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Abstract

This article studies the necessary and sufficient conditions for asymptotic stability of
the linear positive systems with bounded time-varying delays on time scales. Using
Lyapunov functions, asymptotic stability conditions for positive systems with constant
delays on time scales are established. The relations between the two types of
systems have been found out, which bridged the gap between their stability. These
results not only unify the existing ones of linear positive continuous- and discrete-
systems but also contain more complicated time scales.
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1 Introduction
In the real world, many physical, biological and medical systems involve variables that

have nonnegative sign, e.g., population levels, absolute temperature, and concentration

of substances. Such systems are referred to as positive systems. A dynamical system is

called positive if any trajectory of the system starting from non-negative initial states

remains forever non-negative for non-negative controls. An overview of state of the art

in positive systems theory is given in the monographs [1-3].

Stability is one of the most important properties of dynamic systems, and a massive

monograph has been concentrated on this topic for positive systems [4-9]. In the last

few years, conditions for stability and robust stability of linear positive discrete-time

systems with delays have been given in [10-19].

Firstly, we introduce some notations. N(N0) denotes the set of positive (nonnegative)

integers, R(R0,+) denotes the set of real (nonnegative) numbers, Rn (Rn
0,+, R

n
+) is n-

dimensional linear vector space over real (nonnegative, positive) numbers with the

maximum modulus norm ∥·∥ given by ∥x∥ = maxi=1,2,···,n |xi|, x ∈ R
n, and R

n×m(Rn×m
0,+ )

is the set of all real (nonnegative) matrices of (n × m)-dimension. For A ∈ R
n×m, we

write A � 0 (� 0,� 0, and ≺ 0) to indicate that all elements of matrix A are nonnega-

tive (non-positive, positive, and negative) and the notation of matrices will be used

throughout this brief: A = [alg] and Ai = [a(i)lg ]·
In [9], Haddad and Chellaboina obtained a necessary and sufficient stability condition

for the following continuous-time positive systems with constant delays:

x′(t) = Ax(t) + Adx(t − τ ), t ≥ 0

x(t) = ϕ(t), t ∈ [−τ , 0],
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where Ad ∈ R
n×n
0,+ , alg ≥ 0 for l ≠ g, τ ≥ 0, and ϕ : [−τ , 0] → R

n
0,+ is the vector value

initial function. They obtained the following result [9, Theorem 3.1]: the above contin-

uous-time positive system is asymptotically stable if and only if there exists a vector

λ ∈ R
n
+ such that

(A + Ad)λ ≺ 0.

Recently, Liu et al. [19] employed a comparison result to establish some necessary

and sufficient conditions for the following discrete-time positive systems with time-

varying delays:

x(t + 1) = A0x(t) +
p∑
i=1

Aix(t − τi(t)), t ∈ N0

x(t) = ϕ(t) � 0, t = −τ , . . . , 0,

where Ai ∈ R
n×n
0,+ for i Î {0, 1, 2,..., p}, 0 ≤ τi(t) ≤ τi with τi ∈ N, τ = max{τi|i = 1, 2,...,

p}, and ϕ : {−τ , . . . , 0} → R
n
0,+ is the vector-valued initial function. They found out

the following similar result [19, Theorem 1]: the above discrete-time positive system is

asymptotically stable if and only if there exists a vector λ ∈ R
n
+ such that( p∑

i=0

Ai − I

)
λ ≺ 0.

Since time scales is a tool for establishing a unified framework for continuous and

discrete analysis. In the present article, we try to unify the necessary and sufficient

conditions for asymptotic stability of linear positive continuous- and discrete-time sys-

tems with delays into one form on time scales.

This article is organized as follows. In Section 2, necessary preliminaries are pre-

sented, and some lemmas are provided. Section 3 proposes the necessary and sufficient

stability criteria for positive systems with time-varying delays on time scales.

2 Notations and preliminaries
In this section, some basic definitions and some fundamental results are introduced,

which are necessary for developing the main results of this article. Let T denote a time

scales, that is, T is a nonempty closed subset of R Denote T0 = {0} ∪ T and

T0,+ = R0,+ ∩ T0. For simplicity, let N = {1, 2, . . . ,n}, P =
{
1, 2, . . . , p

}
, and P0 = {0} ∪ P,

where n and p are positive integers.

Define the forward and backward jump operators σ ,ρ : T → T by

σ (t) = inf{s ∈ T : s > t} andρ(t) = sup{s ∈ T : s < t},

where inf∅ = supT, sup ∅ = infT. A point t ∈ T is called right-scattered, right-dense,

left-scattered, and left-dense if s(t) >t, s(t) = t, r(t) <t, and r(t) = t, respectively. We

put Tk = T if T is unbounded above and T
k = T\ (ρ (maxT) ,maxT] otherwise. The

graininess μ : T → [0,∞) is defined by

μ(t) = σ (t) − t.

Let f be a function defined on T f is said to be (delta) differentiable at t ∈ T
k provided

there exists a constant a such that for any ε > 0, there is a neighborhood U of t (i.e.,
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|f (σ (t)) − f (s) − a(σ (t) − s)| ≤ ε|σ (t) − s|, ∀s ∈ U . for some δ > 0) with

|f (σ (t)) − f (s) − a(σ (t) − s)| ≤ ε|σ (t) − s|, ∀s ∈ U .
In this case, denote fΔ(t) := a. If f is (delta) differentiable for every t ∈ T

k, then f is

said to be (delta) differentiable on T If f is differentiable at t ∈ T
k, then

f�(t) =

⎧⎪⎨
⎪⎩

lim
s→t s∈T

f (t) − f (s)
t − s

, if μ(t) = 0

f (σ (t)) − f (t)
μ(t)

, if μ(t) > 0.
(1)

If FΔ(t) = f(t) for all t ∈ T
k, then F(t) is called an antiderivative of f on T. In this case,

define the delta integral by

t∫
s

f (τ )�τ = F(t) − F(s) for all s, t ∈ T.

Moreover, a function f defined on T is said to be rd-continuous if it is continuous at

every right-dense point in T and its left-sided limit exists at every left-dense point in T.

Definition 1. A function f : T → R is said to be right-increasing at t0 ∈ T\ {maxT}
provided

(i) f(s(t0)) >f(t0) in the case that t0 is right-scattered;

(ii) there is a neighborhood U of t0 such that f(t) >f(t0) for all t Î U with t >t0 in the

case that t0 is right-dense.

If the inequalities for f are reverse in (i) and (ii), f is said to be right-decreasing at t0.

The following result can be directly derived from (1).

Lemma 1. Assume that f : T → R is differentiable at t0 ∈ T\ {maxT}. If fΔ(t0) > 0,

then f is right-increasing at t0; and if fΔ(t0) < 0, then f is right-decreasing at t0.

Consider the following delayed system

x�(t) = (A0 − I)x(t) +
p∑
i=1

Aix(t − τi(t)), t ∈ T0,+

x(t) = ϕ(t) � 0, t ∈ [−τ , 0] ∩ T0

(2)

where Ai ∈ R
n×n for i ∈ P−

0
, τ = max

i∈P
{ supt∈T0,+

τi(t)}, t − τi (t) ∈ T0, τi (t) ∈ T0,+ for

i ∈ P− , i ∈ P− , and ϕ : [−τ , 0] ∩ T0 → R
n
0,+ is the vector value initial function.

Definition 2. System (2) is said to be positive if and only if for any initial condition

ϕ (·) � 0, the corresponding trajectory x (t) � 0 holds for all t ∈ T0,+.

Lemma 2. If Ai � 0 for all i ∈ P−
0
and a(0)jj ≥ 1 for all j ∈ N then system (2) is positive.

Lemma 3. If system (2) is positive then Ai � 0 for all i ∈ P− and a(0)lg ≥ 0 for l ≠ g.

Represent (2) componentwise, i.e.,

x�
l (t) =

n∑
j=1

a(0)lj xj(t) +
p∑
i=1

n∑
j=1

a(i)lj xj(t − τi(t)) − xl(t), (3)

where xl(·) is the lth component of vector x(·).
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Proof of Lemma 2. Assume that Ai � 0 for all i ∈ P−
0
, a(0)jj ≥ 1 for all j ∈ N, and the

initial condition ϕ (·) � 0. Then, we have x�
l (0) ≥ 0 by (3) and therefore, xl(t) ≥ 0 for

t ∈ [−τ , σ (0)
] ∩ T0.

Assume for contradiction that there exists t1 ∈ T0,+ such that xl(t1) < 0. Thus, there

exists t0 ∈ [0, t1) ∩ T0,+ such that xj(t0) ≥ 0, xj(t0 - τi(t0)) ≥ 0 for all j ∈ N, i ∈ P− , and

x�
l (t0) < 0. It follows from (3) that

x�
l (t0) =

n∑
j=1

a(0)lj xj(t0) +
p∑
i=1

n∑
j=1

a(i)lj xj(t0 − τi(t0)) − xl(t0) ≥ 0,

which contradicts to x�
l (t0) < 0. Therefore system (2) is positive. This completes the

proof.

Proof of Lemma 3. Suppose that system (2) is positive. By Definition 2, x (t) � 0 for

all t ∈ T0,+ if ϕ (·) � 0.

Case 1. Assume for contradiction that there exists q ∈ P such that Aq � 0 does not

hold. Thus, there exists an element a(q)lg < 0. Denote �(-τi(0)) = [�i1, �i2,..., �in]
T

and x(0) = [�01, �02,..., �0n]
T. Choose ϕij

(
i ∈ P0, j ∈ N

)
such that �qg > 0 and �ij = 0

for all i ≠ q or j ≠ g. Since q ≠ 0 then x(0) = [�01, �02,..., �0n]
T = [0, 0,..., 0]T. It fol-

lows from (3) that

x�
l (0) =

p∑
i=0

n∑
j=1

a(i)lj ϕij = a(q)lg ϕqg < 0.

Since xl(0) = 0 and x�
l (0) < 0, then there exists t0 ∈ T0,+ such that xl(t0) < 0, which

contradicts the assumption that x (t) � 0 for all t ∈ T0,+.

Case 2. Assume for contradiction that a(0)lg < 0 for l ≠ g. Let �(-τi(0)) = [0, 0,..., 0]T

and x(0) = [0,..., 0, �0g, 0,..., 0]
T where �0g > 0. It follows from (3) that

x�
l (0) =

p∑
i=0

n∑
j=1

a(i)lj ϕij = a(0)lg ϕ0g < 0.

Since xl(0) = 0 and x�
l (0) < 0, then there exists t0 ∈ T0,+ such that xl(t0) < 0, which

contradicts the assumption that x (t) � 0 for all t ∈ T0,+. Therefore, Ai � 0 for all i ∈ P

and a(0)lg ≥ 0 for l ≠ g. This completes the proof.

Lemma 4. Assume that system (2) is positive. Let xa(t) and xb(t) be the trajectories

solutions of (2) under the initial conditions �a(·) and �b(·), respectively. Then

ϕa (·) � ϕb (·) implies that xa (t) � xb (t) for all t ∈ T0,+.

Proof. It is easy to see that x(t) = xb(t) - xa(t) is the solution to system (2) under the

initial condition ϕ (·) = ϕb (·) − ϕa (·) � 0. Since (2) is positive, x (t) � 0 for all t ∈ T0,+.

This completes the proof.

3 Main results
The purpose of this section is to establish asymptotic stability criteria for the positive

system with bounded time-varying delays on time scales. Consider the following

Zhang and Sun Advances in Difference Equations 2012, 2012:56
http://www.advancesindifferenceequations.com/content/2012/1/56

Page 4 of 11



positive system

x�(t) = (A0 − I)x(t) +
p∑
i=1

Aix(t − τi(t)), t ∈ T0,+

x(t) = ϕ(t) � 0, t ∈ [−τ , 0] ∩ T0,

(4)

where Ai ∈ R
n×n
0,+ for i ∈ P, a(0)lg ≥ 0 for l �= g, t − τi (t) ∈ T0 for t ∈ T0,+, and the

delays τi (t) ∈ T0,+ satisfy

0 ≤ αi ≤ τi(t) ≤ τi, t ∈ T0,+ (5)

with constants αi ∈ T0,+, τi ∈ T0,+, and

τ = max{τi|i = 1, 2, . . . , p} (6)

ϕ : [−τ , 0] ∩ T0 → R
n
0,+ is the vector-valued initial function. By Lemma 2, system (4)

is positive.

Now, we consider the following system closely related to (4)

y�(t) = (A0 − I)y(t) +
p∑
i=1

Aiy(t − τi), t ∈ T0,+

y(t) = φ(t) � 0, t ∈ [−τ , 0] ∩ T0,

(7)

where all the system matrices are as in (4), and τi in (7) is the supremum of τi(t) in

(4), as shown in (5), τ is defined by (6), and φ : [−τ , 0] ∩ T0 → R
n
0,+ is an arbitrary

initial condition. Note that the delays in (7) are constant.

Lemma 5. Consider system (7). Suppose that there exists a vector λ ∈ R
n
+ satisfying( p∑

i=0

Ai − I

)
λ ≺ 0 (8)

and that the initial condition is j(·) ≡ l. Then, for any t ∈ (
[−τ , 0] ∩ T0

) ∪ T0,+, the

solution to system (7) satisfies

y�(t) � 0. (9)

Proof. Note that the initial condition j(·) ≡ l. By (7), it yields that

\

y�(0) = (A0 − I)y(0) +
p∑
i=1

Aiy(−τi) =

( p∑
i=0

Ai − I

)
λ. (10)

It follows from y(t) = j(t) ≡ l for all t ∈ [−τ , 0] ∩ T0, (8), and (10) that y� (t) � 0 for

any t ∈ [−τ , 0] ∩ T0.

Now assume for contradiction that there exists t0 ∈ T0,+ such that yΔ(t0) j 0 and

y� (t) � 0 for any t ∈ [−τ , t0] ∩ T0. By Lemma 1, y(t) is right-decreasing for all

t ∈ [−τ , t0] ∩ T0.
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It follows from (7), (8), and y(t) = j(t) ≡ l for t ∈ [−τ , t0] ∩ T0 that

y�(t0) = (A0 − I)y(t0) +
p∑
i=1

Aiy(t0 − τi)

� (A0 − I)y(0) +
p∑
i=1

Aiy(−τ )

� (A0 − I)λ +
p∑
i=1

Aiλ

=

( p∑
i=0

Ai − I

)
λ

≺ 0,

which contradicts the assumption that yΔ(t0) j 0. Therefore, y� (t) � 0 for any

t ∈ (
[−τ , 0] ∩ T0

) ∪ T0,+. This completes the proof.

The next lemma will show that, under certain conditions, the solution to system (4)

is not greater than that to system (7), as stated in the following discussion.

Lemma 6. Suppose that there exists a vector λ ∈ R
n
+ satisfying (8) and the initial con-

ditions for system (4) and (7) are the same, i.e., �(·) ≡ j(·) ≡ l. Then

x(t) � y(t) (11)

for all t ∈ T0,+, where x(t) and y(t) are solutions to (4) and (7), respectively.

Proof. By (4) and (7), it follows that

x�(0) = (A0 − I)x(0) +
p∑
i=1

Aix(−τi(0)) =

( p∑
i=0

Ai − I

)
λ

and

y�(0) = (A0 − I)y(0) +
p∑
i=1

Aiy(−τi) =

( p∑
i=0

Ai − I

)
λ.

Hence xΔ(0) = yΔ(0), which implies x(s(0)) = y(s(0)).
Moreover, there exists t0 ∈ T0,+ such that x(t) = y(t) for all t ∈ [−τ , t0] ∩ T0. By

Lemma 5 and (5), we have x� (t0) � 0, y� (t0) � 0, and

x�(t0) = (A0 − I)x(t0) +
p∑
i=1

Aix(t0 − τi(t0))

� (A0 − I)x(t0) +
p∑
i=1

Aix(t0 − τi)

= (A0 − I)y(t0) +
p∑
i=1

Aiy(t0 − τi)

= y�(t0),

which implies x (σ (t0)) � y (σ (t0)). In the following, we can prove that x (t) � y (t)

for all t ∈ (t0, +∞) ∩ T0,+.
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Assume for contradiction that there exists t2 ∈ (t0, +∞) ∩ T0,+ such that x(t2) j y(t2).

Thus, there exists t1 ∈ [t0, t2) ∩ T0,+ such that x (t) � y (t) for all t ∈ [0, t1] ∩ T0,+ and

xΔ(t1) j yΔ(t1). It follows from (4), (5), (7), and Lemma 5 that

x�(t1) − y�(t1) = (A0 − I)[x(t1) − y(t1)] +
p∑
i=1

Aix(t1 − τi(t1)) −
p∑
i=1

Aiy(t1 − τi)

� (A0 − I)[x(t1) − y(t1)] +
p∑
i=1

Ai[x(t1 − τi) − y(t1 − τi)]

� 0,

which contradicts the assumption xΔ(t1) - y
Δ(t1) j 0. Then (11) holds for all t ∈ T0,+.

This completes the proof.

Consider the system (7) satisfying the assumption y(t) = j(t) ≢0 for all

t ∈ [−τ , 0] ∩ T0.

Lemma 7. Let (7) be a positive system. Then the positive system (7) is asymptotically

stable if and only if there exists a vector λ ∈ R
n
+ such that (8) holds.

Proof. Necessity: By integration, it follows from (7) that

t∫
0

y�(θ)�θ = (A0 − I)

t∫
0

y(θ)�θ +
p∑
i=1

Ai

t∫
0

y(θ − τi)�θ .

Then

y(t) − y(0) = (A0 − I)

t∫
0

y(θ)�θ +
p∑
i=1

Ai

t−τi∫
−τi

y(θ)�θ

= (A0 − I)

t∫
0

y(θ)�θ +
p∑
i=1

Ai

⎡
⎣ t−τi∫

0

y(θ)�θ +

0∫
−τi

y(θ)�θ

⎤
⎦

= (A0 − I)

t∫
0

y(θ)�θ +
p∑
i=1

Ai

t−τi∫
0

y(θ)�θ +
p∑
i=1

Ai

0∫
−τi

y(θ)�θ .

Since the system (7) is asymptotically stable, then y(t) ® 0 for t ® +∞. It follows

from

−y(0) = (A0 − I)

+∞∫
0

y(θ)�θ +
p∑
i=1

Ai

+∞∫
0

y(θ)�θ +
p∑
i=1

Ai

0∫
−τi

y(θ)�θ

=

( p∑
i=0

Ai − I

) +∞∫
0

y(θ)�θ +
p∑
i=1

Ai

0∫
−τi

y(θ)�θ

that

−y(0) −
p∑
i=1

Ai

0∫
−τi

y(θ)�θ =

( p∑
i=0

Ai − I

) +∞∫
0

y(θ)�θ . (12)

From assumption that y(t) ≢ 0 for all t ∈ [−τ , 0] ∩ T0 and (7) is a positive system, we

have the left side of (12) is negative and
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( p∑
i=0

Ai − I

) +∞∫
0

y(θ)�θ ≺ 0. (13)

The condition (13) is equivalent to (�p
i=0Ai − I)λ ≺ 0 for λ =

∫ +∞

0
y(θ)�θ .

Sufficiency: Let us consider the dual system

x�(t) = (A0 − I)Tx(t) +
p∑
i=1

AT
i x(t − τi), t ∈ T0,+, (14)

which is positive and asymptotically stable.

As a Lyapunov function for the dual system (14) we may choose the following func-

tion

V[x(t)] = xT(t)λ +
p∑
i=1

0∫
−τi

xT(t + θ)Aiλ�θ , (15)

which is positive for non-zero x(t) ∈ R
n
0,+ and for positive λ ∈ R

n
+.

From (14) and (15) we have

{V[x(t)]}� = x�T
(t)λ +

p∑
i=1

[xT(t) − xT(t − τi)]Aiλ

= xT(t)(A0 − I)λ +
p∑
i=1

xT(t − τi)Aiλ +
p∑
i=1

[xT(t) − xT(t − τi)]Aiλ

= xT(t)

( p∑
i=0

Ai − I

)
λ.

Hence, the condition (�p
i=0Ai − I)λ ≺ 0 implies {V[x(t)]}Δ ≺ 0 and the positive system

(7) is asymptotically stable. This completes the proof.

Theorem 1. Let (4) be a positive system. Then the positive system (4) is asymptoti-

cally stable if and only if there exists a vector λ ∈ R
n
+ such that (8) holds.

Proof. Sufficiency: Assume that there exists a vector λ ∈ R
n
+ such that (8) holds. By

Lemma 7, system (7) is asymptotically stable.

Define ||φ|| = supt∈[−τ ,0]∩T0
||φ(t)||. Since system (7) is asymptotically stable, for any

given ε > 0, there exists a scalar δ > 0, such that if ∥j∥ <δ, then the corresponding

solution yj(t) to (7) satisfies that ∥yj(t)∥ <ε for all t ∈ T0,+ and limt®+∞ ∥yj(t)∥ = 0.

In particular, choose the initial condition j(·) = al, where a > 0, such that ∥al∥<δ.
Then, the corresponding solution yal(t) must satisfy that ∥yal(t)∥ <ε for all t ∈ T0,+ and

limt®+∞ ∥yal(t)∥ = 0.

For system (4), let the initial condition be �(·) = al. By Lemma 6, the corresponding

solution xal(t) satisfies xαλ (t) � yαλ (t) for all t ∈ T0,+. In addition, by Lemma 4, for

any initial condition ϕ (·) � αλ, the corresponding solution satisfies xϕ (t) � xαλ (t) for

all t ∈ T0,+.

Therefore, for system (4), arbitrary given ε > 0, there exists δ1 = ∥al∥ > 0 such that

∥�∥ <δ1, implies ∥x�(t)∥ ≤ ∥xal(t)∥ ≤ ∥yal(t)∥ <ε for all t ∈ T0,+.
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Furthermore, since ∥x�(t)∥ ≤ ∥ yal(t)∥ for all t ∈ T0,+, limt®+∞ ∥yal(t)∥ = 0 implies

lim
t→+∞ ||xϕ(t)|| = 0

and therefore, system (4) is asymptotically stable.

Necessity: Suppose that system (4) is asymptotically stable for any delays satisfying

(5). Particularly, let τi(t) = τi, then system (7) is necessarily asymptotically stable. It fol-

lows from Lemma 7 that (8) must hold. This completes the proof.

For the continuous-time positive systems with constant delays and discrete-time

positive systems with time-varying delays, [9,19] have established some necessary and

sufficient stability criteria. Theorem 1 can be viewed as an extension to time scales.

Remark 1. In the continuous case: µ(t) ≡ 0 (i.e., T = R). It follows from (1) that the

positive system (4) can be written as:

x′(t) = (A0 − I)x(t) +
p∑
i=1

Aix(t − τi(t)), t ≥ 0

x(t) = ϕ(t) � 0, t ∈ [−τ , 0],

(16)

where 0 ≤ τi(t) ≤ τi, τ = max{τi|i = 1, 2,..., p}, and ϕ : [−τ , 0] → R
n
0,+ is the vector-

valued initial function. Let A0 - I = A, p = 1, A1 = Ad, and τi(t) ≡ τ, then the system

(16) is the same as the continuous-time positive system with constant delays in [9].

Hence, Theorem 1 is the same as that obtained by Haddad and Chellaboina [9, Theo-

rem 3.1] (see Section 1).

Remark 2. In the discrete case: µ(t) ≡ 1 (i.e., T = N0). It also follows from (1) that the

positive system (4) can be written as:

�x(t) = (A0 − I)x(t) +
p∑
i=1

Aix(t − τi(t)), t ∈ N0

x(t) = ϕ(t) � 0, t = −τ , . . . , 0,

where 0 ≤ τi(t) ≤ τi, τ = max{τi|i = 1, 2,..., p}, and ϕ : {−τ , . . . , 0} → R
n
0,+ is the vector-

valued initial function. By Δx(t) = x(t + 1) - x(t), the above system can be rewritten as:

x(t + 1) = A0x(t) +
p∑
i=1

Aix(t − τi(t)), t ∈ N0

x(t) = ϕ(t) � 0, t = −τ , . . . , 0.

(17)

It is evident that system (17) is of the same form as the discrete-time positive system

with time-varying delays in [19]. Hence, Theorem 1 in this special case is the same as

[19, Theorem 1] (see Section 1).

Remark 3. Since system (4) includes delay-independent case (i.e., τi(t) ≡ 0), if positive

system (4) is asymptotically stable, then the matrix
(∑p

i=0 Ai − I
)
in (8) is a Hurwitz

matrix.

Example 1. The positive systems play a key role in understanding many processes in

biological science. To illustrate this, a delay-independent model of glycolysis in yeast

has been constructed. The glycolysis is the name of a cellular process in which glucose

is converted into different carbon compounds in a number of reaction steps. This pro-

cess plays an important role in the metabolism of most organisms, and its function is
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partly to produce energy rich molecules and partly to produce carbon compounds that

can be used for biosynthesis. The glycolysis has been extensively explored in many

organisms and several mathematical models of it have been made. In 2000, a model of

glycolysis has been made by Teusink et al. [20]. In order to make this model suitable

for our system, a few modifications have been done. Such as changing state variables

to constants and changing certain constants into state variables. After these changes

the model contains 13 state variables, x1,..., x13, each representing the concentration of

a carbon compound, except from one, x5, which represents a module of two intercon-

vertable carbon compounds. Since the biological process is nonlinear, the system was

linearized around its steady state.

x′(t) = Ax(t), x(t0) = x0, (18)

where x = (x1,..., x13)
T is the vector of the 13 state variables and

A =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

−472.8 1.416 0 0 0 0 0 0 0 0 0 0 0
408.3 −90.04 487.4 0 0 0 0 0 0 0 0 0 0
0 88.62 −1127 51.52 0 0 0 0 0 0 0 0 0
0 0 639.9 −595.3 308.5 0 0 0 0 0 0 6.238 0
0 0 0 487.5 −787.3 3.361 × 104 0 0 0 0 0 0 0
0 0 0 0 161.4 −1.212 × 106 875.3 0 0 0 0 0 0
0 0 0 0 0 1.179 × 106 −1947 6881 0 0 0 0 0
0 0 0 0 0 0 1072 −9408 722 0 0 0 0
0 0 0 0 0 0 0 2527 −2137 3.938 0 0 0
0 0 0 0 0 0 0 0 1415 −10.25 0 0 0
0 0 0 0 0 0 0 0 0 6.582 −2480 0 7.645
0 0 0 0 8.984 0 0 0 0 0 0 −126.2 0
0 0 0 0 0 0 0 0 0 0 2438 0 −10.24

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

Since A is a Hurwitz matrix and all its eigenvalues lie in the left-half of the complex

plane, see Table 1, the positive system (18) is asymptotically stable. Let

λ = (0.8573, 0.9775, 0.8683, 0.6662, 0.7332, 0.8488, 0.8446, 0.8550, 0.8802, 0.8561, 0.7579, 0.7304, 0.5982)T � 0

then we have

Aλ = 103 × (−0.0062,−0.0099,−0.0758,−0.0611,−0.2282,−8.3188,−0.0077,−0.0079,−0.0523,

−0.0003, −0.4212, −0.0876, −0.0003)T ≺ 0.

By Theorem 1, we can also deduce that (18) is an asymptotically stable positive

system.

Table 1 Eigenvalues of matrix A

A

-1.212856733058425 × 106

-0.010420961874116 × 106

-0.002487523768668 × 106

-0.002022791184840 × 106

-0.001280501517495 × 106

-0.001040020002847 × 106

-0.000474117073543 × 106

-0.000341099069420 × 106

-0.000213407895628 × 106

-0.000126041203210 × 106

-0.000045765211863 × 106

-0.000002716231332 × 106

-0.000006451908612 × 106
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