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Abstract

Integral transform methods are widely used to solve the several dynamic equations
with initial values or boundary conditions which are represented by integral
equations. With this purpose, the Sumudu transform is introduced in this article as a
new integral transform on a time scale T to solve a system of dynamic equations.
The Sumudu transform on time scale T has not been presented before. The results
in this article not only can be applied on ordinary differential equations when T = R,
difference equations when T = N0, but also, can be applied for q-difference
equations when T = qN0, where qN0 := {qt : t ∈ N0 for q > 1} or T = qZ := qZ ∪ {0} for
q >1 (which has important applications in quantum theory) and on different types of
time scales like T = hN0, T = N2

0 and T = Tn the space of the harmonic numbers.
Finally, we give some applications to illustrate our main results.
2010 Mathematics Subject Classification. 44A85; 35G15; 44A35.
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1 Introduction
In the literature there are several integral transforms that are widely used in physics,

astronomy as well as in engineering. Watugala [1,2] introduced a new integral trans-

form and named it the Sumudu transform that is defined by the formula

F(u) = S[f (t); u] =
1
u

∞∫
0

e−
t
u f (t)dt, u ∈ (−τ1, τ2), (1:1)

and applied it to find the solution of ordinary differential equations in control engi-

neering problems. It appeared like the modification of the well known Laplace trans-

form L[f(t); u], where

L[f (t); u] =

∞∫
0

e−utf (t)dt. (1:2)

However in [3,4], some fundamental properties of the Sumudu transform were estab-

lished. By looking at the properties of this transform one can notice that the Sumudu

transform has very special and useful properties and it can help with intricate applica-

tions in the sciences and engineering. For example, in [5], the Sumudu transform was

extended to distributions (generalized functions) and some of their properties were

also studied in [6,7]. Recently Kılıçman et al. applied this transform to solve a system
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of differential equations, see [8]. Further in [9], a system of fractional linear differential

equations were solved analytically by using a new method which was named fractional

Sumudu transform. We note that by using the Sumudu transform technique we can

reduce the computational work as compared to the classical methods while still main-

taining the high accuracy of the numerical result. We also note that an interesting fact

about the Sumudu transform is that the original function and its Sumudu transform

have the same Taylor coefficients except for the factor n!. Thus, if f (t) =
∞∑
n=0

antn, then

F(u) =
∞∑
n=0

n!antn; see [10]. Furthermore, Laplace and Sumudu transforms of the Dirac

delta function and the Heaviside function satisfy:

S2[H(x, t)] = £2[δ(x, t)] = 1,

and

S2[δ(x, t)] = £2[H(x, t)] = 1
uv .

In this study, authors’ purpose is to introduce the Sumudu transform on a time scale

and show the applicability of this interesting new transform and its efficiency in solving

the linear system of dynamic equations and integral equations. Assume that T is a time

scale such that sup T = ∞ and fix t0 ∈ T. Let z ∈ R (the set of regressive functions),

then �z ∈ R and e⊖z(t, t0) is well defined. The Laplace transform of the function

f : T → R was defined by

L{f }(z) :=
∞∫

t0

f (t)eσ�z(t, t0)�t (1:3)

for z Î Ω{f}, where Ω{f} consists of all complex numbers z ∈ R for which the impro-

per integral exists, (see [11-15]).

2 Main results
Definition 2.1 [15] The function f : T → R is said to be of exponential type I if there

exist constants M, c >0 such that |f(t)| ≤ Mect. Furthermore, f is said to be of exponen-

tial type II if there exist constants M, c >0 such that |f(t)| ≤ Mec(t, t0).

Definition 2.2 Assume that f : T0 → R is a rd-continuous function, then the

Sumudu transform of f is

S{f }(u) := 1
u

∞∫
t0

f (t)eσ
�1
u
(t, t0)�t (2:1)

for u Î D{f}, where D{f} consists of all complex numbers u ∈ R for which the impro-

per integral exists.

Theorem 2.1 (Linearity) Assume that S{f} and S{g} exist for u Î D{f} and u Î D{g},

respectively, where f and g are rd-continuous functions on T and a and b are con-

stants. Then

S{αf + βg}(u) = αS{f }(u) + βS{g}(u) (2:2)
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for u Î D{f} ∩ D{g}.

Proof. The proof follows directly from Definition 2.2.

We will assume that T is a time scale with bounded graininess, that is, 0 < µ* ≤ µ(t)

≤ µ* for all t ∈ T. Let H denotes the Hilger circle, see [15], given by

H = Ht =
{
z ∈ C : 0 <

∣∣∣∣z + 1
μ(t)

∣∣∣∣ <
1

μ(t)

}
,

Hmin =
{
z ∈ C : 0 <

∣∣∣∣z + 1
μ∗

∣∣∣∣ < 1
μ∗

}
,

Hmax =
{
z ∈ C : 0 <

∣∣∣∣z + 1
μ∗

∣∣∣∣ < 1
μ∗

}
.

It is clear that Hmin ⊂ Ht ⊂ Hmax. To give an appropriate domain for the transform,

which of course is tied to the region of convergence of the integral in (2.1), for any c

>0 define the set

D =
{
z ∈ C : Reμ

(
1
z

)
> Reμ(c) for all t ∈ T

}

=
{
z ∈ C :

1
z

∈ H
c
max and Reμ∗

(
1
z

)
> Reμ∗(c) for all t ∈ T

}

=
{
z ∈ C : �1

z
∈ H and Reμ

(
1
z

)
> Reμ(c) for all t ∈ T

}
,

where H
c
max denotes the complement of the closure of largest Hilger circle corre-

sponding to µ.. Note that if µ* = 0 this set is a right half plane; see [15].

Lemma 2.1 If �1
z

∈ H and Reμ

(
1
z

)
> Reμ(c) for all t ∈ T, then

1∣∣∣1 + μ(t)
z

∣∣∣ ≤ 1 and

(
�1

z
⊕ c
)

∈ H.

Proof. Since �1
z

∈ H then

∣∣∣∣�1
z
+

1
μ(t)

∣∣∣∣ <
1

μ(t)
which implies

1∣∣∣1 + μ(t)
z

∣∣∣ ≤ 1. Also,

since Reμ

(
1
z

)
> Reμ(c) implies

∣∣∣∣1 +
μ(t)
z

∣∣∣∣ > |1 + cμ(t)|, we see

∣∣∣∣
(

�1
z

⊕ c
)
+

1
μ(t)

∣∣∣∣ =
∣∣∣∣∣∣∣∣

1 + cμ(t)

μ(t)
(
1 +

μ(t)
z

)
∣∣∣∣∣∣∣∣
<

1
μ(t)

.

Theorem 2.2 (Domain of the transform). The integral
1
z

∞∫
t0
f (t)eσ

�1
z

(t, t0)�t con-

verges absolutely for z Î D if f(t) is of exponential type II with exponential constant c.

Proof. If �1
z

∈ H, then
1∣∣∣1 + μ(t)

z

∣∣∣ ≤ 1.
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Note that

∣∣∣∣∣∣
1
z

∞∫
t0

f (t)eσ
� 1

z
(t, t0)�t

∣∣∣∣∣∣ ≤ M

∞∫
t0

∣∣∣∣1z ec(t, t0)eσ�1
z
(t, t0)

∣∣∣∣�t

≤ M

∞∫
t0

∣∣∣∣∣
1
z

1 + μ(t)
z

∣∣∣∣∣
∣∣∣∣e�1

z ⊕c
(t, t0)

∣∣∣∣�t

≤ (1 + μ∗)M

∞∫
t0

∣∣∣∣e�1
z ⊕c

(t, t0)

∣∣∣∣�t

= γ

∞∫
t0

exp

⎛
⎝ t∫

t0

log
∣∣(1 + � 1

z ⊕ c
)
μ(s)

∣∣
μ(s)

�s

⎞
⎠�t

= γ

∞∫
t0

⎛
⎝exp

t∫
t0

1
μ(s)

log

∣∣∣∣∣1 + cμ(s)

1 + μ(s)
z

∣∣∣∣∣�s

⎞
⎠�t

≤ γ

∞∫
t0

e−αtdt =
(1 + μ∗)M

α
,

where g = (1 + µ.)M and
α =

log

∣∣∣∣∣∣
1 + cμ∗
1 + μ∗

z

∣∣∣∣∣∣
μ∗

.

The same estimates used in the proof of the proceeding theorem can be used to

show that if f(t) is of exponential type II with constant c and Reμ

(
1
z

)
> Reμ(c), then

lim
t→∞ e�1

z
(t, t0) f (t) = 0.

In the following theorem, we state the relationship between Sumudu transform and

Laplace transform:

Theorem 2.3 Assume that f : T → R is rd-continuous function, then

S{f }(z) = 1
z
L{f }

(
1
z

)
(2:3)

for z Î D{f}, where D{f} consists of all complex numbers z ∈ R for which the impro-

per integrals in (1.3) and (2.1) exist.

Proof. By using the definition of the transform we obtain

L{f }
(
1
z

)
=

∞∫
t0

f (t)eσ
�1

z
(t, t0)�t = z S{f }(z). (2:4)

Theorem 2.4 If T = N0, then

S{f }(z) = 1
z + 1

Z{f }
(
1
z
+ 1
)

(2:5)
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where Z{f} is the Z-transform of f, which is defined by

Z{f }(u) =
∞∑
t=0

f (t)
ut

(2:6)

for those complex values of for which this infinite sum converges.

Proof. The proof follows directly from Theorem 2.3 and the relation

(u + 1) L
{
f
}
(u) = Z

{
f
}
(u + 1) .

Example 2.1 In this example, we find the Sumudu transform of f(t) ≡ 1. From Defi-

nition 2.2 we have

S{1}(u) = 1
u

∞∫
t0

eσ
�1
u
(t, t0)�t

=
1
u

∞∫
t0

[
μ(t)e�

�1
u
(t, t0) + e�1

u
(t, t0)

]
�t

=
1
u

∞∫
t0

[
μ(t) � 1

u
e� 1

u
(t, t0) + e� 1

u
(t, t0)

]
�t

=
1
u

∞∫
t0

[
1 + μ(t) � 1

u

]
e�1

u
(t, t0)�t

∞∫
t0

=
1
u

∞∫
t0

[
1 +

μ(t)(− 1
u )

1 + (1u )μ(t)

]
e�1

u
(t, t0)�t

= −
∞∫

t0

[
(− 1

u )

1 + (1u )μ(t)

]
e�1

u
(t, t0)�t

=

∞∫
t0

(
�1
u

)
e�1

u
(t, t0)�t = −e� 1

u
(t, t0)

∣∣∣∣∣∣
∞

t0

= 1.

Therefore, we get

S{1} (u) = 1. (2:7)

Example 2.2 In particular, S{ea(t, t0)}(u) is given by

S{eα(t, t0)}(u) = 1
1 − αu

. (2:8)

For,

S{eα(t, t0)}(u) = 1
u
L{eα(t, t0)}

(
1
u

)
=
1
u

(
1

1
u − α

)
=

1
1 − αu

.

From the above example, we have

S{coshα(t, t0)}(u) = 1
1 − α2u2

,
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S{sinhα(t, t0)}(u) = αu
1 − α2u2

,

S{cosα(t, t0)}(u) = 1
1 − α2u2

,

and

S{sinα(t, t0)}(u) = αu
1 − α2u2

.

Example 2.3 In the following, we make use of (2.5) and (2.6) to find S{at}(u) where

t ∈ T = N0. In fact,

S{αt}(u) = 1
u + 1

∞∑
t=t0

(
α

1 + 1
u

)t

=
1

1 + (1 − α)u
, |α| ≤

∣∣∣∣1 +
1
u

∣∣∣∣ .
The following results are derived using integration by parts.

Theorem 2.5 Assume that f : T → C is of exponential type II such that fΔ is a rd-

continuous function and lim
t→∞ e�1

z
(t, t0) f (t) = 0, then

S{f�}(u) = S{f }(u) − f (t0)
u

. (2:9)

Proof. Integration by parts yields

S{f�}(u) = 1
u

∞∫
t0

f�(t)eσ
� 1
u
(t, t0)�t

=
1
u

[
f (t)e�1

u
(t, t0)

]∞

t0

+
1
u2

∞∫
t0

f (t)eσ
�1
u
(t, t0)�t

=
S{f }(u) − f (t0)

u
.

Remark 2.1 Similarly,

S{f��}(u) = 1
u2

S{f }(u) − 1
u2

f (t0) − 1
u
f�(t0).

More generally, we have

S{f�n}(u) = 1
un

S{f }(u) −
n−1∑
k=0

1
un−k

f�k
(t0).

This is because from Theorem 2.5, we have

S{f�n+1}(u) = S{(f�n
)�}(u) = S{f�n}(u) − f�n

(t0)
u

=
1
u

[(
1
un

S{f }(u) −
n−1∑
k=0

1
un−k

f�k
(t0)

)
− f�n

(t0)

]

=
1

un+1
S{f }(u) −

n∑
k=0

1
un−k+1

f�k
(t0).
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Theorem 2.6 Assume h : T → C is a rd-continuous function. If

H(t) :=

t∫
t0

h(τ )�τ (2:10)

for t ∈ T, then

S{H}(u) = u S{h}(u) (2:11)

for those regressive u ∈ C − {0} satisfying

lim
t→∞{H(t)e� 1

u
(t, t0)} = 0. (2:12)

Proof. Integrating by parts we have

S{H}(u) = 1
u

∞∫
t0

eσ
�1
u
(t, t0)H(t)�t

=

∞∫
t0

(
�1
u

)
eσ
�1
u
(t, t0)H(t)�t

=
[
e�1

u
(t, t0)H(t)

]t→∞

t0

+

∞∫
t0

eσ
�1
u
(t, t0)H�(t)�t

= −H(t0) +

∞∫
t0

eσ
�1
u
(t, t0)h(t)�t

= u S {h} (u) .

Remark 2.2 One can get the result in (2.11) from (2.3) and the relation

L{H(t)}(u) = 1
u
L{h(t)}(u).

Remark 2.3 From (2.11) we have

S {t} (u) = u,

S{t2} = u2 + S{σ (t)} (u) .

Theorem 2.7 Assume f : T → C is a rd-continuous function and L{f(t)}(u) = FL(u).

Then

L{eσ�α(t, t0)f (t)}(u) = FL(u ⊕ α). (2:13)

Proof. Since

eσ�α(t, t0)e
σ
�u(t, t0) = eσ�(u⊕α)(t, t0)
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and L{f(t)}(u) = FL(u), then

L{eσ�α(t, t0)f (t)}(u) =
∞∫

t0

eσ�u(t, t0)(e
σ
�α(t, t0)f (t))�t

=

∞∫
t0

eσ�(u⊕α)(t, t0)f (t)�t

= FL(u ⊕ α).

From (2.3) and (2.13) we have the following result.

Theorem 2.8 Assume f : T → C is a rd-continuous function and S{f(t)}(u) = FS(u).

Then

S{eσ�α(t, t0)f (t)}(u) =
1
u
FL

(
1
u

⊕ α

)
=
1
u

1

(1u ⊕ α)
FS

(
1

(1u ⊕ α)

)
. (2:14)

In [15], the convolution of two functions f, g is defined by

(f ∗ g)(t) =

t∫
t0

f̂ (t, σ (s))g(s)�s for t ∈ T0,

where f̂ is the shift of f and

L
{
f ∗ g

}
(u) = L{f } (u) L{g} (u) .

Remark 2.4 When T = R, then

(f ∗ g)(t) =

t∫
t0

f (t − s)g(s)ds

which coincides with the classical definition.

In the following, we present the relation between the Sumudu transform of the con-

volution of two functions on a time scale T and the product of Sumudu transform of f

and g.

Theorem 2.9 Assume that f, g are regulated functions on T, then

S
{
f ∗ g

}
(u) = u S

{
f
}
(u) S

{
g
}
(u) .

Proof. Since

S{f ∗ g}(u) = 1
u
L{f ∗ g}

(
1
u

)
=
1
u
L{f }

(
1
u

)
L{g}

(
1
u

)

= u
(
1
u
L{f }

(
1
u

))(
1
u
L{g}

(
1
u

))
= u S

{
f
}
(u) S

{
g
}
(u) .

3 Applications
I. To find the solution of a homogeneous dynamic equation with constant coefficients

in the form
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n∑
k=0

aky�
k
= 0.

Applying Sumudu transform we get

a0S{y}(u) +
n∑

k=1

ak

[
1
uk

S{y}(u) − 1
uk

y(0) − 1
uk−1

y�(0) − · · · − 1
u
y�

k−1
(0)
]
= 0,

or, (
n∑

k=0

ak
uk

)
S{y}(u) =

n∑
k=1

ak

k−1∑
i=0

y�
i
(0)

uk−i
= ψ ϕ(0), (3:1)

where

ψ =
( 1
u

1
u2 . .

1
un
)
⎛
⎜⎜⎜⎜⎜⎜⎝

a1 a2 · · · an
a2 a3 · · an 0
a3 a4 · · 0 ·
· · · · · ·
· an 0 · · ·
an 0 · · · 0

⎞
⎟⎟⎟⎟⎟⎟⎠

ϕ(0) =
(
y(0)y�(0) . . . y�

n−1
(0)
)T

Example 3.1 Consider the following dynamic equation

y��(t) − y�(t) − 6y(t) = 0, y(0) = 1, y�(0) = −7, (3:2)

then a0 = −6, a1 = −1, a2 = 1. Consequently from (3.1) we have(
−6 − 1

u
+

1
u2

)
S{y}(u) = ( 1u 1

u2
) (−1 1

1 0

)(
1

−7

)
;

hence,

S{y}(u) = − 1
1 − 3u

+
2

1 + 2u
.

Therefore,

y (t) = −e3 (t, 0) + 2e−2 (t, 0) . (3:3)

Remarks

(1) When T = R the Equation (3.2) becomes

y′′ (t) − y′(t) − 6y(t) = 0, y(0) = 1, y′(0) = −7

and then from (3.3) its solution is

y (t) = −e3t + 2e−2t.

(2) When T = Z the Equation (3.2) becomes as a difference equation

��y (t) − �y (t) − 6y (t) = 0, y (0) = 1,�y (0) = −7
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and from (3.3) it has a solution

y (t) = −(4)t + 2(−1)t, t ∈ Z.

(3) When T = qN0 ∪ {0} the Equation (3.2) becomes

y�q�q(t) − y�q(t) − 6y(t) = 0, y(0) = 1, y� q(0) = −7

where y�q(t) =
y(qt) − y(t)
(q − 1)t

, t ≥ 1 Then from (3.3), we have

y(1) = −6, y(t) = −
∏

s∈[1,t)

[1 + 3(q − 1)s] + 2
∏

s∈[1,t)

[1 − 2(q − 1)s], t > 1.

II. To find the solution of a system of dynamic equations with constant coefficients

in the form

P (D)Y = F,

where,

P(D) =

⎡
⎢⎢⎢⎢⎢⎣

P11(D) . . . P1n(D)

·
·
·

·
·
·

Pn1(D) . . . Pnn(D)

⎤
⎥⎥⎥⎥⎥⎦ ,Y =

⎛
⎜⎜⎜⎜⎝
y1
·
·
·
yn

⎞
⎟⎟⎟⎟⎠ , F =

⎛
⎜⎜⎜⎜⎝
f1
·
·
·
fn

⎞
⎟⎟⎟⎟⎠

Pij(D) =
ni∑
k=0

aikDk, Dky = y�
k
.

Analog to (3.1), we have

S{P(D)Y}(u) = (S{Pij(D)yj}(u)) = S{F}(u).

Since

S{Pij(D)yj}(u) = ai0S{yj}(u)+
ni∑
k=1

aik

[
1
uk

S{yj}(u) − 1
uk

yj(0) − 1
uk−1

y�j (0) − · · · − 1
u
y�

k−1

j (0)
]

=

(
ni∑
k=0

aik
uk

)
S{yj}(u) −

ni∑
k=1

aik
k−1∑
�=0

y�
�

j (0)

uk−�

and

ni∑
k=1

aik
k−1∑
�=0

y�
�

j (0)

uk−�
=

⎛
⎜⎜⎜⎜⎜⎜⎝

1
u
1
u2

·
·
·
1
uni

⎞
⎟⎟⎟⎟⎟⎟⎠

T ⎛
⎜⎜⎜⎜⎜⎜⎝

ai1 ai2 · · · aini
ai2 ai3 · · aini 0
ai3 ai4 · · 0 ·
· · · · · ·
· aini 0 · · ·

aini 0 · · · 0

⎞
⎟⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎜⎝

yj(0)
y�j (0)

·
·
·

y�
ni−1

j (0)

⎞
⎟⎟⎟⎟⎟⎟⎠

= �ijj(0),

j(0) =
(
yj(0)y�j (0) . . . y�

n−1

j (0)
)T

,

Agwa et al. Advances in Difference Equations 2012, 2012:60
http://www.advancesindifferenceequations.com/content/2012/1/60

Page 10 of 14



then,[(
ni∑
k=0

aik
uk

)
S{yj}(u)

]
=

[
ni∑
k=1

aik

k−1∑
�=0

y�
�

j (0)

uk−�

]
+ S{F}(u)

i.e., (
P
(
1
u

))
n×n

(S{Y}(u))n×1 = �n×m((0))m×1 + (S{F}(u))n×1 (3:4)

where, Ψ is n × m matrix, m =
n∑
j=1

dj, dj = max
1≤i≤n

{deg Pij(D)}. Consequently,

S{Y} =
[
P
(
1
u

)]−1 [
�(0) + S{F}(u)] . (3:5)

Example 3.2 To solve the following system of two dynamic equations

− x�� + 3y� + 2x = 2e3(t, 0), x(0) = 1, x�(0) = 5,

y�� − 4x� + 3y = −9cos2(t, 0), y(0) = 2, y�(0) = 3,

we have,

P
(
1
u

)
=

⎡
⎢⎣2 − 1

u2
3
u

−4
u

3 + 1
u2

⎤
⎥⎦ , S{Y} = S

{[
x
y

]}
,

(0) =

⎡
⎢⎢⎣

x(0)
x�(0)
y(0)
y�(0)

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣
1
5
2
3

⎤
⎥⎥⎦ ,

�11 =
[ 1
u

1
u2
] [ 0 −1

−1 0

]
=
[−1
u2

−1
u

]
= −�22

�12 =
[ 1
u

1
u2
] [3 0

0 0

]

�21 =
[ 1
u

1
u2
] [−4 0

0 0

]

� =
[ −1

u2
−1
u

3
u 0

−4
u 0 1

u2
1
u

]

S{F} = S
{[

2e3(t, 0)
−9cos2(t, 0)

]}
=
[ 2

1−3u−9
1+4u2

]
.

Since

S{Y} = P−1(u)[�(0) + S{F}(u)].

Then

S{Y} = 1
(1 − 3u)(1 + 4u2)

[
1 + 2u − 2u2

2 − 3u + 4u2

]

=
[ 1

1−3u + 2u
1+4u2

1
1−3u + 1

1+4u2

]
.
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Consequently,

[
x
y

]
= S−1

{[
1

1−3u + 2u
1+4u2

1
1−3u + 1

1+4u2

]}
=
[
e3(t, 0) + sin2(t, 0)
e3(t, 0) + cos2(t, 0)

]
.

i.e., x(t) = e3 (t, 0) + sin2(t, 0) and y(t) = e3(t, 0) + cos2 (t, 0).

II. To find the solution dynamic integral equation we provide the following example.

Example 3.3 Consider the integral equation

h(t) = e2(t, 0) + 4
t∫
0
h(τ )�τ .

Applying the Sumudu transform we get

S{h}(u) = 1
1 − 2u

+ 4u S{h} (u).

Then we get

S{h}(u) = 1
(1 − 2u)(1 − 4u)

=
−1

1 − 2u
+

2
1 − 4u

and consequently from (2.8), we have

h(t) = −e2(t, 0) + 2e4(t, 0).

Example 3.4 For solving the following equation

x(t) = cos2(t, 0) + 3(x(t) ∗ sin3(t, 0)).

Applying Sumudu transform we get

S{x} = 1 + 9u2

1 + 4u2
=
1
4

[
9 − 5

1 + 4u2

]
.

Then

x(t) =
1
4
S−1

{[
9 − 5

1 + 4u2

]}
=
1
4

(9 − 5cos2 (t, 0)) ,

III. Assuming that T has constant graininess µ(t) ≡ µ, we can find S(eσ�α(t, 0)),

S(eβ(t, 0)eσ�α(t, 0)), S(eβ(t, 0)eσ�α(t, 0)), S(eσ�α(t, 0)cosβ(t, 0)) and

S(eσ�α(t, 0)sinβ(t, 0)).

From (2.14), we have

S(eσ�α(t, 0)) =
1
u

1

(1u ⊕ α)
, (3:6)

S(teσ�α(t, 0))(u) =
1
u

1( 1
u ⊕ α

)2 , (3:7)

S(eβ(t, 0)eσ�α(t, 0))(u) =
1
u

1( 1
u ⊕ α

)− β
, (3:8)
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S(eσ�α(t, 0)cosβ(t, 0)) =
1
u

( 1
u ⊕ α

)
(1
u ⊕ α

)2
+ β2

, (3:9)

and

S
(
eσ�α(t, 0)sinβ(t, 0)

)
=
1
u

β

( 1u ⊕ α)
2
+ β2

.

When T = R (as a special case) the results in (3.6), (3.7), (3.8), and (3.9) become

S{e−αt}(u) = 1
(1 + αu)

,

S{te−t}(u) = u

(1 + αu)2
,

S{eβte−αt}(u) = 1
1 + (α − β)u

,

S{e−αt cos βt}(u) = (1 + αu)

(1 + αu)2 + β2u2

which coincide with previous results in [3]. Thus it seems that the present results are

more general.

4 Conclusion
In this article, the Sumudu transform is introduced as a new integral transform on a

time scale T in order to solve system of dynamic equations. Further, Sumudu trans-

form on time scale T is not presented before. The results in this article not only can

be applied to ordinary differential equations when T = R, difference equations when

T = N0, but also, can be applied for q-difference equations when T = qN0, where

qN0 := {qt : t ∈ N0 for q > 1} or T = qZ := qZ ∪ {0} for q>1 which has several important

applications in quantum theory and on different types of time scales like

T = hN0,T = N2
0, and T = Tn the space of the harmonic numbers. Regarding the com-

parison between Sumudu and Laplace transform, see for example, [4-7,16]. For exam-

ple when T = R, Maxwell’s equations were solved for transient electromagnetic waves

propagating in lossy conducting media, see [16] where the Sumudu transform of Max-

well’s differential equations yields a solution directly in the time domain, which neutra-

lizes the need to perform the inverse Sumudu transform.
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