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Abstract

The purpose of this article is to discuss the existence of pseudo almost periodic
solutions of linear Volterra equation: x(n + 1) = A(n)x(n) +

∑n
s=−∞ F(n, s)x(s) + p(n) ,

n Î Z, by using an exponentially stable of the zero solution, which is equivalent to
the exponential behaviors of the resolvent matrix G(n, m) as n ® ∞ and of some
summability of the kernel.
AMS (MOS) 2000 Subject classifications: 39A11.

1 Introduction
For the difference equations and functional difference equations, the existence of

almost periodic solutions of almost periodic systems has been studied by many

authors. One of the most popular method is to assume the certain stability properties

([1-5]; T Itokazu and Y Hamaya, unpublished work). Recently, [6-8] have shown the

existence of pseudo almost periodic solutions of difference equations, differential equa-

tions, and abstract differential equations. On the other hand, in the case of almost per-

iodic solutions of linear Volterra systems, [3] has shown that if the zero solution of the

linear Volterra equation is uniformly asymptotically stable, then the system has a

unique almost periodic solution. In this article, we shall give some characterizations

for the exponentially asymptotically stable of the zero solution of equation and in

order to obtain the existence theorem for a pseudo almost periodic solutions of linear

Volterra difference equations, we discusse to improve Hamanaka and Hamaya’s result

[4], for Volterra integro differential equations, to theorems for pseudo almost periodic

linear Volterra difference equations.

To be best of author’s observation, no article has been published regarding the inves-

tigation of pseudo almost periodicity of a linear Volterra difference equation with infi-

nite delay. Thus, our results are presents a new originality for Volterra type difference

equations.

Let Rl denotes the l-dimensional Euclidean space, Z is the set of integers, Z+, Z- are

the set of nonnegative and nonpositive integers, respectively, and |x| will denote the

norm of x in Rl. For any interval J ⊂ Z, we denote by BS = BS(J : Rl) the set of all

bounded functions mapping J into Rl and set |j|J = sup{|j(s)| : s Î J} for j Î BS. In

this article, all interval are discrete, e.g., [0, n0] = {0, 1, 2,..., n0}, n0 Î Z+.
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We first introduce an almost periodic function f(n) : Z ® Rl.

Definition 1. f(n) is said to be almost periodic in n (in short, f Î AP (Z)), if for any ε

> 0, there exists a positive number L*(ε) such that any interval of length L*(ε) contains

a τ Î Z for which

|f (n + τ ) − f (n)| ≤ ε (1)

for all n Î Z. Such a number τ in (1) is called an ε-translation number of f(n).

In order to formulate a property of almost periodic functions, which is equivalent to

the above definition, we discuss the concept of the normality of almost periodic func-

tions. Namely, let f(n) be almost periodic in n. Then, for any sequence {h′
k} ⊂ Z , there

exists a subsequence {hk} of {h′
k} and function g(n) such that

f (n + hk) → g(n) (2)

uniformly on Z as k ® ∞. We shall denote by T(f) the function space consisting of

all translates of f, that is, fτ Î T (f), where

fτ (n) = f (n + τ ) τ ∈ Z. (3)

Let H(f) denotes the closure of T(f) in the sense of (3). H(f) is called the hull of f. In

particular, we denote by Ω(f) the set of all limit functions g Î H(f) such that for some

sequence {nk}, nk ® ∞ as k ® ∞ and f(n + nk) ® g(n) uniformly on Z. By (2), if f : Z

® Rl is almost periodic in n, so is a function in Ω(f).

The following concept of asymptotic almost periodicity was introduced by Frechet (cf. [5]).

Definition 2. Let x : Z ⊃ [a, ∞) ® Rl be a bounded function. x(n) is said to be

asymptotically almost periodic if it is a sum of an almost periodic function p(n) and a

function q(n) defined on J* = [a, ∞) ⊂ Z+ which tends to zero as n ® ∞, that is,

x(n) = p(n) + q(n).

x(n) is asymptotically almost periodic if and only if for any sequence {nk} such that

nk ® ∞ as k ® ∞ there exists a subsequence {nkj} for which x(n + nkj) converges uni-

formly on a ≤ n < ∞.

We now set

PAP0(Z) =

{
f ∈ BS(Z) : lim

r→∞
1
2r

r∑
n=−r

|f (n)| = 0

}
.

We next introduce new concept of pseudo almost periodic function.

Definition 3. f(n) is said to be pseudo almost periodic if

f = f1 + f0

where f1 Î AP(Z) and f0 Î PAP0(Z). f1 and f0 are called the almost periodic compo-

nent and ergodic perturbation, respectively, of function f. We denote by PAP(Z) the set

of all such function f.

Example 1. Let

f (n) = sin n +
1

n2 + 1
.

Then, f Î PAP(Z).

Hamaya Advances in Difference Equations 2012, 2012:58
http://www.advancesindifferenceequations.com/content/2012/1/58

Page 2 of 11



2 Existence of Pseudo almost periodic solutions
Set |A| denotes the matrix norm of any l × l matrix A, where A(n) is an l × l matrix of

functions for n Î Z, and let F(n, s) be an l × l matrix of functions for -∞ <s ≤ n < ∞, s

Î Z. p(n) is a bounded function for n Î Z. We consider the equations

x(n + 1) = A(n) x(n) +
n∑
s=0

F(n, s) x (s), n ∈ Z+, (4)

and

x(n + 1) = A(n) x(n) +
n∑

s=−∞
F(n, s) x (s), n ∈ Z. (5)

Moreover, we consider the perturbed system of

x(n + 1) = A(n) x(n) +
n∑
s=0

F(n, s) x (s) + p(n) (6)

such that x(n) = j(n) for n Î [0, n0], and consider the following system of

x(n + 1) = A(n) x(n) +
n∑

s=−∞
F(n, s) x (s) + p(n) (7)

such that x(n) = j(n) for n Î (-∞, n0].

We assume the following conditions throughout this article:

(H1) supn∈Z{|A(n)| +
∑n

s=−∞ |F(n, s)|} =: L < ∞, for some L > 0

and

(H2) For any ε > 0 there exists an integer S := S(ε) > 0 such that
∑n−S

s=−∞ |F(n, s)| < ε

for all n Î Z.

Under the above conditions, given n0 Î Z+ := [0, ∞) (resp. n0 Î Z) and j Î BS ([0,

n0]) (resp. j Î BS((-∞, n0])) there is one and only one function x(n) which satisfies

Equation (4) (resp. Equation (5)) on [n0, ∞) and x(n) = j(n) on [0, n0] (resp. (-∞, n0])

(cf. [2]). The above function x(n) is called a solution of Equation (4) (resp. Equation

(5)) on [n0, ∞) through (n0, j), and is denoted by x(n, n0, j) of Equation (4) (resp. x(n,

n0, j) of Equation (5)).

In addition to (H1) and (H2), we assume the either (H30) or (H3) for Equations (5)

and (7):

(H30) A(n) is an almost periodic in n Î Z and F (n, n + s) is an almost periodic in n

Î Z uniformly for s Î Z - : (-∞, 0], that is, for any ε > 0 and any compact set K ⊂ Z -,

there exists a positive number L(ε, K) such that any interval of length L(ε, K) contains

a τ for which |F(n, n + s) - F (n + τ, n + τ + s)| <ε for all n Î Z and s Î K,

or

(H3) A(n) is pseudo almost periodic and F (n, n + s) is pseudo almost periodic,

that is F(n, n + s) = F1(n, n + s) + F0(n, n + s), where F1(n, n + s) satisfies almost peri-

odicity in (H30) and F0(n, n + s) satisfies limr→∞ 1
2r

∑r
n=−r F0(n, n + s)| = 0 uniformly

for s Î Z -.
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In particular, since (A, F) Î H(A, F) by condition (H30), Equation (5) is one of

limiting equations of Equation (4).

Let G(n, s) < ∞, -∞ <s ≤ n < ∞, be the unique matrix solution of

G(n + 1, s) = A(n)G(n, s) +
n∑
r=s

F(n, r)G(r, s), n ≥ s,

G(s, s) = I,

(8)

where I is the l × l unit matrix and G(n, s) ≡ 0 for n <s. G(n, s) is called the resolvent

matrix of (4).

The solution x(n, 0, j0) of (6) through (0, j0) is expressed by the variation of para-

meters formula as

x(n, 0, φ0) = G(n, 0)φ0 +
n−1∑
s=0

G(n, s + 1)p(s).

Then, we have

x(n + n0, n0, φ) ≤ G(n + n0, n0)φ(n0) +
n−1∑
s=0

G(n + n0, n0 + s + 1)

×
{
n0−1∑
r=0

F(s + n0, r)φ(r) + p(s + n0)

}

= G(n + n0, n0)φ(n0) +
n∑
s=0

G(n + n0, n0 + s + 1)

×
{
n0−1∑
r=0

F(s + n0, r)φ(r) + p(s + n0)

}

for n ≥ 0. The solution x(n, n0, j) of (7) through (n0, j) satisfies the equation

x(n + 1) = A(n)x(n) +
n∑
s=0

F(n, s)x(s)

+
−1∑

s=−∞
F(n, s)φ(s) + p(n), n ≥ n0.

Thus, we have similar the expression

x(n + n0, n0, φ) ≤ G(n + n0, n0)φ(n0) +
n−1∑
s=0

G(n + n0, n0 + s + 1)

×
{

n0−1∑
r=−∞

F(s + n0, r)φ(r) + p(s + n0)

}
, n ≥ 0.

Throughout this article, we employ the following definitions of stability.

Definition 4. The zero solution of Equation (4) (resp. Equation (5)) is said to be

exponentially stable (in short, ExS), if there exists l > 0, δ > 0 and h Î (0, 1) such that

|φ| = |φ|[0,n0] < δ (resp. |φ| = |φ|(−∞,n0] < δ) implies

|x(n, n0, φ)| ≤ λ|φ|ηn−n0 for all n ≥ n0,
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where x(n, n0, j) is a solution of Equation (4) (resp. Equation (5)) through (n0, j).
Definition 5. The zero solution of Equation (4) (resp. Equation (5)) is said to be; (i)

uniformly stable (in short, US), if for any ε > 0 there exists a δ(ε) > 0 such that

|φ|[0,n0] < δ(ε) (resp. |φ|(−∞,n0] < δ(ε)) implies |x(n, n0, φ)| < ε for all n ≥ n0,

where x(n, n0, j) is a solution of Equation (4) (resp. Equation (5)) through (n0, j).
(ii) uniformly asymptotically stable (in short, UAS), if it is US and moreover, if there

is a δ0 > 0 with the property that for any ε > 0 there exists a T (ε) > 0 such that n0 Î

Z and j with |φ|[0,n0] < δ0 (resp. |φ|(−∞,n0] < δ) imply |x(n, n0, j)| <ε for all n ≥ n0 +

T (ε), where x(n, n0, j) is a solution of Equation (4) (resp. Equation (5)) through (n0,

j).
(iii) totally stable (in short, TS), if for any ε > 0 there exists a δ(ε) > 0 such that

|φ|[0,n0] < δ(ε) (resp. |φ|(−∞,n0] < δ(ε)) and that p : [n0, ∞) ® Rl is defined any func-

tion with |p|[n0 ,∞] < δ(ε) implies |x(n, n0, φ)| < ε for all n ≥ n0, where x(n, n0, j) is a
solution of pertubed Equation (6) (resp. Equation (7)) through (n0, j).
By Definitions 4 and 5, it is clear that if the zero solution of Equation (4) (resp.

Equation (5)) is ExS, then it is UAS.

We now consider that the following Lemma 1, which is a relationship between the

zero solution of ExS for Equation (4) and the zero solution of ExS for Equation (5) (cf.

[3]), and moreover the following Theorem 1 is known for the integrodifferential equa-

tion [4], however we shall write this theorem to difference equations and convenience

for the proof of Theorem 2.

Lemma 1. Under the conditions (H1), (H2), and (H3), if the zero solution of Equa-

tion (5) is ExS, then the zero solution of Equation (4) is ExS.

Theorem 1. Suppose that conditions (H1) and (H2) hold. The zero solution of Equa-

tion (4) is ExS, if and only if there are positive constants M and μ Î (0, 1) such that

|G(n, s)| ≤ Mμ(n−s)

and

|e(n, s)| ≤ Mμ(n−s) for all n ≥ s ≥ 0.

(9)

Here, G(n, s) and e(n, s) :=
∑s−1

r=0 |∑n
θ=s G(n, θ + 1)F(n, r)| are called the exponen-

tial decay (in short, ExD).

Proof

We first prove G(n, s) and e(n, s) are ExD. Assume that the zero solution of Equation

(4) is ExS. Let δ be the corresponding constant of exponential stability. Let s be any

fixed nonnegative integer and v be any fixed vector with |v| <δ. Define a sequence

{τjmτ}, m = 1, 2, . . . of functions by

φm =
{
0 for 0 ≤ u ≤ [(

1 − 1
m2

)
s
]

m
s

(
u − (

1 − 1
m2

)
s
)
v for

[(
1 − 1

m2

)
s
] ≤ u ≤ s,

where [w] denotes the greatest integer of the real number w. For any positive integer

m and u ∈ [(
1 − 1

m2

)
s, s

]
, |ms

(
u − (

1 − 1
m2

)
s
)
v| < δ . Hence, jm Î BS([0, s], Bδ) for m

= 1, 2,..., where Bδ = {x Î Rl : |x| < δ}.
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For initial functions such as above jm, Equation (4) can be written in the form

x(n + 1) = A(n)x(n) +
n∑
r=s

F(n, r)x(r) + hm(n),

where hm(n) =
∑s−1

r=0 F(n, r)φm(r) for n ≥ s.

From the variation of parameters formula, the solution xm(n) is given by

xm(n) = G(n, s)φm(s) +
n−1∑
θ=s

G(n, θ + 1)hm(θ) for n ≥ s, (10)

where jm(s) = v for m = 1, 2, . . .

Therefore by assumption of ExS, the corresponding solutions xm(n) = x(n, s, jm)

satisfy

|xm(n)| ≤ λ|φ|η(n−s) for m = 1, 2, . . . (11)

and for all n ≥ s, where l is some positive constant and h Î (0, 1).

We consider the sequence functions {hm}. For θ Î [s, n],

hm(θ) =
s−1∑
u=0

F(θ , u)φm(u)

=
m
s

s−1∑
u=

[
(1− 1

m2 )s
]
(
u −

(
1 − 1

m2

)
s
)
F(θ , u)v

=
1

( s
m)

[s−
s
m2

]∑
u=s

(u − s)F(θ , u)v +
1
m

s−1∑
u=[s− 2

m2 ]

F(θ , u)v.

It is clear that hm(θ) ® 0 for s ≤ θ ≤ n, as m ® ∞. Since

|G(n, θ + 1)hm(θ)| ≤ δ|G(n, θ + 1)|	s−1
u=0 |F(θ , u)| , we see that G(n, θ + 1)hm(θ) con-

verges boundedly to zero on [s, n] as m ® ∞; hence

n∑
θ=s

G(n, θ + 1)hm(θ) → 0 as m → ∞ (12)

by convergence theorem.

For (10), we have

|G(n, s)v| ≤ |xm(n)| + |
n∑

θ=s

G(n, θ + 1)hm(θ)|,

which implies that |G(n, s) v | ≤ l |j|h (n-s) by using (11) and (12).

With such initial functions as jm(s), we have limm®∞ xm(n) = G(n, s)v. The induced

norm of G(n, s) is

|G(n, s)| = sup
|w|≤1

|G(n, s)w|

= sup
|v|≤δ

|G(n, s)δ−1v| ≤ δ−1λ|φ|η(n−s),
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for all vectors v with |v| <δ.

Therefore,

|G(n, s)| ≤ M0η
(n−s) for n ≥ s ≥ 0,

where M0 = lδ -1.

For s ≥ 0 and an initial function j Î BS([0, s], Bδ), the solution x(n) = x(n, s, j) is
dominated by the function lh (n-s) for n ≥ s. If we defined h(n) = x(n) - G(n, s) j(s),
we hold that

|h(n)| ≤ |x(n)| + |G(n, s)||φ(s)|
≤ λη(n−s) + λδ−1η(n−s)δ

= 2λη(n−s)

for n ≥ s.

This along with the variation of parameters formula, implies∣∣∣∣∣
s−1∑
r=0

{
n∑

θ=s

G(n, θ + 1)F(n, r)

}
φ(r)

∣∣∣∣∣ < 2λμ(n−s)

for all j Î BS([0, s], Bδ).

Regarding s and n as fixed for the moment and using the modify of results in [4], we

have

s−1∑
r=0

∣∣∣∣∣
n∑

θ=s

G(n, θ + 1)F(n, r)

∣∣∣∣∣ < 2M1δ
−1λμ(n−s)

for some constant M1 > 0. Since M1 is independent of the choice of s and n, this

holds for all n≥s≥0. If we define M = max{M0, 2M1M0}, then (9) is the result.

Conversely, we assume that there are positive constant μ Î (0, 1) and M such that

(9) is true for μ = h . Let δ = l/2M and h = μ. Then for any s ≥ 0 and initial function

jÎ BS([0, s], Bδ), the variation of parameters formula show that the solutions x(n) = x

(n, s, j) is bounded as follows:

|x(n)| ≤ |G(n, s)||φ(s)| +
s−1∑
r=0

∣∣∣∣∣
n∑

θ=s

G(n, θ + 1)F(n, r)

∣∣∣∣∣ ∣∣φ(r)∣∣
≤ |φ|[0,n0] × (|G(n, s)| + e(n, s))

≤ 2δMμn−s

= λμn−s.

(13)

This proves the converse. q.e.d.

Theorem 2. Suppose that conditions (H1), (H2), and (H3) hold. If the zero solution

of Equation (5) is ExS, then for p Î PAP(Z) the function
∑n

s=−∞ G(n, s + 1)p(s) is a

Z-bounded and unique PAP (Z) solution of (7).

Proof.

From Lemma 1 and Theorem 1, if the zero solution of Equation (5) is ExS, then G(n,

s) satisfies ExD. We can see that supn≥0
∑n

s=−∞ |G(n, s + 1)| < ∞ . Set

u(n) =
n∑

s=−∞
G(n, s + 1)p(s).
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We first prove the Z-boundedness of u(n).

|u|Z =

∣∣∣∣∣
n∑

s=−∞
G(n, s + 1)p(s)

∣∣∣∣∣
≤

n∑
s=−∞

|G(n, s + 1)| |p(s)|

≤ |p|z
n∑

s=−∞
|G(n, s + 1)|.

Using the property of ExD for kernel G(n, s), we have

|u|Z ≤ |p|Z
n∑

s=−∞
Mμ(n−1−s)

≤ |p|Z M
(1 − μ)μ

≤ M
(1 − μ)μ

(|p1|Z + |Po|Z),

where p(n) = p1(n) + p0(n), that p1(n) is almost periodic function and p0(n) is ergodic

perturbation.

By the assumption for G(n, s),

n∑
s=−∞

|G(n, s + 1)| ≤
n∑

s=−∞
Mμ(n−1−s)) ≤ N0,

for all n ≥ s >- ∞, where N0 := M
(1−μ)μ .

We second prove that u(n) satisfies the Equation (7) on Z. Indeed, we have

A(n)u(n) +
n∑

s=−∞
F(n, s)u(n) + p(n)

=
n∑

r=−∞
A(n)G(n, r + 1)p(r) +

n∑
s=−∞

F(n, s)
s∑

r=−∞
G(s, r + 1)p(r) + p(n)

=
n∑

r=−∞
[A(n)G(n, r + 1) +

n∑
s=r

F(n, s)G(s, r + 1)]p(r) + p(n)

=
n−1∑
r=−∞

[A(n)G(n, r + 1) +
n∑
s=r

F(n, s)G(s, r + 1)]p(r) + p(n)

=
n−1∑
r=−∞

G(n + 1, r + 1)p(r) + p(n) =
n∑

r=−∞
G(n + 1, r + 1)p(r)

= u(n + 1)

for all n Î Z+.

We next prove the uniqueness of solution. Assume that Equation (7) has two

bounded solutions x1 and x2. Then z = x1 - x2 is a bounded solution for the linear Vol-

terra Equation (5).

Then, by (13), we have

|z(n)| ≤ 2Mμ(n−s)|φ|Z.
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Since z is bounded, we can take a near infinity and consequently we have z(n) = 0,

thus x1 = x2, which gives the uniqueness property.

We now have a decomposition

u(n) =
n∑

s=−∞
G(n, s + 1)p1(s) +

n∑
s=−∞

G(n, s + 1)p0(s) := u1(n) + u0(n),

since p Î PAP (Z) and p(n) = p1(n) + p0(n), where p1 Î AP (Z) and p0 Î PAP0(Z).

Then, u1 =
∑n

s=−∞ G(n, s + 1)p1(s) is an almost periodic function. Indeed, for any ε >

0, there is lε(ε) > 0 such that, for all r Î Z, there exists τ Î [r, r + lε(ε)] with supnÎZ |

p1(n+τ) - p1(n)| ≤ ε. It follows that supn Î Z|u1(n + τ) - u1(n)| ≤ εM/(1 - μ)μ then u1 is

almost periodic. In order to show that u Î PAP(Z), we need to show that u0 Î PAP0
(Z), that is we suffice to show that

lim
r→∞

1
2r

r∑
n=−r

|u0(n)| = 0. (14)

We have

0 ≤ lim
r→∞

1
2r

r∑
n=−r

|u0(n)|

≤ lim
r→∞

M
2r

r∑
n=−r

∣∣∣∣∣
n∑

s=−∞
μ(n−1−s)

∣∣∣∣∣|p0(s)|
= lim

r→∞
M
2r

r∑
n=−r

1
(1 − μ)μ

|p|Z

≤ lim
r→∞

M
2r

1
(1 − μ)μ

r∑
n=−r

|p|Z .

Since -r ≤ n ≤ r, then 1
(1−μ)μ is bounded. Furthermore, p0 Î PAP0(Z) then (14)

yields.

This completes the proof of Theorem 2. q.e.d.

Remark 1. Theorem 2 is corresponding to linear Volterra integrodifferential equa-

tions with adequate modification [4].

We assume that (H3) is replaced by (H30),

For the nonlinear equation, (T Itokazu and Y Hamaya, unpublished work) has estab-

lished that if the bounded solution u(n) of

x(n + 1) = f (n, x) +
n∑

s=−∞
F(n, s, x(s)) (15)

is totally stable then it is (K, r)-totally stable, and it is also well known that if the

bounded solution u(n) of Equation (15) is (K, r)-totally stable, then it is (K, r)-stable
under disturbances from Ω(f), and we have an almost periodic solution of Equation

(15) (cf. [4]; T Itokazu and Y Hamaya, unpublished work).

Now, for Equation (15), we assume the following conditions;

(H1′) sup n∈Z{|f (n, x(n))| + 	n
s=−∞|F(n, s, x(s))|} =: L′ < ∞, for some L′ > 0,
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(H2’) For any ε > 0 there exists an integer S := S(ε) > 0 such that∑n−S

s=−∞
∣∣F(n, s, x(n))∣∣ < ε for all n Î Z

and

(H3’) f(n, x) is pseudo almost periodic in n uniformly for x Î Rl, and F (n, s, x) is

pseudo almost periodic in n uniformly for x Î any compact set K ⊂ Rl.

Moreover, we have the following conjecture for Equation (15).

Conjecture. Under the assumptions (H1’), (H2’), and (H3’), if the bounded solution u

(n) of Equation (15) is (K, r)-exponential asymptotically stable, then Equation (15) has

a pseudo almost periodic solution.

Author now has not enough time to prove above conjecture.

On the other hand, for our linear equation we have the following results.

Theorem A [3]. Under the assumptions (H1), (H2), and (H30), if the zero solution u

(n) of Equation (5) is UAS, then the Equation (7) has an almost periodic solution

whenever p(n) is almost periodic in n Î Z.

Proof. UAS of u(n) implies UAS in hull solution by Lemma 3 in [3], then one has an

almost periodic solution of Equation (7) by Theorem 3 and Corollary 2 in [3].

3 Example
We consider the following pseudo almost periodic system:

x(n + 1) = A(n)x(n) +
n∑

s=−∞
F(n, s)x(s) + p(n), (16)

equivalently,

x(n + 1) = A(n)x(n) +
0∑

s=−∞
F(n, n + s)x(n + s) + p(n),

where

A(n) =
[ −1 + 3

2cos
2n 1 − 3

2cos n sin n
−1 − 3

2cos n sin n −1 + 3
2sin

2n

]
,

p(n) =

[
cos n

sin n

]
is almost periodic,

and

F(n, n + s) =
{
(cos

√
2n + 1

n2+1 )μ
n−(n+s) 0

0 (sin
√
2n + 1

n2+1 )μ
n−(n+s)

}
.

A(n) is almost periodic and the eigenvalues l1(n) and l2(n) of A(n) are

λ2(n) = −1−√
7i

4
, λ2(n) = −1−√

7i
4

, and in particular the eigenvalues are in the unit

circle.

Then, the zero solution of the system x(n + 1) = A(n)x(n) is an ExS. Moreover, the

zero solution of x(n + 1) = A(n)x(n) +
∑0

s=−∞ F(n, n + s)x(n + s) is an ExS by our

assumptions (cf. [3,4,9]).
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A(n) is almost periodic and thus pseudo almost periodic. F (n, n + s) is a sum of

almost periodic function F1(n, n + s) =
[
cos

√
2n 0

0 sin
√
2n

]
μ−s and

F0(n, n + s) =
[ 1

n2+1 0
0 1

n2+1

]
μ−s is an ergodic perturbation, because

lim
r→∞

1
2r

r∑
n=−r

|F(n, n + s)|

= lim
r→∞

1
2r

r∑
n=−r

μ−s

n2 + 1

= μ−s lim
r→∞

1
2r

r∑
n=−r

1
n2 + 1

≤ μ−s lim
r→∞

1
2r

C0 = 0 uniformly s ∈ Z−,

for some constant C0 > 0. Thus, by Theorem 2, Equation (16) have a pseudo almost

periodic solution x(n).
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