability of second-order linear differen-

tial equations with constant coefficients
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y′′ + cy′ + by + f (x) = 0, (10)

where the characteristic equation l2 + cl + b = 0 has two positive roots.

Now, it follows from (7) and (8) that μ(x) is an integrating factor for (10) if it satis-

fies

μ′′(x) − cμ′(x) + bμ(x) = 0. (11)

It is well-known that μ(x) = exp(mx), where m =
c ± √

c2 − 4b
2

, is a solution of (11)

and consequently, it is an integrating factor of (10). Now the following corollaries are

the generalization of [[8], Theorems 2.1 and 2.2].

Corollary 2.3. Consider the Equation (10). Let c2 - 4b ≥ 0,

m =
c ± √

c2 − 4b
2

, f : I → Rbe a continuous function and let � : I ® [0, ∞) be a func-

tion. Assume that y : I → Ris a twice continuously differentiable function satisfying the

differential inequality
∣∣y′′ + cy′ + by + f (x)

∣∣ ≤ ϕ(x) (12)

for all x Î I. Then there exists a solution y0 : I → Rof (10) such that

∣∣y(x) − y0(x)
∣∣ ≤ exp{(m−c)(x−a)}

b∫
x

⎛
⎝exp(−mv)

v∫
a

exp(mt)ϕ(t)

⎞
⎠ exp{(c−m)(x−a)}dv

for all x Î I.

Proof. μ(x) = exp(mx) is an integrating factor of (10) when c2 - 4b ≥ 0 and

m =
c ± √

c2 − 4b
2

(the paragraph preceding of this corollary). By (12), we obtain

exp(mx)
∣∣y′′ + cy′ + by + f (x)

∣∣ ≤ exp(mx)ϕ(x) (13)

for all x Î I. Using Corollary 2.2 with �1(x) = exp(mx)�(x) instead of �(x) and with

(13) instead of (9), we conclude that there exists a unique z ∈ R such that

y0(x) = exp{(m−c)(x−a)}
⎡
⎣z −

x∫
a

exp{(c − m)(v − a)}
⎛
⎝k +

v∫
a

exp(mx)f (x)dx

⎞
⎠ dv

⎤
⎦ ,

where k = -[exp(ma)y’(a) -m exp(ma)y(a) + c exp(ma)y(a)], for all x Î I, is a solution

of (10) and

∣∣y(x) − y0(x)
∣∣ ≤ exp{(m−c)(x−a)}

b∫
x

⎛
⎝exp(mv)

v∫
a

exp(mt)ϕ(t)

⎞
⎠ exp{(c−m)(v−a)}dv,

as desired. □
Corollary 2.4. Consider the Equation (10). Let c2 - 4b <0,

m =
c ± √

c2 − 4b
2

= α ± iβ , f : I → Rbe a continuous function and let � : I ® [0, ∞)

be a function. Assume that y : I → Ris a twice continuously differentiable function satis-

fying the differential inequality
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∣∣y′′ + cy′ + by + f (x)
∣∣ ≤ ϕ(x)

for all x Î I. Then there exists a solution y0 : I → Rof (10) such that
∣∣y(x) − y0(x)

∣∣

≤ exp

⎧⎨
⎩−

⎛
⎝

x∫
a

p(u)du

⎞
⎠

⎫⎬
⎭

b∫
x

⎛
⎝∣∣μ(v)∣∣−1

v∫
a

exp(αt)ϕ(t)dt

⎞
⎠ exp

⎧⎨
⎩

⎛
⎝

v∫
a

p(u)du

⎞
⎠

⎫⎬
⎭dv

for all x Î I, where μ(x) = exp(ax) cos bx and p(u) = [c - a + b tan bx].
Proof. It is easy to show that

exp(αx)
∣∣(cos βx)(y′′ + cy′ + by + f (x))

∣∣ ≤ exp(αx)
∣∣y′′ + ay′ + by + f (x)

∣∣
≤ exp(αx)ϕ(x)

for all x Î I. Now, similar to Corollary 2.3, there exists a unique z ∈ R such that

y0 = exp

⎧⎨
⎩z −

x∫
a

p(u)du

⎫⎬
⎭

⎡
⎣z −

x∫
a

exp

⎧⎨
⎩

v∫
a

p(u)du

⎫⎬
⎭

⎛
⎝k +

v∫
a

exp(αx) cos βxf (x)dx

⎞
⎠

⎤
⎦

has the required properties, where k = [exp(aa) cos bay’(a) - (exp(aa) cos ba)’y(a) +
c exp(aa) cos bay(a)]. □

2. Let a and b be real constants. The following differential equation

x2y′′ + αxy′ + βy + f (x) = 0

is called the Euler differential equation. It is exact when a - b = 2. By Theorem 2.1,

it has the Hyers-Ulam stability.

In general, μ(x) is an integrating factor of Euler differential equation if it satisfies

x2μ(x))′′ − (αxμ(x)′ + βμ(x) = 0. (14)

The Equation (14) can be written as

x2μ′′(x) + (4 − α)xμ′(x) + (2 − α + β)μ(x) = 0.

By the trial of μ(x) = xm, we show that

m2 + (3 − α)m + (2 − α + β) = 0. (15)

From (15) we obtain

m =
−(3 − α) ±

√
(1 − α)2 − 4β

2
.

Now we can use the above corollaries for the Hyers-Ulam stability of Euler differen-

tial equation. This result is comparable with [[9], Theorem 2] and the main results of

[10].

3. Hermite’s differential equation

y′′ − 2xy′ + 2λy + f (x) = 0 (λ ∈ R)
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is exact when l = -1 and it has the Hyers-Ulam stability.

4. Chebyshev’s differential equation

(1 − x2)y′′ − xy′ + n2y + f (x) = 0 (n ∈ Z)

is exact when n = ±1. By Theorem 2.1, it has the Hyers-Ulam stability.

5. Legendre’s differential equation

(1 − x2)y′′ − 2xy′ + n(n + 1)y + f (x) = 0 (n ∈ Z)

is exact when n(n + 1) = 0 and it has the Hyers-Ulam stability.
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