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Abstract

By employing primary algebraic techniques, we establish a necessary and sufficient
condition for the existence of periodic solutions for a type of linear difference
equations with distributed delay of the form

�x(n) =
0∑

k=−d

�kζ (n + 1, k − 1)x(n + k − 1), n ≥ 1. (*)

Our approach is based on constructing an adjoint equation for (*) and proving that
(*) and its adjoint equation have the same number of linearly independent periodic
solutions.
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1 Introduction
Let N, ℤ, ℝ be the sets of natural, integer and real numbers, respectively. By ℝm, we

denote the m-dimensional Euclidean space with elements x = col(x1, x2, . . . , xm).

It is well known that the nonhomogeneous linear equation x’(t) = A(t)x(t) + f(t) has

periodic solutions if and only if

ω∫

0

yT(t)f (t)dt = 0 (1)

for all periodic solutions y(t) of period ω of the adjoint equation y’(t) = - AT(t)y(t),

where A Î C(ℝ, ℝm×m) and f Î C(ℝ, ℝm) are periodic functions of period ω; see for

instance [1]. By “T“, we mean the transposition.

In his remarkable monograph [2], Halanay extended the above result to linear delay

differential equations of the form

x′(t) = A(t)x(t) + B(t)x(t − τ ) + f (t), t > 0, (2)

where A, B Î C(ℝ, ℝm×m) and f Î C(ℝ, ℝm) are periodic functions of period ω and τ

>0 is a fixed real number. It was shown that the required condition involves the same

integral (1). Indeed, Halanay proved that Equation (2) has periodic solutions if and

only if (1) holds for all periodic solutions y(t) of period ω of the adjoint equation

y′(t) = −AT(t)y(t) − BT(t + τ )y(t + τ ),
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which is constructed with respect to the function

< y(t), x(t) >= yT(t)x(t) +

t+τ∫
t

yT(s)B(s)x(s − τ )ds. (3)

The same problem has been investigated for linear impulsive delay differential equa-

tions [3,4]. The discrete analog of the above mentioned result has been recently stu-

died in [5]. We suggest the reader to consult [6-10] for more results regarding

existence of periodic solutions for difference equations.

The purpose of this article is to establish a necessary and sufficient condition for the

existence of periodic solutions for a type of linear difference equation with distributed

delay of the form

�x(n) =
0∑

k=−d

�kζ (n + 1, k − 1)x(n + k − 1), n ≥ 1, (4)

where ζ: N × ℤ ® ℝm × m is a kernel function satisfying the following conditions:

(i) ζ(n, k) is normalized so that ζ(n, s) = 0 for s ≥ -1 and for s ≤ - d + 1 where d >3

is a positive integer;

(ii) There exists a positive real number g such that sup
t≥0

∑0
s=−d ||�sζ (t, s)|| ≤ γ .

For any a, b Î N, define N(a) = {a, a + 1, . . .} and N(a, b) = {a, a + 1, . . . , b}

where a ≤ b. By a solution of (4), we mean a sequence x(n) of elements in ℝm which is

defined for all n Î N(n0 - d + 1) and satisfies (4) for n Î N(n0) for some n0 Î N. It is

easy to see that for any given n0 Î N and initial conditions of the form

x(n) = φ(n), n ∈ N(n0 − d + 1,n0 + 1), (5)

(4) has a unique solution x(n) which is defined for n Î N(n0 - d + 1) and satisfies the

initial conditions (5). To emphasize the dependence of the solution on the initial point

n0 and the initial functions j, we may use the notation x(n) = x(n; n0, j).
Our approach is based on constructing an adjoint equation for (4) with respect to a

discrete analog for function (3) and proving that (4) and its adjoint equation have the

same number of linearly independent periodic solutions. We shall employ some pri-

mary algebraic techniques to prove the main results of this article. It is worth mention-

ing here that the equation under consideration in this article (Equation (4)) is given in

general form so it includes many particular cases of difference equations with pure

delays; see [5,11-13] for more details.

2 Preliminary assertions
This section is devoted to certain auxiliary assertions that will be needed in the proof

of the main theorem. Lemma 2.1 which introduces the main result of this section is

needed to define an adjoint equation for (4). Lemmas 2.4 and 2.7 give representations

of solutions of the considered equations. The proof of these lemmas were given in

[14]. For the benefit of the readers, however, we state these lemmas along with their

proofs.
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Consider the function

< x(n), y(n) >= xT(n)y(n) +
n∑

s=n−d

xT(s − 1)�s

s+d−1∑
α=n+1

ζ T(α, s − α)y(α), (6)

where Δnζ(n, k): = ζ(n + 1, k) - ζ(n, k). We claim that the equation

�y(n) = −�n

0∑
k=−d

ζ T(n − k, k + 1)y(n − k) (7)

is an adjoint equation of (4) with respect to (6). The following lemma proves

meaningful.

Lemma 2.1 Let x(n) be any solution of (4) and y(n) be any solution of (7) then

< x(n), y(n) >= constant, (8)

where <·,· > is defined by (6).

Proof. Clearly, it suffices to show that Δ < x(n), y(n) >= 0. It follows that

� < x(n), y(n) >= xT(n)�y(n) + �xT(n)y(n + 1) + �n

n∑
s=n−d

g(s,n), (9)

where

g(s,n) = xT(s − 1)�s

s+d−1∑
α=n+1

ζ T(α, s − α)y(α). (10)

It is easy to see that

�n

n∑
s=n−d

g(s,n) = g(n + 1,n + 1) − g(n − d,n) +
n∑

s=n−d+1

�ng(s,n).

Therefore (9) becomes

� < x(n), y(n) > =xT(n)�y(n) + �xT(n)y(n + 1) + g(n + 1,n + 1)

− g(n − d,n) +
n∑

s=n−d+1

�ng(s,n).

Thus

� < x(n), y(n) >
by(7)
= xT(n)

⎡
⎣−�n

0∑
k=−d

ζ T(n − k, k + 1)y(n − k)

⎤
⎦

by(4)
+

⎡
⎣ 0∑

k=−d

xT(n + k − 1)�kζ
T(n + 1, k − 1)

⎤
⎦ y(n + 1)

by(10)
+ xT(n)

n+d∑
α=n+3

�nζ
T(α,n + 1 − α)y(α)

by(10)
− xT(n − d − 1)�n−d

n−1∑
α=n+1

ζ T(α,n − d − α)y(α)

by(10)
−

n∑
s=n−d+1

xT(s − 1)�sζ
T(n + 1, s − n − 1)y(n + 1).
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By changing the indices and using the properties of ζ, we see that the above equation

is equal to zero. The proof is finished.

Remark 2.2 In virtue of Lemma 2.1, we may say that Equation (7) is an adjoint of

(4). It is easy to verify also that the adjoint of (7) is (4), i.e., they are mutually adjoint

of each other.

Consider the nonhomogeneous equation

�x(n) =
0∑

k=−d

�kζ (n + 1, k − 1)x(n + k − 1) + f (n), n ≥ 1, (11)

where f is a sequence with values in ℝm.

Definition 2.3 A matrix solution X(n, a) of (4) satisfying X(a, a) = I, (I is an identity

matrix), and X(n, a) = 0 for n < a is called a fundamental function of (4).

Lemma 2.4 Let X(n, a) be a fundamental function of (4) and n0 Î N. If x(n) is a

solution of (11), then

x(n) =X(n,n0)x(n0) +
n0∑

s=n0−d

�s

s+d−1∑
α=n0+1

X(n,α)ζ (α, s − α)x(s − 1)

+
n−1∑
k=n0

X(n, k + 1)f (k).

(12)

Proof. A direct substitution of (12) in (11) leads to the desired result. Indeed,

�x(n) =�X(n,n0)x(n0) + �n

n0∑
s=n0−d

�s

s+d−1∑
α=n0+1

X(n,α)ζ (α, s − α)x(s − 1)

+ �n

n−1∑
k=n0

X(n, k + 1)f (k)

(13)

or

�x(n)
by(4)
=

0∑
k=−d

�kζ (n + 1, k − 1)X(n + k − 1,n0)x(n0)

+
n0∑

s=n0−d

⎡
⎣�s

s+d−1∑
α=n0+1

⎧⎨
⎩

0∑
k=−d

�kζ (n + 1, k − 1)X(n + k − 1,α)

⎫⎬
⎭ζ (α, s − α)

⎤
⎦x(s − 1)

+ f (n) +
n−1∑
k=n0

⎧⎨
⎩

0∑
k=−d

�kζ (n + 1, k − 1)X(n + k − 1, k + 1)

⎫⎬
⎭f (k)

= f (n) +
0∑

k=−d

�kζ (n + 1, k − 1)x(n + k − 1).

Corollary 2.5 Let X(n, a) be a fundamental function of (4) and n0 Î N. If x(n) is a

solution of (4), then

x(n) = X(n,n0)x(n0) +
n0∑

s=n0−d

�s

s+d−1∑
α=n0+1

X(n,α)ζ (α, s − α)x(s − 1). (14)

Definition 2.6 A matrix solution Y (n, a) of (7) satisfying Y (a, a) = I and Y (n, a) =
0 for n > a is called a fundamental function of (7).
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Lemma 2.7 Let Y (n, a) be a fundamental function of (7) and n0 Î N. If y(n) is a

solution of (5), then

y(n) = Y(n,n0)y(n0) +
n0∑

s=n0−d

Y(n, s − 1)�s

s+d−1∑
α=n0+1

ζ T(α, s − α)y(α). (15)

Corollary 2.8 Let X(n; n0) be a fundamental function of (4) and Y (n, n0) be a funda-

mental function of (7). Then

X(n,n0) = YT(n0,n). (16)

Proof. By following the same arguments used by Halanay in [[2], p. 364], (8) can be

written as follows

< x(n), y(n) >=< x(n0), y(n0) >, for any n0 ∈ N.

Further

XT(n,n)Y(n,n0) +
n∑

s=n−d

XT(s − 1,n)�s

s+d−1∑
α=n+1

ζ T(α, s − α)Y(α,n0)

by(6)
= XT(n0,n)Y(n0,n0)

+
n∑

s=n−d

XT(s − 1,n)�s

s+d−1∑
α=n+1

ζ T(α, s − α)Y(α,n0).

(17)

Upon using the properties of the fundamental functions X(n, n0) and Y (n, n0), iden-

tity (16) is obtained.

Remark 2.9 Formulas (14) and (15) can be derived from function (6). Indeed, repla-

cing X by x or Y by y in (17), using (16) and employing the properties of X and Y we

obtain the desired results.

3 The main results
With regard to Equation (11), the following conditions are assumed to be valid

throughout the remaining part of the article.

(i) ζ(n, k): N × ℤ ® ℝm × m is p periodic sequence in n, p > d;

(ii) f: N ® ℝm is p a periodic sequence, p > d.

Let x(n) = x(n; �) be the solution of Equation (11) defined for n ≥ 1 such that x(n)

coincides with � on [-d + 2, 2]. The periodicity of the equation implies that x(n + p;

�) is likewise a solution of the equation defined for n + p ≥ d. If this solution coincides

with � in [-d +2, 2], then on the basis of the uniqueness theorem it follows that x(n +

p; �) = x(n; �) for all n ≥ -d + 2 and the solution is periodic. Thus the periodicity con-

dition of the solution is written as x(n + p; �) = �(n) for n Î [-d + 2, 2]. If W is

defined by W� = x(n + p; �), n Î [-d + 2, 2], then it follows that x(n) is periodic if

and only if W� = �, i.e., � is a fixed point of W.

Let z(n) = z(n; �) be the solution of (4) defined for n ≥ 1 such that z(n) = �(n) on [-d

+ 2, 2]. Then by Lemma 2.4,
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x(n;ϕ) = z(n;ϕ) +
n−1∑
k=0

X(n, k + 1)f (k).

Define U by U� = z(n + p; �), n Î [-d + 2, 2]. Then, since

Wϕ = Uϕ +
n+p−1∑
k=0

X(n + p, k + 1)f (k),

the periodicity condition reads as

ϕ = Uϕ +
n+p−1∑
k=0

X(n + p, k + 1)f (k). (18)

Let y(n) = y(n; ψ) be the solution of (7) defined for n ≤ p + d such that y(n) = ψ(n)

on [p, p + d]. Similarly, we conclude that if y(n - p; ψ) coincides with ψ in [p, p + d]

then y(n - p; ψ) = y(n; ψ) and hence the solution is periodic. From Lemma 2.7, we get

ψ(n) = XT(p,n − p)ψ(p) +
p∑

s=p−d

XT(s − 1,n − p)�s

s+d−1∑
α=p+1

ζ T(α, s − α)ψ(α),

for n Î [p, p + d]. Let ϕ̃(s) = ψ(s + p + d) for s Î [-d + 2, 2]. Setting h = k - p - d,

we find out

ϕ̃(s) =XT(p, s + d)ϕ̃(−d)

+
p∑

s=p−d

XT(s − 1, s + d)�s

s−p−1∑
η=−d+1

ζ T(η + p + d, s − η − p − d)ϕ̃(η).

For sake of convenience, we also use the notation

< �(s),(s) >=�T(−d)(0)

+
0∑

s=−d

�s

s−p−1∑
η=−d+1

�T(η)ζ (η + p + d, s − η − p − d)(s),
(19)

for matrix sequences Ψ and F defined on [-d + 2, 2] as long as multiplication is pos-

sible. Note that <Ψ(s), F(s) >could be either a number or a vector or a matrix, depend-

ing on the sizes of Ψ and F.

The following lemma, which is a discrete analogue of [4, Lemma 4], plays a key role

in our later analysis. Its proof is straightforward and can be achieved directly by chan-

ging the order of summations.

Lemma 3.1 For any matrix sequences N, M, L Î ℝm × m, we have

<< L(σ ),M(α, σ )>T ,N(α) >=< L(σ ),< MT(α, σ ),N(α) >> .

By using this notation, the operator U can be written as

Uϕ =< XT(p + s, η + d),ϕ(η) > .
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If we define Ũϕ̃ =< ϕ̃(η) , X(p + h, s + d) >T, then in view of Lemma 3.1 we obtain

< Ũϕ̃,ϕ >=< ϕ̃(η),< XT(p + η, s + d),ϕ(s) >>=< ϕ̃,Uϕ > .

Let Ṽψ = y(n0 − p;ψ) for n0 Î [p, p + d]. That is,

Ṽψ = XT(p,n0 − p)ψ(p) +
p∑

s=p−d

XT(s − 1,n0 − p)�s

s+d−1∑
α=p+1

ζ T(α, s − α)ψ(α),

for n0 Î [p, p + d]. If r is an eigenvalue of Ṽ , then there exists a nonzero solution of

ρϕ̃(s) =XT(p, s + d)ϕ̃(−d)

+
p∑

s=p−d

XT(s − 1, s + d)�s

s−p−1∑
η=−d+1

ζ T(η + p + d, s − η − p − d)ϕ̃(η),

where ϕ̃(s) = ψ(s + p + d) , s Î [-d + 2, 2]. The right side of the above equation is

nothing but Ũϕ̃ . Thus the eigenvalues of the operators Ũ and Ṽ coincide and in

addition, if ψ is an eigenfunction for Ṽ , then ϕ̃ = ψ(s + p + d) is an eigenfunction for

Ũ .

Lemma 3.2 Equations (4) and (7) have the same number of linearly independent per-

iodic solutions of period p > d.

Proof. Consider the equation

ρϕ(s) − Uϕ(s) = F(s). (20)

It is obvious that the fundamental function X can be written as a linear combination

of linearly independent vectors. That is,

X(p + s, ξ + d) =
m∑
k=1

ak(s)bk(ξ) + K1(s, ξ), for s, ξ ∈ [−d + 2, 2] × [−d + 2, 2],

where ak(s) are column and bk(ξ) are row linearly independent vectors, K1 is a matrix

such that |K1| is chosen small. Clearly, we have

XT(p + s, ξ + d) =
m∑
k=1

bTk (ξ)a
T
k (s) + KT

1 (s, ξ).

Then, by using the fact that < bTk (ξ)a
T
k (s) , ϕ(s) >= ak(s) < bTk (ξ) , �(s) >, (20)

becomes

ρϕ(s) −
m∑
k=1

ak(s) < bTk (ξ),ϕ(ξ) > − < KT
1 (s, ξ),ϕ(ξ) >= F(s).

Setting

ν(s) =
1
ρ

m∑
k=1

ak(s) < bTk (ξ),ϕ(ξ) > +
1
ρ
F(s), (21)
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we obtain

ν(s) = ϕ(s) − 1
ρ

< KT
1 (s, ξ),ϕ(ξ) > . (22)

Now consider equation of the form

ν(s) = ϕ(s) − λ < KT
1 (s, ξ),ϕ(ξ) > . (23)

We seek a solution of the form ϕ(s) =
∑∞

i=0 λiϕi(s). Substituting this into (23) and

identifying the coefficients of the powers of l, we obtain

ϕ0(s) = ν(s) and ϕi(s) =< KT
1 (s,α),ϕi−1(α) >, i = 1, 2, . . . .

It follows that |ϕi(s)| ≤ Mi sup
s

|ν(s)| , where M = sup |KT
1 | and i = 1, 2, . . . . There-

fore, the series converges if |l| M <1. We have

ϕ1(s) =< KT
1 (s,α), ν(α) > .

By the induction principle, we obtain

ϕl(s) =< KT
l (s,α), ν(α) >,

where Kl(s, ξ) =< KT
1 (s,α) , Kl-1(a, ξ) >. Indeed, we have

ϕl+1(s) =< KT
1 (s,α),ϕl(α) >=< KT

1 (s,α),< KT
l (α, ξ), ν(ξ) >> .

Using Lemma 3.1, we get

ϕl+1(s) =<< KT
1 (s,α),Kl(α, ξ)>T , ν(ξ) >=< KT

l+1(s, ξ), ν(ξ) > .

It follows that, if |λ| < 1
M then the solution of Equation (23) can be written as

ϕ(s) = ν(s) +
∞∑
l=1

λlϕl(s) = ν(s) +
∞∑
l=1

λl < KT
l (s,α), ν(α) > .

Thus, �(s) = v(s) + <ГT (s, a), v(a) >where �T(s,α) =
∑∞

l=1 λlKT
l (s,α) . Therefore, if

1
|ρ| < 1

M and sup |KT
1 | < |ρ| , we deduce that

ϕ(s) = ν(s)+ < �T(s,α), ν(α) > (24)

is a solution of (22).

On the other hand, consider the equation

ρϕ̃(s) − Ũϕ̃(s) = 0,

which can be written as

ρϕ̃(s) =
m∑
k=1

bTk (s) < ϕ̃(α), ak(α)>T+ < ϕ̃(α),K1(α, s)>T .
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Setting

ν̃(s) =
1
ρ

m∑
k=1

bTk (s) < ϕ̃(α), ak(α)>T , (25)

we obtain

ν̃(s) = ϕ̃(s) − 1
ρ

< ϕ̃(α),K1(α, s)>T . (26)

Following similar analysis, we obtain that the solution of (26) is in the form

ϕ̃(s) = ν̃(s)+ < ν̃(α), �̃(α, s)>T , (27)

where �̃(α, s) =
∑∞

l=1 λlK̃l(α, s) and K̃l(ξ , s) =< KT
l−1(ξ ,α) , K1(a, s) >. However,

using the induction principle and Lemma 3.1, it is easy to verify that K̃l(ξ , s) = Kl(ξ , s)

by which one can see that

�̃(ξ , s) = �(ξ , s). (28)

In view of Equation (21), we have

ρν(s) =
m∑
k=1

ak(s) < bTk (ξ),ϕ(ξ) > +F(s). (29)

But �(s) = v(s)+ <ГT(s, a), n(a) >. So

ρν(s) =
m∑
k=1

ak(s) < bTk (ξ), ν(ξ)+ < �T(ξ ,α), ν(α) >> +F(s),

which can be written as

ρν(s) =
m∑
k=1

ak(s)
(
< bTk (ξ), ν(ξ) > + < bTk (ξ),< �T(ξ ,α), ν(α) >>

)
+ F(s).

Using Lemma 3.1, we get

ρν(s) =
m∑
k=1

ak(s) < bTk (α)+ < bTk (ξ),�(ξ ,α)>
T , ν(α) > +F(s).

Hence

ρν(s) =
m∑
k=1

ak(s) < b̄Tk (α), ν(α) > +F(s), (30)

where b̄Tk (α) = bTk (α)+ < bTk (ξ) , Г(ξ, a) >
T. Setting λk =< b̄Tk (α) , v(a) >, it follows

from (30) that

ρν(s) − F(s) =
m∑
k=1

λkak(s) (31)
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is the form of the solution of (30). Analogously, the solution of

ρν̃(s) =
m∑
k=1

bTk (s) < ν̃(ξ), āk(ξ)>T , (32)

has the form

ρν̃(s) =
m∑
k=1

μkbTk (s), (33)

where μk =< ν̃(ξ) , āk(ξ)>T and āk(ξ) = ak(ξ)+ < �̃T(ξ ,α) , ak(a) >. In view of (30),

(31)

becomes

m∑
k=1

λkak(s) =
m∑
k=1

ak(s) < b̄Tk (α),
1
ρ
F(α) +

1
ρ

m∑
j=1

λjaj(α) > . (34)

Similarly, Equation (32) implies that (33) can be written as

m∑
k=1

μkbTk (s) =
m∑
k=1

bTk (s) <
1
ρ

m∑
j=1

μjbTj (ξ), āk(ξ)>
T . (35)

Taking into account that the vectors {ak} are linearly independent, we obtain from

(34) the algebraic equation

ρλk =
m∑
j=1

γkjλj + fk, (36)

where γkj =< b̄Tk (α) , aj(a) > and fk =< b̄Tk (α) , F(a) >. Similarly, we get from (35) the

algebraic equation

ρμk =
m∑
j=1

γ̃ T
jkμj, (37)

where γ̃ T
jk =< bTj (ξ) , āk(ξ) > . We know that Equation (36) for lk has a solution if

and only if

m∑
k=1

μkfk = 0 (38)

for all the solutions μk of the equation

ρμk =
m∑
j=1

γjkμj. (39)

By employing Lemma 3.1 and relation (28), however, we can obtain that γ̃ T
jk = γjk .

Thus, Equations (37) and (39) coincide.
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Therefore, we conclude that the equations

ρλk =
m∑
j=1

γkjλj (40)

and

ρμk =
m∑
j=1

γjkμj (41)

have the same number of linearly independent solutions. To a solution of (40) corre-

sponds ν(s) = 1
ρ

∑m
k=1 λkak(s) and to this corresponds the solution �(s) = v(s) + < ГT

(s, a), v(a) > for the equation r�(s) - U�(s) = 0, linearly independent solutions corre-

sponding to the linearly independent solutions of Equation (40). Likewisely, a solution

of the equation ρϕ̃(s) − Ũϕ̃(s) = 0 will correspond to a solution of Equation (37)

which coincides with (41), linearly independent solutions corresponding to linearly

independent solutions. It follows from here that the equations r�(s) - U�(s) = 0 and

ρϕ̃(s) − Ũϕ̃(s) = 0 have the same number of independent solutions, which implies in

particular the fact that U and Ũ have the same eigenvalues, hence if r is a multiplier

of the equation, 1
ρ is a multiplier of the adjoint equation. The proof of Lemma 3.2 is

completed.

We are now in a position to state and prove the main result of this article.

Theorem 3.3 A necessary and sufficient condition for the existence of periodic solu-

tions of period p of Equation (11) is that

p−1∑
k=0

yT(k + 1)f (k) = 0, (42)

for all periodic solutions y(n) of period p of the adjoint Equation (7).

NECESSITY. Let x(n) be p periodic solution of (11) and y(n) p periodic solution of

(7). It follows that < y(n), x(n) >is p periodic. In view of (7) and (11), one can conclude

that

� < y(n), x(n) >= yT(n + 1)f (n), 0 ≤ n ≤ p. (43)

Summing (43) over the interval [0, p - 1] results in

p−1∑
k=0

yT(k + 1)f (k) = 0,

which is the same as (42).

SUFFICIENCY. Suppose that (42) is satisfied for all periodic solutions y(n) of period

p of (7). In virtue of relation (38), Lemma 3.2 tells us that

ρϕ(s) − Uϕ(s) = F(s)

has solutions if and only if

< ϕ̃(α), F(α) >= 0 (44)
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for all ϕ̃ satisfying

ρϕ̃(s) − Ũϕ̃(s) = 0.

Therefore, it suffices to show that (44) holds under condition (42). We observe from

(18) that

F(s) = ϕ(s) − Uϕ(s) =
s+p−1∑
k=0

X(s + p, k + 1)f (k).

It follows that

< ϕ̃(α), F(α) > =ϕ̃T(−d)F(0)

+
0∑

s=−d

�s

s−p−1∑
η=−d+1

ϕ̃T(η)ζ (η + d, s − η − p − d)F(s).
(45)

Substituting F into (45) leads to

< ϕ̃(α), F(α) > =ϕ̃T(−d)
p−1∑
k=0

X(p, k + 1)f (k)

+
0∑

s=−d

�sh(s)

⎡
⎣

k+p−1∑
r=0

X(p + k, r + 1)f (r)

⎤
⎦ ,

where h(s) =
∑s−p−1

η=−d+1 ϕ̃(η)ζ (η + d, s − η − p − d). Setting ϕ̃(s) = ψ(s + p + d) and

interchanging the order of summations, we obtain

< ϕ̃(α), F(α) > =ψT(p)
p−1∑
k=0

X(p, k + 1)f (k)

+
p−1∑
r=0

p∑
s=p−d

�s

s+d−1∑
α=p+1

ψT(α)ζ (α, s − α)X(s − 1, k + 1)f (k).

Reordering the terms, we end up with

< ϕ̃(α), F(α) > =
p−1∑
k=0

[
ψT(p)X(p, k + 1)

+
p∑

s=p−d

�s

s+d−1∑
α=p+1

ψT(α)ζ (α, s − α)X(s − 1, k + 1)
]
f (k).

In view of Lemma 2.7 we see that the right hand side of the above equation is noth-

ing but

p−1∑
k=0

yT(k + 1)f (k)

which is clearly zero by our assumption (42). The proof is finished.

Example 1 Equations (4) and (7) can be reduced to the following difference equations

with pure delays
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�x(n) = A(n)x(n) + B(n + 1)x(n − j + 1), n ≥ 1 (46)

and

�y(n) = −AT(n)y(n + 1) − BT(n + j)y(n + j), (47)

where 2 < j is a fixed positive integer number and A, B: N ® ℝm × m are p periodic

sequences, p > j. In virtue of [5, Lemma 2], we find that < y(n), x(n) > = constant,

where

< y(n), x(n) >= yT(n)x(n) +
n+j−1∑
k=n+1

yT(k)B(k)x(k − j). (48)

Of particular cases, we take A(n) = 3, B(n) = 5, j = 3 and f (n) = cos nπ
2 . Then, the

equations

�x(n) = 3x(n) + 5x(n − 2) + cos
nπ
2

, n ≥ 1 (49)

and

�y(n) = −3y(n + 1) − 5y(n + 3) (50)

are mutually adjoint to each other with respect to the function

< y(n), x(n) >= y(n)x(n) + 5
n+2∑

k=n+1

y(k)x(k − 3). (51)

One can easily see that cos nπ
2 is periodic of period 4 so p = 4 >3. It follows that the

condition (42) becomes

3∑
k=0

y(k + 1) cos
nπ
2

= y(1) − y(3),

which is equal to zero for any periodic solution y of Equation (50) under the initial

condition y(1) - y(3) = 0. By the result of Theorem 3:3, we conclude that there exist per-

iodic solutions of period 4 for Equation (49).
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