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Abstract

We use the derivative sampling theorem (Hermite interpolations) to compute
eigenvalues of a discontinuous regular Dirac systems with transmission conditions at
the point of discontinuity numerically. We closely follow the analysis derived by
Levitan and Sargsjan (1975) to establish the needed relations. We use recently
derived estimates for the truncation and amplitude errors to compute error bounds.
Numerical examples, illustrations and comparisons with the sinc methods are
exhibited.
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1 Introduction
Let s > 0 and PW2

σ be the Paley-Wiener space of all L2(ℝ)-entire functions of exponen-

tial type type s. Assume that f (t) ∈ PW2
σ ⊂ PW2

2σ
. Then f(t) can be reconstructed via

the sampling series

f (t) =
∞∑

n=−∞

[
f
(nπ

σ

)
S2n(t) + f ′

(nπ
σ

) sin(σ t − nπ)
σ

Sn(t)
]
, (1)

where Sn(t) is the sequences of sinc functions

Sn(t) :=

⎧⎪⎨
⎪⎩

sin(σ t − nπ)
(σ t − nπ)

, t �= nπ

σ
,

1, t =
nπ

σ
.

(2)

Series (1) converges absolutely and uniformly on ℝ (cf. [1-4]). Sometimes, series (1)

is called the derivative sampling theorem. Our task is to use formula (1) to compute

eigenvalues of Dirac systems numerically. This approach is a fully new technique that

uses the recently obtained estimates for the truncation and amplitude errors associated

with (1) (cf. [5]). Both types of errors normally appear in numerical techniques that

use interpolation procedures. In the following we summarize these estimates. The

truncation error associated with (1) is defined to be

Tharwat and Bhrawy Advances in Difference Equations 2012, 2012:59
http://www.advancesindifferenceequations.com/content/2012/1/59

© 2012 Tharwat and Bhrawy; licensee Springer. This is an Open Access article distributed under the terms of the Creative Commons
Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in
any medium, provided the original work is properly cited.

mailto:zahraa26@yahoo.com
http://creativecommons.org/licenses/by/2.0


RN(f )(t) := f (t) − fN(t), N ∈ Z
+, t ∈ R, (3)

where fN(t) is the truncated series

fN(t) =
∑

|n|≤N

[
f
(nπ

σ

)
S2n(t) + f ′

(nπ
σ

) sin(σ t − nπ)
σ

Sn(t)
]
. (4)

It is proved in [5] that if f (t) ∈ PW2
σ and f(t) is sufficiently smooth in the sense that

there exists k Î ℤ+ such that tkf(t) Î L2(ℝ), then, for t Î ℝ, |t| <Nπ/s, we have

|RN(f )(t)| ≤ TN,k,σ (t) :=
ξk,σEk| sin σ t|2√

3(N + 1)k

(
1

(Nπ − σ t)3/2
+

1

(Nπ + σ t)3/2

)

+
ξk,σ (σEk + k Ek−1)| sin σ t|2

σ (N + 1)k

(
1√

Nπ − σ t
+

1√
Nπ + σ t

)
,

(5)

where the constants Ek and ξk,s are given by

Ek :=

√√√√√
∞∫

−∞
|tkf (t)|2dt, ξk,σ :=

σ k+1/2

π k+1
√
1 − 4−k

. (6)

The amplitude error occurs when approximate samples are used instead of the exact

ones, which we can not compute. It is defined to be

A(ε, f )(t) =
∞∑

n=−∞

[{
f
(nπ

σ

)
− f̃

(nπ
σ

)}
S2n(t)

+
{
f ′
(nπ

σ

)
− f̃ ′

(nπ
σ

)} sin(σ t − nπ)
σ

Sn(t)
]
, t ∈ R,

(7)

where f̃
( nπ

σ

)
and f̃ ′ − ( nπ

σ

)
are approximate samples of f

( nπ
σ

)
and f ′ − ( nπ

σ

)
,

respectively. Let us assume that the differences

εn := f
( nπ

σ

)− f̃
( nπ

σ

)
, ε′

n := f ′ ( nπ
σ

)− f̃ ′ − ( nπ
σ

)
, n ∈ Z,are bounded by a positive num-

ber ε, i.e. |εn|, |ε′
n| ≤ ε.If f (t) ∈ PW2

σ satisfies the natural decay conditions

|εn| ≤
∣∣∣f (nπ

σ

)∣∣∣ , ∣∣ε′
n
∣∣ ≤

∣∣∣f ′
(nπ

σ

)∣∣∣ , (8)

∣∣f (t)∣∣ ≤ Mf

|t|�+1 , t ∈ R − {0}, (9)

0 < l ≤ 1, then for 0 < ε ≤ min
{
π/σ , σ /π , 1/

√
e
}
, we have, [5],

||A(ε, f )||∞ ≤ 4e1/4

σ (� + 1)

{√
3e(1 + σ ) + ((π/σ )A +Mf )ρ(ε) + (σ + 2 + log(2))Mf

}
ε log(1/ε), (10)

where

A :=
3σ

π

(
|f (0)| +Mf

(σ

π

)�
)
, ρ(ε) := γ + 10 log(1/ε), (11)

and γ := lim
n→∞

[∑n

k=1

1
k

− log n
]

∼= 0.577216is the Euler-Mascheroni constant.
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The classical [6] sampling theorem of Whittaker, Kotel’nikov and Shannon (WKS)

for f ∈ PW2
σ
is the series representation

f (t) =
∞∑

n=−∞
f
(nπ

σ

)
Sn(t), t ∈ R, (12)

where the convergence is absolute and uniform on ℝ and it is uniform on compact

sets of ℂ (cf. [6-8]). Series (12), which is of Lagrange interpolation type, has been used

to compute eigenvalues of second order eigenvalue problems (see e.g. [9-13]). The use

of (12) in numerical analysis is known as the sinc-method established by Stenger (cf.

[14-16]). In [11,12], the authors applied (12) and the regularized sinc method to com-

pute eigenvalues of Dirac systems with a derivation of the error estimates as given by

[17,18]. The regularized sinc method; a method which is based on (WKS) but applied

to regularized functions. Hence avoiding any (multiple) integration and keeping the

number of terms in the Cardinal series manageable. It has been demonstrated that the

method is capable of delivering higher order estimates of the eigenvalues at a very low

cost. The aim of this article is to investigate the possibilities of using Hermite interpo-

lations rather than Lagrange interpolations, to compute the eigenvalues numerically.

Notice that, due to Paley-Wiener’s theorem [19] f ∈ PW2
σ
if and only if there is g(·)ÎL2

(-s, s) such that

f (t) =
1√
2π

σ∫
−σ

g(x)eixtdx. (13)

Therefore f ′(t) ∈ PW2
σ , i.e, f′(t) also has an expansion of the form (12). However, f′(t)

can be also obtained by term-by-term differentiation formula of (12)

f ′(t) =
∞∑

n=−∞
f
(nπ

σ

)
S′
n(t), (14)

see [[6], p. 52] for convergence. Thus the use of Hermite interpolations will not cost

any additional computational efforts since the samples f
( nπ

σ

)
will be used to compute

both f(t) and f′(t) according to (12) and (14), respectively. We would like to mention that

works in direction of computing eigenvalues with the new method, Hermite interpola-

tion technique, are few (see e.g. [5]). Also articles in computing of eigenvalues with dis-

continuous are few (see [20-22]). However the computing of eigenvalues by Hermite

interpolation technique which has discontinuity conditions, do not exist as for as we

know. The next section contains some preliminary results. The method with error esti-

mates are contained in Section three. The last section involves some illustrative

examples.

2 The eigenvalue problem
In this section we closely follow the analysis derived by [23] to establish the needed

relations (see also [24]). We consider the Dirac system

u′
2(x) − r1(x)u1(x) = λu1(x), u′

1(x) + r2(x)u2(x) = −λu2(x), x ∈ [−1, 0) ∪ (0, 1], (15)

U1(u) := sin αu1(−1) + cos αu2(−1) = 0, (16)
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U2(u) := sin βu1(1) + cos βu2(1) = 0, (17)

and transmission conditions

U3(u) := u1(0−) − δu1(0+) = 0, (18)

U4(u) := u2(0−) − δu2(0+) = 0, (19)

where l Î ℂ; the real valued function r1(·) and r2(·) are continuous in [−1, 0) and (0, 1],

and have finite limits r1(0±) := lim
x→0±

r1(x), r2(0±) := lim
x→0±

r2(x); δ ∈ R,α,β ∈ [0, π)and δ

≠ 0.

Let H be the Hilbert space

H :=
{
u(x) =

(
u1(x)
u2(x)

)
, u1(x), u2(x) ∈ L2(−1, 0) ⊕ L2(0, 1)

}
. (20)

The inner product of H is defined by

〈u(·), v(·)〉H :=

0∫
−1

u�(x)v̄(x)dx + δ2

1∫
0

u�(x)v̄(x)dx, (21)

where ⊤ denotes the matrix transpose,

u(x) =
(
u1(x)
u2(x)

)
, v(x) =

(
v1(x)
v2(x)

)
∈ H, ui(·), vi(·) ∈ L2(−1, 1), i = 1, 2.

Equation (15) can be written as

�(u) := Au′(x) − P(x)u(x) = λu(x), (22)

where

A =
(
0 1
−1 0

)
, P(x) =

(
r1(x) 0
0 r2(x)

)
, u(x) =

(
u1(x)
u2(x)

)
. (23)

For functions u(x), which defined on [−1, 0) ⋃ (0, 1] and has finite limit

u(±0) := lim
x→±0

u(x), by u(1)(x) and u(2)(x) we denote the functions

u(1)(x) =
{
u(x), x ∈ [−1, 0);
u(0−), x = 0

, u(2)(x) =
{
u(x), x ∈ (0, 1]
u(0+), x = 0;

(24)

which are defined on Γ1 := [−1, 0] and Γ2 := 0[1] respectively.

In the following lemma, we will prove that the eigenvalues of the problem (15)-(19)

are real.

Lemma 2.1 The eigenvalues of the problem (15)-(19) are real.

Proof. Assume the contrary that l0 is a nonreal eigenvalue of problem (15)-(19). Let(
u1(x)
u2(x)

)
be a corresponding (non-trivial) eigenfunction. By (15), we have, for x Î [−1, 0)

⋃ (0, 1],

d
dx

{u1(x)ū2(x) − ū1(x)u2(x)} = (λ̄0 − λ0){|u1(x)|2 + |u2(x)|2}.
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Integrating the above equation through [−1, 0) and (0, 1], we obtain

(λ̄0 − λ0)

⎡
⎣ 0∫

−1

(|u1(x)|2 + |u2(x)|2)dx
⎤
⎦ = u1(0−)ū2(0−) − ū1(0−)u2(0−)

− [u1(−1)ū2(−1) − ū1(−1)u2(−1)],

(25)

(λ̄0 − λ0)

⎡
⎣ 1∫

0

(|u1(x)|2 + |u2(x)|2)dx
⎤
⎦ = u1(1)ū2(1) − ū1(1)u2(1)

− [u1(0+)ū2(0+) − ū1(0+)u2(0+)].

(26)

Then from (16), (17) and transmission conditions, we have respectively

u1(−1)ū2(−1) − ū1(−1)u2(−1) = 0,

u1(1)ū2(1) − ū1(1)u2(1) = 0

and

u1(0−)ū2(0−) − ū1(0−)u2(0−) = δ2[u1(0+)ū2(0+) − ū1(0+)u2(0+)].

Since λ0 �= λ̄0, it follows from the last three equations and (25), (26) that

0∫
−1

(|u1(x)|2 + |u2(x)|2)dx + δ2

1∫
0

(|u1(x)|2 + |u2(x)|2)dx = 0. (27)

Then ui(x) = 0, i =1, 2 and this is contradiction. Consequently, l0 must be real.

Lemma 2.2 Let l1 and l2 be two different eigenvalues of the problem (15)-(19). Then

the corresponding eigenfunctions u(x, l1) and v(x, l2) of this problem satisfy the follow-

ing equality

0∫
−1

u�(x, λ1)v(x, λ2) dx + δ2

1∫
0

u�(x, λ1)v(x, λ2) dx = 0. (28)

Proof. By (15) we obtain

d
dx

{u1(x, λ1)v2(x, λ2)−u2(x, λ2)v1(x, λ1)} = (λ2−λ1){u1(x, λ1)v1(x, λ2)+u2(x, λ1)v2(x, λ2)}.

Integrating the above equation through [−1, 0) and (0, 1], and taking into account u

(x, l1) and v(x, l2) satisfy (16)-(19), we obtain (28), where l1≠l2.
Now, we shall construct a special fundamental system of solutions of the Equation

(15) for l not being an eigenvalue. Let us consider the next initial value problem:

u
′
2(x) − r1(x)u1(x) = λu1(x), u

′
1(x) + r2(x)u2(x) = −λu2(x), x ∈ (−1, 0), (29)

u1(−1) = cos α, u2(−1) = − sin α. (30)

By virtue of Theorem 1.1 in [23] this problem has a unique solution

u′
2(x) − r1(x)u1(x) = λu1(x), u′

1(x) + r2(x)u2(x) = −λu2(x), x ∈ (0, 1),which is an
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entire function of l Î ℂ for each fixed x Î [−1, 0]. Similarly, employing the same

method as in proof of Theorem 1.1 in [23], we see that the problem

u′
2(x) − r1(x)u1(x) = λu1(x), u′

1(x) + r2(x)u2(x) = −λu2(x), x ∈ (0, 1), (31)

u1(1) = cos β , u2(1) = − sin β . (32)

has a unique solution u =
(

χ12(x,λ)
χ22(x,λ)

)
which is an entire function of parameter l for

each fixed x Î [0.1].

Now the functions �i2(x, l) and ci1(x, l) are defined in terms of �i1(x, l) and ci2(x,
l), i =1, 2, respectively, as follows: The initial-value problem,

u′
2(x) − r1(x)u1(x) = λu1(x), u′

1(x) + r2(x)u2(x) = −λu2(x), x ∈ (0, 1), (33)

u1(0) =
1
δ
φ11(0, λ), u2(0) =

1
δ
φ21(0, λ), (34)

has unique solution u =
(

φ12(x,λ)
φ22(x,λ)

)
for each l Î ℂ.

Similarly, the following problem also has a unique solution u =
(

χ11(x,λ)
χ21(x,λ)

)
:

u′
2(x) − r1(x)u1(x) = λu1(x), u′

1(x) + r2(x)u2(x) = −λu2(x), x ∈ (−1, 0), (35)

u1(0) = δχ12(0, λ), u2(0) = δχ22(0, λ). (36)

Let us construct two basic solutions of the equation (15) as

φ(·, λ) =
(

φ1(·, λ)
φ2(·, λ)

)
, X (·, λ) =

(X1(·, λ)
X2(·, λ)

)
,

where

φ1(x, λ) =
{

φ11(x, λ), x ∈ [−1, 0)
φ12(x, λ), x ∈ (0, 1]

, φ2(x, λ) =
{

φ21(x, λ), x ∈ [−1, 0)
φ22(x, λ), x ∈ (0, 1]

, (37)

χ1(x, λ) =
{

χ11(x, λ), x ∈ [−1, 0)
χ12(x, λ), x ∈ (0, 1]

, χ2(x, λ) =
{

χ21(x, λ), x ∈ [−1, 0)
χ22(x, λ), x ∈ (0, 1]

, (38)

By virtue of Equations (34) and (36) these solutions satisfy both transmission condi-

tions (18) and (19). These functions are entire in l for all x Î [−1, 0) ⋃ (0, 1].

Let W (�, c)(·, l) denote the Wronskian of �(·, l) and c(·, l) defined in [[25], p. 194],

i.e.,

W(φ, χ)(·, λ) :=

∣∣∣∣φ1(·,λ) φ2(·,λ)
χ1(·,λ) χ2(·,λ)

∣∣∣∣ .
It is obvious that the Wronskian

�i(λ) := W(φ, χ)(x, λ) = φ1i(x, λ)χ2i(x, λ)−φ2i(x, λ)χ1i(x, λ), x ∈ �i, i = 1, 2 (39)

are independent of x Î Γi and are entire functions. Taking into account (34) and

(36), a short calculation gives
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�1(λ) = δ2�2(λ),

for each l Î ℂ.

Corollary 2.3 The zeros of the functions Ω1(l) and Ω2(l) coincide.
Then, we may introduce to the consideration the characteristic function Ω(l) as

�(λ) := �1(λ) = δ2�2(λ). (40)

In the following lemma, we show that all eigenvalues of the problem (15)-(19) are

simple.

Lemma 2.4 All eigenvalues of problem (15)-(19) are just zeros of the function Ω(l).
Moreover, every zero of Ω(l) has multiplicity one.

Proof. Since the functions �1(x, l) and �2(x, l) satisfy the boundary condition (16)

and both transmission conditions (18) and (19), to find the eigenvalues of the (15)-(19)

we have to insert the functions �1(x, l) and �2(x, l) in the boundary condition (17)

and find the roots of this equation.

By (15) we obtain for l, µ Î ℂ, l ≠ μ,

d
dx

{φ1(x, λ)φ2(x, μ)−φ1(x, μ)φ2(x, λ)} = (μ−λ){φ1(x, λ)φ1(x, μ)+φ2(x, λ)φ2(x, μ)}.

Integrating the above equation through [−1, 0) and (0, 1], and taking into account

the initial conditions (30), (34) and (36), we obtain

φ12(1, λ)φ22(1, μ) − φ12(1, μ)φ22(1, λ) =

(μ − λ)

⎛
⎝ 0∫

−1

(φ11(x, λ)φ11(x, μ) + φ21(x, λ)φ21(x, μ)) dx

+δ2

1∫
0

(φ12(x, λ)φ12(x, μ) + φ22(x, λ)φ22(x, μ)) dx

⎞
⎠ .

(41)

Dividing both sides of (41) by (l − µ) and by letting µ ® l, we arrive to the relation

φ22 (1,λ)
∂φ12 (1,λ)

∂λ
− φ12 (1,λ)

∂φ22 (1,λ)

∂λ
= −

⎛
⎝ 0∫

−1

(|φ11 (x, λ)
∣∣2 +

∣∣φ21 (x,λ) |2) dx

+δ2

1∫
0

(|φ12 (x,λ)
∣∣2+∣∣φ22 (x,λ) |2) dx

⎞
⎠ .

(42)

We show that equation

�(λ) = −δ2(sin βφ12(1, λ) + cos βφ22(1, λ)) = 0 (43)

has only simple roots. Assume the converse, i.e., Equation (43) has a double root l*,
say. Then the following two equations hold

sin βφ12(1, λ∗) + cos βφ22(1, λ∗) = 0, (44)

sin β
∂φ12(1,λ∗)

∂λ
+ cos β

∂φ22(1,λ∗)
∂λ

= 0. (45)
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The Equations (44) and (45) imply that

φ22(1, λ∗)
∂φ12(1,λ∗)

∂λ
− φ12(1, λ∗)

∂φ22(1,λ∗)
∂λ

(46)

Combining (46) and (42), with l = l*, we obtain

0∫
−1

(|φ11(x, , λ∗)|2+ |φ21(x, , λ∗)|2) dx+δ2

1∫
0

(|φ12(x, , λ∗)|2+ |φ22(x, , λ∗)|2) dx = 0. (47)

It follows that �1(x, l*)=�2(x, l*)=0, which is impossible. This proves the lemma.

Here {φ(·, λn)}∞n=−∞will be a sequence of eigen-vector-functions of (15)-(19) corre-

sponding to the eigenvalues {λn}∞n=−∞.Since c(·, l) satisfies (17)-(19), then the eigenva-

lues are also determined via

sin αχ11(−1, λ) + cos αχ21(−1,λ) = �(λ). (48)

Therefore {χ(·, λn)}∞n=−∞ is another set of eigen-vector-functions which is related by

{φ(·, λn)}∞n=−∞ with

χ(x, λn) = cnφ(x, λn), x ∈ [−1, 0) ∪ (0, 1], n ∈ Z, (49)

Where cn ≠ 0 are non-zero constants, since all eigenvalues are simple. Since the

eigenvalues are all real, we can take the eigen-vector-functions to be real valued.

Since �(·, l) satisfies (16), then the eigenvalues of the problem (15)-(19) are the zeros

of the function

�(λ) = −δ2(sin βφ12(1, λ) + cos βφ22(1, λ)). (50)

Notice that both �(·, l) and Ω(l) are entire functions of l. Now we shall transform

Equations (15), (30), (34) and (37) into the integral equations (see [25]),

φ11(x, λ) = cos(λ(x + 1) − α) − S−1,1φ11(x, λ) − S̃−1,2φ21 − (x, λ), (51)

φ21(x, λ) = sin(λ(x + 1) − α) + S̃−1,1φ11(x, λ) − S−1,2φ21(x, λ), (52)

φ12(x, λ) =
1
δ
φ11(0−, λ) cos(λx)−1

δ
φ21(0−, λ) sin(λx)−S0,1φ12(x, λ)−S̃0,2φ22(x, λ), (53)

φ22(x, λ) =
1
δ
φ11(0−, λ) sin(λx)+

1
δ
φ21(0−, λ) cos (λx)−+S̃0,1φ12(x, λ)−S0,2φ22(x, λ), (54)

where S−1,i, S̃−1,i, S0,i and S̃0,i, i = 1, 2, are the Volterra integral operators defined

by

S−1,iϕ(x, λ) :=

x∫
−1

sin λ(x − t)ri(t)ϕ(t, λ)dt, S̃−1,iϕ(x, λ) :=

x∫
−1

cosλ(x − t)ri(t)ϕ(t, λ) dt,

S0,iϕ(x, λ) :=

x∫
0

sin λ(x − t)ri(t)ϕ(t, λ)dt, S̃0,iϕ(x, λ) :=

x∫
0

cosλ(x − t)ri(t)ϕ(t, λ) dt.
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For convenience, we define the constants

c1 :=

0∫
−1

[|r1(t)| + |r2(t)|] dt, c2 := c1 exp(c1),

c3 :=

1∫
0

[|r1(t)| + |r2(t)|] dt, c4 := c2 +
2
|δ|(1 + c2).

(55)

Define h−1,i(·, l) and h0,i(·, l), i = 1, 2, to be

h−1,1(x,λ) := S−1,1φ11(x,λ) + S̃−1,2φ21(x,λ),
h−1,2(x,λ) := S̃−1,1φ11(x,λ) + S−1,2φ21(x,λ),

}
(56)

h0,1(x,λ) := S0,1φ12(x,λ) + S̃0,2φ22(x,λ),

h0,2(x,λ) := S̃0,1φ12(x,λ) − S0,2φ22(x,λ).

}
(57)

Lemma 2.5 The functions h−1,1(x, l) and h−1,2(x, l) are entire in l for any fixed x Î
[−1, 0) and satisfy the growth condition

|h−1,1(x, λ)|, |h−1,2(x, λ)| ≤ 2c2e|�λ|(x+1), λ ∈ C. (58)

Proof. Since h−1,1(x, λ) = S−1,1φ11(x, λ) + S̃−1,2φ21(x, λ), then from (51) and (52)

we obtain h−1,1(x, λ) = S−1,1 cos(λ(x+1)−α)+S̃−1,2 sin(λ(x+1)−α)−S−1,1h−1,1−(x, λ)+S̃−1,2h−1,2(x, λ)

Using the inequalities | sin z| ≤ e|�z| and | cos z| ≤ e|�z| for z ∈ C, leads for l Î ℂ to

|h−1,1(x, λ)| ≤ |S−1,1 cos(λ(x + 1) − α)| + |S̃−1,2 sin(λ(x − +1) − α)| + |S−1,1h−1,1(x, λ)|
+ |S̃−1,2h−1,2(x, λ)|

≤ e|�λ|(x+1)
x∫

−1

[|r1(t)||h−1,1(t, λ)| + |r2(t)||h−1,2(t, λ)|] e−|�λ|(t+1) dt

+ 2e|�λ|(x+1)
x∫

−1

[|r1(t)| + |r2(t)|] dt

≤ 2c1e|�λ|(x+1) + e|�λ|(x+1)
x∫

−1

[|r1(t)||h−1,1(t, λ)| + |r2(t)||h−1,2(t, λ)|] e−|�λ|(t+1) dt.

The above inequality can be reduced to

e−|�λ|(x+1)|h−1,1(x, λ)| ≤ 2c1+

x∫
−1

[|r1(t)||h−1,1(t, λ)| + |r2(t)||h−1,2(t, λ)|] e−|�λ|(t+1) dt. (59)

Similarly, we can prove that

e−|�λ|(x+1)|h−1,2(x, λ)| ≤ 2c1+

x∫
−1

[|r1(t)||h−1,1(t, λ)| + |r2(t)||h−1,2(t, λ)|] e−|�λ|(t+1) dt. (60)

Then from (58) and (59) and and Lemma 3.1 of [[25], pp. 204], we obtain (58).

In a similar manner, we will prove the following lemma for h0,1(·, l) and h0,2(·, l).
Lemma 2.6 The functions h0,1(x, l) and h0,2(x, l) are entire in l for any fixed x Î (0,

1] and satisfy the growth condition
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|h0,1(x, λ)|, |h0,2(x, λ)| ≤ 2c3c4e|�λ|(x+1), λ ∈ C. (61)

Proof. Since h0,1(x, λ) = S0,1φ11(x, λ) + S̃0,2φ21(x, λ), then from (53) and (54) we

obtain

h0,1(x, λ) =
1
δ
φ11(0−, λ)S0,1 cos(λx) − 1

δ
φ21(0−, λ)S̃0,1 sin(λx) − S0,1h−1,2(x, λ)

+
1
δ
φ11(0−, λ)S̃0,2 sin(λX) +

1
δ
φ21(0−, λ)S̃0,2 cos(λX) + S̃0,2h−1,2(x, λ).

Then from (51) and (52) and Lemma 2.5, we get

h0,1(x, λ) ≤ 1
|δ| |φ11(0−, λ)||S0,1 cos(λx)| + 1

|δ| |φ21(0−, λ)||S0,1 sin(λx)|

+ |S0,1h−1,2(x, λ)| + 1
|δ| |φ11(0−, λ)||S̃0,2 sin(λx)|

+
1
|δ| |φ21(0−, λ)||S̃0,2 cos(λx)| − +|S̃0,2h−1,2(x, λ)|

≤ 2
(
c2 +

2
|δ|(1 + c2)

)
c3e

|�λ|(x+1) = 2c3c4e|�λ|(x+1).

Similarly, we can prove that

h0,2(x, λ) ≤ 2c3c4e|�λ|(x+1).

3 The numerical scheme
In this section we derive the method of computing eigenvalues of problem (15)-(19)

numerically. The basic idea of the scheme is to split Ω(l) into two parts a known part

K(λ) and an unknown one U(λ). Then we prove that U(λ) has an expansion of the

form (1). We then approximate U(λ) in two stages. First by truncating the sampling

expansion (4) and then by approximating the samples, using standard methods of sol-

ving ordinary differential equations. This produces both a truncation error and an

amplitude error. We apply forms (4) and (7) to derive an estimate of the error of the

technique. We first split Ω(l) into two parts:

�(λ) := K(λ) + U(λ), (62)

where U(λ) is the unknown part involving integral operators

U(λ) := δ2 sin βh0,1(1, λ)−δ2 cos βh0,2(1, λ)−δ sin(λ−β)h−1,1(0−, λ)−δ cos(λ+β)h−1,2(0−, λ), (63)

and K(λ) is the known part

K(λ) := −δ sin(2λ − α + β). (64)

Then, from Lemmas 2.5 and 2.6, we have the following result.

Lemma 3.1 The function U(λ) is entire in l and the following estimate holds

|U(λ)| ≤ Me2|�λ|, (65)

where

M := 4|δ|(c2 + |δ|c3c4). (66)
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Proof. From (63), we have

|U(λ)| ≤ |δ|2| sin β||h0,1(1, λ)| + |δ|2| cos β||h0,2(1, λ)|
+ |δ|| sin(λ − β)||h−1,1(0−, λ)| + |δ|| cos(λ + β)||h−1,2(0−, λ)|.

Using the inequalities | sin λ| ≤ e|�λ| and | cos λ| ≤ e|�λ| for l Î ℂ, and Lemmas 2.5

and 2.6 imply (65).

Let θ Î (0, 1) and m Î ℤ+, m> 1 be fixed. Let Gθ ,m(λ) be the function

Gθ ,m(λ) :=
(
sin θλ

θλ

)m

U(λ), λ ∈ C. (67)

Lemma 3.2 Gθ ,m(λ) is an entire function of l which satisfies the estimate

|Gθ ,m(λ)| ≤ cm0 M
(1 + θ |λ|)m e|�λ|(2+mθ), λ ∈ C. (68)

Moreover, λm−1Gθ ,m(λ) ∈ L2(R) and

Em−1(Gθ ,m) =
√∫∞

−∞ |λm−1Gθm(λ)|2dλ ≤ √
2cm0 Mξ0, (69)

where

ξ0 :=

√
1

θ2m−1(2m − 1)
.

Proof. Since U(λ) is entire, then also Gθ ,m(λ) is entire in l. Combining the estimates∣∣∣∣ sin z
z

∣∣∣∣ ≤ c0
1 + |z| e

|�z|,where c0 ≃ 1.72, cf. [26], and (65), we obtain

|λm−1Gθ ,m(λ)| ≤
(

c0
1 + θ |λ|

)m

e|�z|mθ · M|λ|m−1e2|�λ|

=
cm0 M|λ|m−1

(1 + θ |λ|)m e|�λ|(2+mθ), λ ∈ C.

(70)

Therefore if l Î ℝ we have

|λm−1Gθ ,m(λ)| ≤ cm0 M|λ|m−1

(1 + θ |λ|)m , λ ∈ R, (71)

i.e. λm−1Gθ ,m(λ) ∈ L2(R). Moreover

∞∫
−∞

|λm−1Gθ ,m(λ)|2dλ ≤ c2m0 M2

∞∫
−∞

|λ|2m−2

(1 + θ |λ|)2m dλ = 2c2m0 M2ξ20 . (72)

A direct and important result of Lemma 51 is that Gθ ,m(λ) belongs to the Paley-Wie-

nerz space PW2
σ with s = 1+mθ. Since Gθ ,m(λ) ∈ PW2

σ ⊂ PW2
2σ , then we can recon-

struct the functions Gθ ,m(λ) via the following sampling formula

Gθ ,m(λ) =
∞∑

n=−∞

[
Gθ ,m(

nπ
σ

)S2n(λ) + G ′
θ ,m

(nπ
σ

) sin(σλ − nπ)
σ

Sn(λ)
]
. (73)
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Let N Î ℤ+, N >m and approximate Gθ ,m(λ) by its truncated series Gθ ,m,N(λ), where

Gθ ,m,N(λ) :=
N∑

n=−N

[
Gθ ,m

(nπ
σ

)
S2n(λ) + G ′

θ ,m

(nπ
σ

) sin(σλ − nπ)
σ

Sn(λ)
]
. (74)

Since all eigenvalues are real, then from now on we restrict ourselves to l Î ℝ. Since

λm−1Gθ ,m(λ) ∈ L2(R), the truncation error, cf. (5), is given for

|Gθ ,m(λ) − Gθ ,m,N(λ)| ≤ TN,m−1,σ (λ), (75)

where

TN,m−1,σ (λ) :=
ξm−1,σEm−1| sin σλ|2√

3(N + 1)m−1

(
1

(Nπ − σλ)3/2
+

1

(Nπ + σλ)3/2

)

+
ξm−1,σ (σEm−1 + (m − 1)Em−2)| sin σλ|2

σ (N + 1)m−1

(
1√

Nπ − σλ
+

1√
Nπ + σλ

)
.

(76)

The samples
{
Gθ ,m

(nπ
σ

)}N
n=−N

and
{
G′

θ ,m

(nπ
σ

)}N
n=−N

, in general, are not known

explicitly. So we approximate them by solving numerically 2N + 1 initial value pro-

blems at the nodes
{nπ

σ

}N
n=−N

. Let
{
G̃θ ,m

(nπ
σ

)}N
n=−N

and
{
G̃ ′

θ ,m

(nπ
σ

)}N
n=−N

be the

approximations of the samples of
{
Gθ ,m

(nπ
σ

)}N
n=−N

and
{
G′

θ ,m

(nπ
σ

)}N
n=−N

, respec-

tively. Now we define G̃θ ,m,N(λ), which approximates Gθ ,m,N(λ)

G̃θ ,m,N(λ) :=
N∑

n=−N

[
G̃θ ,m

(nπ
σ

)
S2n(λ) + G̃′

θ ,m

(nπ
σ

) sin(σλ − nπ)
σ

Sn(λ)
]
, N > m. (77)

Using standard methods for solving initial problems, we may assume that for |n| <N,∣∣∣Gθ ,m

(nπ
σ

)
− G̃θ ,m

(nπ
σ

)
| < ε, |G′

θ ,m

(nπ
σ

)
− G̃′

θ ,m

(nπ
σ

)∣∣∣ < ε, (78)

for a sufficiently small ε. From Lemma 3.2 we can see that Gθ ,m(λ) satisfies the con-

dition (9) when m > 1 and therefore whenever 0 < ε ≤ min{π/σ , σ /π , 1/
√
e} we have

|Gθ ,m,N(λ) − G̃θ ,m,N(λ)| ≤ A(ε), λ ∈ R, (79)

where there is a positive constant MGθ ,m for which, cf. (10),

A(ε) :=
2e1/4

σ

{√
3e(1 + σ ) +

(π

σ
A +MGθ ,m

)
ρ(ε) + (σ + 2 + log(2))MGθ ,m

}
ε log(1/ε). (80)

Here

A :=
3σ

π

(
|Gθ ,m(0)| + σ

π
MGθ ,m

)
, ρ(ε) := γ + 10 log(1/ε), � = 1.

In the following we use the technique of [27] to determine enclosure intervals for the

eigenvalues. Let l* be an eigenvalue, that is

�(λ∗) = K(λ∗) +
(
sin θλ∗

θλ∗

)−m

Gθ ,m(λ∗) = 0.
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Then it follows that

K(λ∗) +
(
sin θλ∗

θλ∗

)−m

G̃θ ,m,N(λ∗) =
(
sin θλ∗

θλ∗

)−m

G̃θ ,m,N(λ∗) −
(
sin θλ∗

θλ∗

)−m

Gθ ,m(λ∗)

=

[(
sin θλ∗

θλ∗

)−m

G̃θ ,m,N(λ∗) −
(
sin θλ∗

θλ∗

)−m

Gθ ,m,N(λ∗)

]

+

[(
sin θλ∗

θλ∗

)−m

Gθ ,m,N(λ∗) −
(
sin θλ∗

θλ∗

)−m

Gθ ,m(λ∗)

]

and so∣∣∣∣∣K(λ∗) +
(
sin θλ∗

θλ∗

)−m

G̃θ ,m,N(λ∗)

∣∣∣∣∣ ≤
∣∣∣∣ sin θλ∗

θλ∗

∣∣∣∣
−m

(TN,m−1,σ (λ∗) +A(ε)).

Since K(λ∗) +
(
sin θλ∗

θλ∗

)−m

G̃θ ,m,N(λ∗) is given and,

∣∣∣∣ sin θλ∗

θλ∗

∣∣∣∣
−m

(TN,m−1,σ (λ∗) +A(ε))

has computable upper bound, we can define an enclosure for l*, by solving the follow-

ing system of inequalities

−
∣∣∣∣ sin θλ∗

θλ∗

∣∣∣∣
−m

(TN,m−1,σ (λ∗) +A(ε)) ≤ K(λ∗)

+
(
sin θλ∗

θλ∗

)−m

G̃θ ,m,N(λ∗) ≤
∣∣∣∣ sin θλ∗

θλ∗

∣∣∣∣
−m

(TN,m−1,σ (λ∗) +A(ε)).

(81)

Its solution is an interval containing l*, and over which the graph

K(λ∗) +
(
sin θλ∗

θλ∗

)−m

× G̃θ ,m,N(λ∗) is squeezed between the graphs

−
∣∣∣∣ sin θλ∗

θλ∗

∣∣∣∣
−m

(TN,m−1,σ (λ∗) +A(ε)) (82)

and ∣∣∣∣ sin θλ∗

θλ∗

∣∣∣∣
−m

(TN,m−1,σ (λ∗) +A(ε)). (83)

Using the fact that

G̃θ ,m,N(λ) → Gθ ,m(λ)

uniformly over any compact set, and since l* is a simple root, we obtain for large N

and sufficiently small ε

∂

∂λ

(
K(λ) +

(
sin θλ

θλ

)−m

G̃θ ,m,N(λ)

)
�= 0

in a neighborhood of l*. Hence the graph of K(λ) +
(
sin θλ

θλ

)−m

G̃θ ,m,N(λ) intersects

the graphs −
∣∣∣∣ sin θλ

θλ

∣∣∣∣
−m

(TN,m−1,σ (λ) +A(ε)) and

∣∣∣∣ sin θλ

θλ

∣∣∣∣
−m

(TN,m−1,σ (λ) +A(ε)) at

two points with abscissa a_(l*, N, ε) ≤ a+(l*, N, ε) the interval

Iε,N := [a−(λ∗, N, ε), a+(λ∗, N, ε)]
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and in particular l*ÎIε,N. Summarizing the above discussion, we arrive at the follow-

ing lemma which is similar to that of [27] for Sturm-Liouville problems.

Lemma 3.3 For any eigenvalue l*, we can find N0 Î ℤ+ and sufficiently small ε such

that l*ÎIε,N for N >N0. Moreover

[a−(λ∗, N, ε), a+(λ∗, N, ε)] → {λ∗} as N → ∞ and ε → 0. (84)

Proof. Since all eigenvalues of (15)-(19) are simple, then for large N and sufficiently

small ε we have
∂

∂λ

(
K(λ) +

(
sin θλ

θλ

)−m

G̃θ ,m,N(λ)

)
> 0, in a neighborhood of l*.

Choose N0 such that

K(λ) +
(
sin θλ

θλ

)−m

G̃θ ,m,N0 (λ) = ±
∣∣∣∣ sin θλ

θλ

∣∣∣∣
−m

(TN0,m−1,σ (λ) +A(ε))

has two distinct solutions which we denote by a_(l*,N0,ε) ≤ a+(l*,N0,ε). The decay of

TN,m-1,s (l)®0 as N ® ∞ and A(ε) → 0 as ε ® 0 will ensure the existence of the

solutions a_(l*,N,ε) and a+(l*,N,ε) as N ® ∞ and ε ® 0. For the second point we

recall that G̃θ ,m,N(λ) → Gθ ,m(λ) as N ® ∞ and as ε ® 0. Hence by taking the limit we

obtain

K(a+(λ∗, ∞, 0)) +
(
sin θλ∗

θλ∗

)−m

Gθ ,m(a+(λ∗, ∞, 0)) = 0,

K(a−(λ∗, ∞, 0)) +
(
sin θλ∗

θλ∗

)−m

Gθ ,m(a−(λ∗, ∞, 0)) = 0,

that is Ω(a+)=Ω(a-)=0. This leads us to conclude that a+ = a- = l*, since l* is a sim-

ple root.

Let �̃N(λ) := K(λ) +
(
sin θλ

θλ

)−m

G̃θ ,m,N(λ). Then (75) and (79) imply

∣∣∣�(λ) − �̃N(λ)
∣∣∣ ≤

∣∣∣∣ sin θλ

θλ

∣∣∣∣
−m

(TN,m−1,σ (λ) +A(ε)), |λ| <
Nπ

σ
(85)

and θ is chosen sufficiently small for which |θl| <π. Let l* be an eigenvalue and lN
be its approximation. Thus Ω(l*) = 0 and �̃N(λN) = 0. From (85) we have

|�̃N(λ∗)| ≤
∣∣∣∣ sin θλ∗

θλ∗

∣∣∣∣
−m

(TN,m−1,σ (λ∗) +A(ε)). Now we estimate the error |l*-lN|, for

the eigenvalue l*.
Lemma 3.4 Let l* be an eigenvalue of (15)-(19). For sufficient large N we have the

following estimate

|λ∗ − λN| <

∣∣∣∣ sin θλN

θλN

∣∣∣∣
−m TN,m−1,σ , (λN) +A(ε)

inf
ζ∈Iε,N

|�′(ζ )| . (86)

Proof. Since �(λN) − �̃N(λN) = �(λN) − �(λ∗), then from (85) and after replacing

l by lN we obtain
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|�(λN) − �(λ∗)| ≤
∣∣∣∣ sin θλN

θλN

∣∣∣∣
−m

(TN,m−1,σ (λN) +A(ε)). (87)

Using the mean value theorem yields that for some ζÎJε,N:=[min(l*, lN), max(l*,
lN)],

|(λ∗ − λN)�′(ζ )| ≤
∣∣∣∣ sin θλN

θλN

∣∣∣∣
−m

(TN,m−1,σ (λN) +A(ε)), ζ ∈ Jε,N ⊂ Iε,N. (88)

Since the eigenvalues are simple, then for sufficiently large N inf
ζ∈Iε,N

|�′(ζ )| > 0 and

we get (86).

4 Numerical examples
This section includes two detailed worked examples illustrating the above technique.

By ES and EH we mean the absolute errors associated with the results of the classical

sinc method and our new method (Hermite interpolations) respectively. All examples

are computed in [22] with the classical sinc method. We indicate in these examples

the effect of the amplitude error in the method by determining enclosure intervals for

different values of ε. We also indicate the effect of the parameters m and θ by several

choices. Every example is accompanied with six figures illustrating �(λ), �̃(λ) and the

enclosure curves dominating the zeros. Recall that a±(l) are defined by

a ± (λ) = �N(λ) ±
∣∣∣∣ sin θλ

θλ

∣∣∣∣
−m

(TN,m−1,σ (λ) +A(ε)), |λ| <
Nπ

σ
. (89)

Recall also that the enclosure interval Iε,N:=[a-,a+] is determined by solving

a±(λ) = 0, |λ| <
Nπ

σ
. (90)

Example 1 Consider the system

u′
2(x) − r(x)u1(x) = λu1(x), u′

1(x) + r(x)u2(x) = −λu2(x), x ∈ [−1, 0) ∪ (0, 1], (91)

u1(–1) + u2(–1) = 0, u1(1) + u2(1) = 0, (92)

u1(0−) − 2u1(0+) = 0, u2(0−) − 2u2(0+) = 0. (93)

Here

r1(x) = r2(x) = r(x) =
{
x2, x ∈ [−1, 0)
x, (0, 1],

(94)

α = β =
π

4
and δ = 2. Direct calculations give

K(λ) = −2 sin[2λ] (95)

and

�(λ) = −2 sin
[
5
6
+ 2λ

]
, (96)

Tharwat and Bhrawy Advances in Difference Equations 2012, 2012:59
http://www.advancesindifferenceequations.com/content/2012/1/59

Page 15 of 22



therefore the eigenvalues areλk =
6kπ − 5

12
, k ∈ Z. The following four tables indicate

the application of our technique to this problem and the effect of ε, θ and m (Tables 1,

2, 3and 4).

In the following, the Figures 1and 2illustrate the comparison between Ω(l) and �̃N(λ)

for different values of m and θ.

Figures 3 and 4, for N = 20, m = 6 and θ = 1/7, illustrate the enclosure intervals for

ε = 10−8 and ε = 10−12 respectively.

Also, Figures 5 and 6illustrate the enclosure intervals for ε = 10−8 and ε = 10−12

respectively, but for m = 10, θ =1/5.

Table 1 N = 20, m = 6, and θ = 1/7

lk Sinc lk,N Exact lk Hermite lk,N ES EH

l−2 −3.558259424986099 −3.5582593202564599 −3.5582593202488253 1.047×10−7 7.634×10−12

l−1 −1.9874629152275372 −1.9874629934615633 −1.9874629934659096 7.823×10−8 4.346×10−12

l0 −0.4166665411688605 −0.4166666666666667 −0.41666666665625623 1.255×10−7 1.041×10−11

l1 1.1541296373132959 1.1541296601282299 1.1541296601279385 2.281×10−8 2.913×10−13

l2 2.7249258102486835 2.7249259869231266 2.7249259869365776 1.767×10−7 1.345×10−11

Table 2 N = 20, m = 10 and θ = 1/5

lk Sinc lk,N Exact lk Hermite lk,N ES EH

l−2 −3.558259320291224 −3.5582593202564599 −3.5582593202564596 3.476×10−11 4.441×10−16

l−1 −1.9874629934481942 −1.9874629934615633 −1.9874629934615631 1.3369×10−11 2.220×10−16

l0 −0.416666666672866 −0.4166666666666667 −0.41666666666666635 6.199×10−12 3.331×10−16

l1 1.1541296601306603 1.1541296601282299 1.1541296601282297 2.431×10−12 2.220×10−16

l2 2.724925986925671 2.7249259869231266 2.7249259869231270 2.544×10−12 4.440×10−16

Table 3 The approximation lk,N and the exact solution lk are all inside the interval [a−,
a+] for different values of ε, where N = 20, m = 6, θ = 1/7

lk Exact lk [a−, a+], ε = 10−8 [a−, a+], ε = 10−12 lk,N
l−2 −3.5582593202564599 [−3.753326, −3.387861] [−3.565657, −3.551497] −3.5582593202488253

l−1 −1.9874629934615633 [−2.134039, −1.835158] [−1.991487, −1.983156] −1.9874629934659096

l0 −0.4166666666666667 [−0.562608, −0.277479] [−0.427095, −0.406713] −0.41666666665625623

l1 1.1541296601282299 [1.017775, 1.295214] [1.153811, 1.154454] 1.1541296601279385

l2 2.7249259869231266 [2.561929, 2.895812] [2.711312, 2.738729] 2.7249259869365776

E5(Gθ ,m) = 1.7659 × 106,E4(Gθ ,m) = 278897, � = 1,MGθ ,m = 4563.57

Table 4 For N = 20, m = 10 and θ = 1/5, lk,N and lk are all inside the interval [a−, a+] for
different values of ε

lk Exact lk [a−, a+], ε = 10−8 [a−, a+], ε = 10−12 lk,N
l−2 −3.5582593202564599 [−3.739980, −3.404715] [−3.560364, −3.556152] −3.5582593202564596

l−1 −1.9874629934615633 [−2.080163, −1.899068] [−1.988611, −1.986313] −1.9874629934615631

l0 −0.4166666666666667 [−0.487002, −0.346801] [0.417553, −0.415779] −0.41666666666666635

l1 1.1541296601282299 [1.079274, 1.230862] [1.153170, 1.155090] 1.1541296601282297

l2 2.7249259869231266 [2.614866, 2.845166] [2.723467, 2.726388] 2.7249259869231270

E9(Gθ ,m) = 1.15498 × 109,E8(Gθ ,m) = 2.44207 × 108, � = 1,MGθ ,m = 20378

Tharwat and Bhrawy Advances in Difference Equations 2012, 2012:59
http://www.advancesindifferenceequations.com/content/2012/1/59

Page 16 of 22



-4 -2 0 2 4
-2

-1

0

1

2

Figure 1 Ω(l), �̃N(λ) with N = 20, m = 6 and θ = 1/7.
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Figure 2 Ω(l), �̃N(λ) with N = 20, m = 10 and θ = 1/5.
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Figure 3 a+, Ω(l), a- with N = 20, m = 6, θ = 1/7 and ε = 10−8.
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Figure 4 a+, Ω(l), a− with N = 20, m = 6, θ = 1/7 and ε = 10−12.

Tharwat and Bhrawy Advances in Difference Equations 2012, 2012:59
http://www.advancesindifferenceequations.com/content/2012/1/59

Page 17 of 22



Example 2 In this example we consider the system

u′
2(x) − r(x)u1(x) = λu1(x), u′

1(x) + r(x)u2(x) = −λu2(x), x ∈ [−1, 0) ∪ (0, 1], (97)

√
3u1(−1) + u2(−1) = 0, u1(1) +

√
3u2(1) = 0, (98)

u1(0−) − 3u1(0+) = 0, u2(0−) − 3u2(0+) = 0, (99)

where

r1(x) = r2(x) = r(x) =
{
x, x ∈ [−1, 0)
x2 + 1, (0, 1],

(100)

α =
π

3
,β =

π

6
and δ = 3. Direct calculations give

K(λ) = 3 sin
[π
6

− 2λ
]

(101)

and

�(λ) =
3
2

(
cos

[
5
6
+ 2λ

]
−

√
3 sin

[
5
6
+ 2λ

])
, (102)

therefore the eigenvalues are λk =
(6k + 1)π − 5

12
, k ∈ Z. As in the previous example,

Figures 7, 8, 9, 10, 11and 12illustrate the results of Tables 5, 6, 7and 8. Also, Figures

5and 6illustrate the enclosure intervals for ε = 10−8 and ε = 10−12 respectively, but for

m = 9, θ = 2/11.
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Figure 5 a+, Ω(l), a− with N = 20, m = 10, θ = 1/5 and ε = 10−8.

-4 -2 0 2 4
-2

-1

0

1

2

Figure 6 a+, Ω(l), a− with N = 20, m = 10, θ =1/5 and ε = 10−12.
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Figure 7 Ω(l), �̃N(λ) with N = 20, m = 5 and θ = 2/15.
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Figure 8 Ω(l), �̃N(λ) with N = 20, m = 9 and θ = 2/11.
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Figure 9 a+, Ω(l), a− with N = 20, m = 5, θ = 2/15 and ε = 10−8.
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Figure 10 a+, Ω(l), a− with N = 20, m = 5, θ = 2/15 and ε = 10−12.
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Figure 11 a+, Ω(l), a− with N = 20, m = 9, θ = 2/11 and ε = 10−8.
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Figure 12 a+, Ω(l), a− with N = 20, m = 9, θ = 2/11 and ε = 10−12.

Table 5 N = 20, m = 5, θ = 2/15

lk Sinc lk,N Exact lk Hermite lk,N ES EH

l−2 −3.2964601812375145 −3.2964599324573105 −3.2964599325093795 2.488×10−7 5.207×10−11

l−1 −1.725663818527078 −1.725663605662414 −1.7256636055362218 2.129×10−7 1.262×10−10

l0 −0.15486730070281368 −0.15486727886751722 −0.15486727888681906 2.183×10−8 1.930×10−11

l1 1.4159289890168527 1.4159290479273794 1.4159290479703164 5.891×10−8 4.294×10−11

l2 2.9867250912171013 2.986725374722276 2.9867253745880475 2.835 × 10−7 1.342×10−10

Table 6 N = 20, m =9, θ =2/11

lk Sinc lk,N Exact lk Hermite lk,N ES EH

l−2 −3.2964599325179624 −3.2964599324573105 −3.2964599324573127 6.065 × 10−11 2.220×10−15

l−1 −1.7256636056618686 −1.725663605662414 −1.725663605662413 5.453 × 10−13 8.881×10−16

l0 −0.1548672788373793 −0.15486727886751722 −0.1548672788675186 3.013×10−11 1.388×10−15

l1 1.415929047873631 1.4159290479273794 1.4159290479273827 5.374×10−11 3.331×10−15

l2 2.986725374801227 2.986725374722276 2.9867253747222686 7.895×10−11 7.549×10−15

Table 7 For N = 20, m =5 and θ = 2/15, the approximation lk,N and the exact solution lk
are all inside the interval [a−, a+] for different values of ε

lk Exact lk [a−, a+], ε = 10−5 [a−, a+], ε = 10−10 lk,N
l−2 −3.2964599324573105 [−3.402745, −3.177441] [−3.305475, −3.286114] −3.2964599325093795

l−1 −1.725663605662414 [−1.840530, −1.615062] [−1.749858, −1.702197] −1.7256636055362218

l0 −0.15486727886751722 [−0.250393, −0.067671] [−0.158786, −0.151287] −0.15486727888681906

l1 1.4159290479273794 [1.323736, 1.520703] [1.408023, 1.424863] 1.4159290479703164

l2 2.986725374722276 [2.863300, 3.109311] [2.960260, 3.012514] 2.9867253745880475

E4(Gθ ,m) = 319577,E3(Gθ ,m) = 48315.5, � = 1,MGθ ,m = 4400.77
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