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Abstract

In this article, by using Razumikhin-type technique, we investigate pth moment
exponential stability of stochastic functional differential equations with Markovian
switching and delayed impulses. Several stability theorems of impulsive hybrid
stochastic functional differential equations are derived. It is assumed that the state
variables on the impulses can relate to the finite delay. These new results are
employed to a class of n-dimensional linear impulsive hybrid stochastic systems with
bounded time-varying delay. Moreover, an effective M-matrix method is introduced
to study the exponential stability of these hybrid systems. Meanwhile, some
examples and simulations are given to show our results.

Keywords: Razumikhin theorem, stochastic functional differential equations, impulse,
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1 Introduction
Stochastic differential equation is an emerging field drawing attention from both theo-

retical and applied disciplines, which has been successfully applied to problems in

mechanical, electrical, economics, physics and several fields in engineering. For details,

see [1-6] and the references therein. Recently, stability of stochastic differential equa-

tions with Markovian switching has received a lot of attention [7-12]. For example, Ji

and Chizeck [7] and Mariton [8] studied the stability of a jump linear equation

dx(t) = A(r(t))x(t)dt,

where x(t) takes values in Rn, r(t) is a Markovian chain taking values in S = {1, 2, ...,

N}. Mao [9] discussed the stability of nonlinear stochastic differential equation with

Markovian switching of the form

dx(t) = f (x(t), t, r(t))dt + g(x(t), t, r(t))dω(t).

In [10], Mao studied the stability of stochastic functional differential equation with

Markovian switching of the form

dx(t) = f (xt, t, r(t))dt + g(xt, t, r(t))dω(t).

Impulsive effects are common phenomena due to instantaneous perturbations at cer-

tain moment, such phenomena are described by impulsive differential equation which
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have been used effciently in modelling many practical problems that arise in the fields

of engineering, physics, and science as well. So the theory of impulsive differential

equations is also attracting much attention in recent years [13-19]. Correspondingly, a

lot of stability results of impulsive stochastic functional differential equations have

been obtained [20-26]. However, there are few results on the stability of impulsive sto-

chastic differential equation with Markovian switching. In [27], Wu and Sun estab-

lished some stability criteria of p-moment stability for stochastic differential equations

with impulsive jump and Markovian switching.

In this article, we shall extend Razumikhin method [10,12] to investigate the pth

moment exponential stability of the following stochastic functional differential equa-

tions with Markovian switching and delayed impulse⎧⎨
⎩
dx(t) = f (xt, t, r(t))dt + g(xt, t, r(t))dω(t) t ≥ 0, t �= tk,
�x(tk) = Ik(x(tk), xtk , tk, r(tk)) , k = 1, 2, . . . ,
x(t) = ξ , t ∈ [−τ , 0].

The state variables on the impulses relate to the finite delay, which implies that the

impulsive effects are more general than those given in [20,22,23]. Some Theorems on

the pth moment exponential stability are derived in the case that the impulsive gain

dik + d̄ik < 1 or dik + d̄ik ≥ 1. These new results are employed to the n-dimensional

impulsive hybrid stochastic systems with bounded time-varying delay. Useful criteria in

terms of an M-matrix (see Berman and Plemmons [28]) which can be verified much

more easily are established. Meanwhile, examples and simulations are provided to

show the impulsive effects play an important role in the stability for hybrid stochastic

systems. The rest of this article is organized as follows. In Section 2, stochastic func-

tional differential equations with Markovian switching and delayed impulses together

with some definitions of pth moment exponential stability are presented. In Section 3,

the Razumikhin-type theorems on pth moment exponential stability for stochastic

functional differential equations with Markovian switching and delayed impulses are

established. In Section 4, these results will then be applied to the n dimensional hybrid

stochastic delay systems and M-matrix method is introduced to verify the stability

easily. Finally, examples are given to demonstrate our effective results in Section 5.

2 Preliminaries
Let R = (−∞, +∞), R+ = [0, +∞), Rn denote the n-dimensional Euclidean space with the

Euclidean norm | · |. If A is a vector or matrix, its transpose is denoted by AT, and its

norm is denoted by ||A|| =
√

λmax(ATA), where lmax(·) is the maximum eigenvalue of a

matrix. ω(t) = (ω1(t),ω2(t), . . . , ωm(t))T is an m-dimensional Brownian motion on a

complete probability space (�,F ,P) with a natural filtration {Ft}t≥0 satisfying the

usual conditions, (i.e.Ft = σ {ω(s) : 0 ≤ s ≤ t}).
Let τ > 0 and PC([−τ , 0], Rn) = {ψ : [−τ , 0] → Rn|ψ(t+),ψ(t) exist, and

ψ(t−) = ψ(t)} with the norm ||ψ || = sup
−τ≤θ≤0

|ψ(θ)|, where ψ(t+) and ψ(t−) denote the

right-hand and left-hand limits of function ψ(t) at t.

Denoted by PCb
F0

([−τ , 0];Rn) the family of all bounded, F0 - measurable, PC([−τ,

0]; Rn)-valued random variables. For p > 0, denoted by PCp
Ft
([−τ , 0],Rn) the family of
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all Ft-measurable PC([−τ , 0], Rn)-valued random variables ψ such that∫ 0

−τ

E |ψ(θ)|p dθ < ∞. Let r(t)(t > 0) be a right-continuous Markovian chain on the

probability space taking values in a finite state space S = {1, 2, ..., N} with generator

Γ = (γij)N×N given by

P{r(t + �) = j|r(t) = i} =
{

γij� + o(�), if i �= j,
1 + γij� + o(�), if i = j,

where Δ > 0. Here gij ≥ 0 is the transition rate from i to j while

γii = −∑
i�=j

γij.

We assume that the Markovian chain r(t) is independent of the Brownian motion

ω(t). It is known that almost every sample path of r(t) is a right-continuous step func-

tion with a finite number of simple jumps in any finite subinterval of R+.

Consider the following impulsive hybrid stochastic functional differential equation of

the form⎧⎨
⎩
dx(t) = f (xt, t, r(t))dt + g(xt , t, r(t))dω(t), t ≥ 0, t �= tk,
�x(tk) = Ik(x(tk), xtk , tk, r(tk)), k = 1, 2, . . . ,
x(t) = ξ , t ∈ [−τ , 0],

(2:1)

where ξ ∈ PCb
F0

([−τ , 0];Rn), x(t) = (x1(t), x2(t), . . . , xn(t))T and

x(t+k ) = lim
h→0+

x(tk + h), x(tk) = lim
h→0−

x(tk + h), tk ≥ 0,

x(t+k ) = lim
h→0+

x(tk + h), x(tk) = lim
h→0−

x(tk + h), tk ≥ 0 are impulsive moments satisfying tk

<tk+1 and lim
k→+∞

tk = +∞, �x(tk) = x(t+k ) − x(tk) represents the jump in the state x at tk

with Ik determining the size of the jump, f : PC([-τ, 0]; Rn) × R+× S ® Rn, g : PC(-τ, 0];

Rn)×R+×S ® Rn×m, Ik : R
n×PC([-τ, 0]; Rn) × R+ × S ® Rn.

Throughout this article, we assume that f, g and Ik satisfy the necessary conditions

for the global existence and uniqueness of solutions for all t ≥ 0. For any

ξ ∈ PCb
F0

([−τ , 0];Rn), there exists a unique stochastic process satisfying Equation

(2.1) denoted by x(t; ξ), which is continuous on the left-hand side and limitable on the

right-hand side. Also we assume that f(0, t, i) ≡ 0, g(0, t, i) ≡ 0 and Ik(0, 0, t, i) ≡ 0, k =

1, 2, ..., which implies that x(t) ≡ 0 is an equilibrium solution.

Let C 2
1 (R

n × [−τ , ∞) × S;R+) be the family of all nonnegative functions V (x, t, i)

on Rn×[−τ, ∞) × S which are continuous on Rn× (tk−1, tk] × S, Vt, Vx, Vxx are continu-

ous on Rn× (tk−1, tk] × S. For each V ∈ C 2
1 (R

n × [−τ , ∞) × S;R+), we define an opera-

tor L V : PCb
Ft
([−τ , 0];Rn) × (tk−1, tk] × S → R associated with Equation (2.1) as

follows:

L V(φ, t, i) = Vt(φ(0), t, i) + Vx(φ(0), t, i)f (φ, t, i)

+1
2 trace[g

T(φ, t, i)Vxx(φ(0), t, i)g(φ, t, i)] +
N∑
j=1

γijV(φ(0), t, j),
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where

Vt(x, t, i) = ∂V(x,t,i)
∂ t , Vx(x, t, i) =

(
∂V(x,t,i)

∂x1
, · · · , ∂V(x,t,i)

∂xn

)
, Vxx(x, t, i) =(

∂2V(x,t,i)
∂xixj

)
n×n

.

Definition 2.1. The zero solution of Equation (2.1) are said to be pth moment expo-

nentially stable if there exists h > 0 such that for any initial values

ξ ∈ PCb
F0

([−τ , 0];Rn) and t ≥ 0

lim sup
t→∞

1
t log(E|x(t; ξ)|p) ≤ −η.

Remark 2.1. When p = 2, it is often called to be exponentially stable in mean

square.

3 Stability analysis
In the following, we shall establish some criteria on pth moment exponential stability

for Equation (2.1).

Theorem 3.1. Assume that V ∈ C 2
1 (R

n × [−τ ,∞) × S;R+) and constants p > 0, c1 >

0, c2 > 0, dik ≥ 0, d̄ik ≥ 0, d2ik + d̄2ik �= 0, δ > 0,λ > 0, ηi ≥ 0, i ∈ S, k = 1, 2, . . . such that

(i) c1|x|p ≤ V(x, t, i) ≤ c2|x|p for all (t, x) Î Rn × [−τ, ∞) × S;

(ii) for all t Î (tk-1, tk] and i ∈ S,EL V(φ, t, i) ≤ ηiEV(φ(0), t, i) whenever

E
[
min
1≤i≤N

V(φ(θ), t + θ , i)
]

< qeλτE
[
max
1≤i≤N

EV(φ(0), t, i)
]
;

(iii) for all iÎS,

EV(φ(0)+Ik(φ(0), φ(θ), tk, i), t+k , i) ≤ dikEV(φ(0), tk, i)+d̄ik sup
−τ≤θ<0

EV(φ(θ), tk, i);

(iv) sup
1≤k<+∞

{tk − tk−1} ≤ δ;

(v) for any i ∈ S,λ + ηi ≤ ln q
δ
,

then the zero solution of Equation (2.1) is pth moment exponentially stable with pth

moment exponent l, where

φ = {φ(θ)| − τ ≤ θ ≤ 0} ∈ PCp
Ft
([−τ , 0];Rn), q = 1

max
i∈S,1≤k<+∞

{dik+d̄ikeλτ } > 1.

Proof. For any ξ ∈ PCb
F0

([−τ , 0];Rn), we denote the solution x(t)= x(t; ξ) of (2.1)

and extend r(t) = r(0) = r0 for all t Î [−τ, 0]. Let ε be small enough such that t + ε Î
(tk−1, tk). By generalized Itô formula, we have

EV(x(t + ε), t + ε, r(t + ε)) = EV(x(t), t, r(t)) +
∫ t+ε

t
EL V(x(s), s, r(s))ds. (3:1)

Let ε ® 0, it follows that for t Î (tk-1, tk]

D+EV(x(t), t, r(t)) = EL V(x(t), t, r(t)). (3:2)

Let W(t) = eltEV (x(t), t, i), we have for t Î (tk-1, tk]

D+W(t) = λeλtEV(x(t), t, i) + eλtD+EL V(x(t), t, i). (3:3)
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From (iii), we have

W(t+k ) = eλtkEV(x(t+k ), t
+
k , i) ≤ dikW(tk) + d̄ike

λτ sup
−τ≤θ≤0

W(tk + θ). (3:4)

Taking M > 0 such that

sup
−τ≤θ≤0

W(θ) < M
q , (3:5)

we can claim that for t ≥ -τ

W (t) < M. (3:6)

It is easy to see that W(t) <M for t Î [-τ, 0]. Now, we shall prove that

W(t) < M, t ∈ (0, t1]. (3:7)

Otherwise, there exists a t* Î (0, t1] such that

W(t∗) = M,W(t) < M,−τ < t < t∗. (3:8)

In view of the continuity of W(t) in [0, t1], there exists a t** Î (0, t*) such that

W(t∗∗) = M
q ,W(t) > M

q , t ∈ (t∗∗, t∗]. (3:9)

For t Î [t**, t*], θ Î [-τ, 0], we have

qW(t) > W(t + θ). (3:10)

Then we obtain

qeλτ

[
max
1≤i≤N

EV(x(t), t, i)
]

≥ qe−λ(t−τ)W(t) > e−λ(t−τ)W(t + θ)

≥ min
1≤i≤N

EV(x(t + θ), t + θ , i).
(3:11)

Together with (3.3) and (ii), for t Î [t**, t*], we have

D+W(t) ≤ λeλtEV(x(t), t, i) + ηieλtEV(x(t), t, i)

= (λ + ηi)eλtEV(x(t), t, i) = (λ + ηi)W(t).
(3:12)

Thus

M = W(t∗) ≤ W(t∗∗)e(λ+ηi)(t∗−t∗∗) = M
q e

(λ+ηi)(t∗−t∗∗) < M
q e

(λ+ηi)t1 ≤ M. (3:13)

This is a contradiction. Hence (3.7) holds. From (iii), we obtain

W(t+1) ≤ di1W(t1) + d̄i1e
λτ sup

−τ≤θ≤0
W(t1 + θ) < M

q < M. (3:14)

Next, we shall show that

W(t) < M, t ∈ (t1, t2]. (3:15)

If it does not hold, there exists a t∗1 ∈ (t1, t2] such that

W(t∗1) = M,W(t) < M, t ∈ [−τ , t∗1]. (3:16)
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In view of the continuity of W(t) in (t1, t2], there exists a t∗∗
1 ∈ (t1, t∗1) such that

W(t∗∗
1 ) = M

q ,W(t) > M
q , t ∈ (t∗∗

1 , t∗1]. (3:17)

For t ∈ [t∗∗
1 , t∗1], θ ∈ [−τ , 0],, we have qW(t) >W(t + θ). It follows from (3.3) and (ii)

that for t ∈ [t∗∗
1 , t∗1]

D+W(t) ≤ (λ + ηi)W(t). (3:18)

Then, we have

M = W(t∗1) ≤ W(t∗∗
1 )e(λ+ηi)(t∗1−t∗∗

1 ) = M
q e

(λ+ηi)(t∗1−t∗∗
1 ) < M

q e
(λ+ηi)(t2−t1) ≤ M, (3:19)

which is a contradiction. Thus, (3.15) holds. By induction, we can prove that for k =

1, 2, ...

W(t) < M, t ∈ (tk−1, tk]. (3:20)

Therefore, we have for t ≥ -τ

W(t) < M. (3:21)

From (i) and the above inequality, we have

c1E|x(t)|p ≤ EV(t) ≤ Me−λt, (3:22)

which implies that

E|x(t)|p ≤ M
c1
e−λt. (3:23)

The proof of Theorem 3.1 is complete.

Remark 3.1. In Theorem 3.1, the zero solution of hybrid stochastic functional differ-

ential equations without impulses is allowed to be unstable. In this case, the delayed

impulses are key in stabilizing the hybrid stochastic equations. It requires the nearest

impulse time interval must be sufficiently small and the maximal impulsive gain

max
i∈S,1≤k<+∞

{dik + d̄ik} < 1.

Theorem 3.2. Assume that V ∈ C 2
1 (R

n × [−τ ,∞) × S;R+) and constants p > 0, c1 >

0, c2 > 0, dik ≥ 0, d̄ik ≥ 0, d2ik + d̄2ik �= 0, gi > 0, µ > 0, l > 0, i Î S, k = 1, 2, ... such that

(i) c1|x|p ≤ V(t, x) ≤ c2|x|p for all (t, x) Î [−τ, ∞) × Rn;

(ii) for all t Î (tk-1, tk] and i ∈ S, ε > 0 EL V(φ, t, i) ≤ −γiEV(φ(0), t, i) whenever

E[ min
1≤i≤N

V(φ(θ), t + θ , i)] ≤ qeλτE[ max
1≤i≤N

EV(φ(0), t, i)];

(iii) for all i Î S,

EV(φ(0) + Ik(φ(0),φ(θ), tk, i), t+k , i) ≤ dikEV(φ(0), tk, i) + d̄ik sup
−τ≤θ≤0

EV(φ(θ), tk, i);

(iv) inf
1≤k<+∞

{tk − tk−1} ≥ μ;

(v) for any i ∈ S, γi − λ >
ln q
μ
,

then the zero solution of Equation (2.1) is pth moment exponentially stable, where

φ = {φ(θ)| − τ ≤ θ ≤ 0} ∈ PCp
Ft
([−τ , 0];Rn), q =

1

max
i∈S,1≤k<+∞

{dik + d̄ikeλτ } > 1.

Pan and Cao Advances in Difference Equations 2012, 2012:61
http://www.advancesindifferenceequations.com/content/2012/1/61

Page 6 of 18



Proof. Since (v) holds, we can choose sufficiently small ε > 0 such that

γi − λ ≥ ln(q + ε)
μ

for all i Î S. Let W(t) = elt EV (x(t), t, i), we have for t Î (tk−1, tk]

D+W(t) = λeλtEV(x(t), t, i) + eλtD+EL V(x(t), t, i). (3:24)

From (iii), we have

W(t+k ) = eλtkEV(x(t+k ), t
+
k , i) ≤ dikW(tk) + d̄ike

λτ sup
−τ≤θ≤0

W(tk + θ). (3:25)

Taking M > 0 such that

sup
−τ≤θ≤0

W(θ) < M
q+ε

, (3:26)

we shall show that for t ≥ -τ

W (t) < M. (3:27)

It is easy to see that W(t) <M for t Î [−τ, 0]. Now, we shall prove that

W(t) < M, t ∈ (0, t1]. (3:28)

If it does not hold, there exists a t* Î (0, t1] such that

W(t∗) = M,W(t) < M,−τ < t < t∗. (3:29)

In view of the continuity of W(t) in [0, t1], there exists a t** Î [0, t*) such that

W(t∗∗) = M
q+ε

,W(t) > M
q+ε

, t ∈ (t∗∗, t∗]. (3:30)

For t ∈ [t∗∗
ε , t∗], θ ∈ [−τ , 0]

(q + ε)W(t) > W(t + θ). (3:31)

Then

(q + ε)eλτ

[
max
1≤i≤N

EV(x(t), t, i)
]

≥ min
1≤i≤N

EV(x(t + θ), t + θ , i). (3:32)

Together with (3.24) and (ii), for t ∈ [t∗∗, t∗], we have

D+W(t) ≤ λeλtEV(x(t), t, i) + eλtEL V(x(t), t, i) ≤ (λ − γi)W(t) ≤ 0. (3:33)

Thus

M = W(t∗) ≤ W(t∗∗) = M
q+ε

< M. (3:34)

This is a contradiction. Next, we shall show that

W(t1) ≤ M
q+ε

. (3:35)

If it does not hold, we have

W(t1) > M
q+ε

. (3:36)
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Since the continuity of W((t) in [0, t1], there exists a t̄ ∈ [0, t1) such that

W(t̄ε) = M
q+ε

,W(t) > M
q+ε

, t ∈ (t̄, t1]. (3:37)

For t ∈ [t̄, t1], θ ∈ [−τ , 0], we have

(q + ε)W(t) > W(t + θ). (3:38)

By (3.24) and (ii), for t ∈ [t̄, t1], θ ∈ [−τ , 0], we have

D+W(t) ≤ (λ − γi)W(t) ≤ 0. (3:39)

Thus

W(t1) ≤ W(t̄) = M
q+ε

, (3:40)

which is a contradiction. It follows from (3.25), (3.35) and (3.28) that

W(t+1) ≤ di1W(t1) + d̄i1e
λτ sup

−τ≤θ≤0
W(t1 + θ) ≤ (di1+d̄i1eλτ )M

q+ε
< M. (3:41)

Furthermore, we can prove that

W(t) < M, t ∈ (t1, t2]. (3:42)

Indeed, there exists a t̄1 ∈ (t1, t2] such that

W(t̄1) = M,W(t) < M, t ∈ [−τ , t̄1). (3:43)

If W(t) > M
q+ε for t ∈ (t1, t̄1). Then (q + ε)W(t) >W(t + θ) for t ∈ (t1, t̄1),θ Î [−τ, 0].

Thus by (3.24) and (ii), for t ∈ (t1, t̄1), we have D+ W (t) ≤ (l − g)W(t) ≤ 0. It follows

that

W
(
t̄1
) ≤ W(t+1) < M. (3:44)

This is a contradiction. If there exists a ¯̄t1 ∈ (t1, t̄1) such that

W(¯̄t1) ≤ M
q+ε

. (3:45)

In view of the continuity of W(t) in (t1, t2], there exists a ¯̄t1
′
∈ [¯̄t1, t̄1) such that

W(¯̄t1
′
) = M

q+ε
,W(t) > M

q+ε
, t ∈ (¯̄t1

′
, t̄1]. (3:46)

Then for t ∈ [¯̄t1
′
, t̄1], θ Î [−τ, 0], (q + ε) W(t) >W(t + θ). Thus for

W(t̄1) ≤ W(¯̄t
′

1) =
M
q+ε

< M,, D+W (t) ≤ (l−g)W(t) ≤ 0. It follows that

W(t̄1) ≤ W(¯̄t1
′
) = M

q+ε
< M, (3:47)

which leads to a contradiction. Moreover, we can conclude that W(t2) ≤ M
q+ε. If this

does not hold, we haveW(t2) > M
q+ε. To prove the conclusion, two cases are to be

considered.

Case (i). For t Î (t1, t2], W(t) > M
q+ε. From (3.26), (3.28) and (3.43), we have for t Î

(t1, t2], θ Î [−τ, 0]
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(q + ε)W(t) > W(t + θ). (3:48)

Then by (3.24) and (ii), for t Î (t1, t2]

D+W (t) ≤ (λ − γi) W (t) . (3:49)

Thus

W (t2) ≤ W
(
t+1
)
e(λ− γi) (t2−t1) < Me(λ− γi) (t2 − t1) ≤ M

q+ε
, (3:50)

which leads to a contradiction.

Case (ii). There exists a t̃1ε ∈ (t1, t2] such that W
(
t̃1
) ≤ M

q+ε
. Since W (t2) > M

q+ε

and in view of the continuity of W(t) in (t1, t2], there exists a t̃∗1 ∈ [
t̃1 , t2

]
such that

W
(
t̃∗1
)
= M

q+ε
,W (t) > M

q+ε
, t ∈ (t̃∗1, t2]. (3:51)

For t ∈ (t̃∗1, t2], θ ∈ [−τ , 0], we have(
q + ε

)
W (t) > W (t + θ) . (3:52)

It follows from (3.24) and (ii) that for t ∈ (t̃∗1, t2]

D+W (t) ≤ (λ − γi)W (t) ≤ 0. (3:53)

Thus

W (t2) ≤ W
(
t̃∗1
)
= M

q . (3:54)

This is a contradiction. By induction, we can prove that for k = 1, 2, ...

W (t) < M, t ∈ (tk−1, tk]. (3:55)

Therefore, we have for t ≥ −τ

W (t) < M. (3:56)

The proof of Theorem 3.1 is complete.

Remark 3.2. In Theorem 3.2, it is permitted that the maximal impulsive gain

max
i∈S,1≤k<+∞

{
dik + d̄ik

}
≥ 1. This means that the hybrid stochastic equation not only

can achieve exponential stability but also is exponential stability with delayed impulses.

In this case, it requires that the minimal impulse time interval must be sufficiently

large such that the hybrid stochastic differential equations with delayed impulses can

make keep its stability property.

4 Some consequences
In the following, we shall apply the above new results to a class of linear impulsive

hybrid stochastic systems by using Lyapunov function and M-matrix method.

Consider the following n-dimensional impulsive hybrid stochastic delay differential

equation
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⎧⎪⎪⎪⎨
⎪⎪⎪⎩

dx (t) = [A (r (t)) x (t) + B (r (t)) x (t − τ (t))] dt

+ [C (r (t)) x (t) +D (r (t)) x (t − τ (t))] dω (t) , t ≥ 0, t �= tk,

�x (tk) = Ik (x (tk) , x (tk − τ (tk)) , tk, r (tk)) , k = 1, 2, ...,

x (t) = ξ , t ∈ [−τ , 0],

(4:1)

where 0 ≤ τ (t) ≤ τ is continuous, τ is a positive constant. For convenience, we denote

A(r(t)) = Ai, B(r(t)) = Bi, C(r(t)) = Ci, D(r(t)) = Di, where Ai = (auv(i))n×n, Bi = (buv(i))

n×n, Ci = (cuv(i))n×n, Di = (duv(i))n×n.

Theorem 4.1. Assume that there exist symmetric positive definite matrices Qi and

constants dik ≥ 0, d̄ik ≥ 0, d2ik + d̄
2
ik �= 0, δ > 0, λ > 0, ρi > 0, σi > 0, η̄i ≥ 0, ηi, i ∈ S, k = 1, 2, . . .

such that

(i) for all i Î S

Γi = QiAi + AT
i Qi + ρiQ2

i + CT
i QiCi + σiCT

i Ci +
N∑
j=1

γijQj − ηiQ ≤ 0, (4:2)

and

Γ̄i = ρ−1
i BT

i Bi + σ−1
i DT

i Q
2
i Di + DT

i QiDi − η̄iQi ≤ 0, (4:3)

where Γi, Γ̄i ≤ 0, 0 ≤ i ≤ N mean that matrices Γi, Γ̄i are negative semi-definite;

(ii) for all i Î S

E
[(
x(tk + Ik (x (tk) , x (tk − τ (tk)) , tk, i)

)T
Qi (x (tk + Ik (x (tk) , x (tk − τ (tk)) , tk, i))

]
≤ dikE

[
xT (tk)Qix (tk)

]
+ dikE

[
xT (tk − τ (tk))Qix (tk − τ (tk))

]
;

(4:4)

(iii) sup
1≤k<+∞

{tk − tk−1} ≤ δ;

(iv) for all i ∈ S, ηi + λ + η̄iqα2
2e

λτ

α2
1

≤ ln q
δ
,

then the zero solution of Equation (4.1) is exponentially stable in the mean square,

where α1 = min
1≤i≤N

λmin (Qi) , α2 = max
1≤i≤N

λmax (Qi) , q = 1

max
i∈S, 1≤ k<+∞

{
dik + d̄ikeλτ

} > 1.

Proof. We define V ∈ C 2,1
(
Rn × [−τ , ∞) × S; R+

)
byV (x, t, i) = xT (t)Qix (t) .

Clearly

α1|x|2 ≤ V (x, t, i) ≤ α2|x|2. (4:5)

Then for t Î (tk−1, tk]

L V (t,φ) = 2φT (0)Qi [Aiφ (0) + Biφ (−τ (t))] + [Ciφ (0)

+Diφ (−τ (t))]T × Qi [Ciφ (0) +Diφ (−τ (t))] +
N∑
j=1

γijφ
T (0)Qjφ (0)

= φT (0)
(
QiAi + AT

i Qi
)
φ (0) + 2φT (0)QiBiφ (−τ (t))

+φT (0)CT
i QiCiφ (0) + φT (0)CT

i QiDiφ (−τ (t)) + φT (−τ (t))DT
i QiCiφ (0)

+φT (−τ (t))DT
i QiDiφ (−τ (t)) +

N∑
j=1

γijφ
T (0)Qjφ (0) .

(4:6)
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In view of for any vectors x, y Î Rn, scalar ε > 0, the following inequality holds

2xTy ≤ εxTx + ε−1yTy, (4:7)

then it follows that

2φT (0)QiBiφ (−τ (t)) ≤ ρiφ
T (0)Q2

i φ (0) + ρ−1
i φ (−τ (t))BT

i Biφ (−τ (t)) (4:8)

and

φT (0)CT
i QiDiφ (−τ (t)) + φT (−τ (t))DT

i QiCiφ (0)

≤ σiφ
T (0)CT

i Ciφ (0) + σ−1
i φT (−τ (t))DT

i Q
2
i Diφ (−τ (t)) .

(4:9)

Substituting (4.8) and (4.9) into (4.6) we can derive that

L V (φ, t, i) ≤ φT (0)
(
QiAi + AT

i Qi + ρiQ
2 + CT

i QiCi + σiC
T
i Ci

+
N∑
j=1

γij Qj − ηiQi
)
φ (0) + φT (−τ (t))

(
ρ−1
i BT

i Bi + σ−1
i DT

i Q
2
i Di

+DT
i QiDi − η̄iQi

)
φ (−τ (t)) + ηiφ

T (0)Qiφ (0) + η̄iφ
T (−τ (t))Qiφ (−τ (t))

≤ ηiφ
T (0)Qiφ (0) + η̄iφ

T (−τ (t))Qiφ (−τ (t)) .

(4:10)

Then

EL V (φ, t, i)
] ≤ ηiEV (φ (0) , t, i) + η̄iα2E|φ (−τ (t))|2. (4:11)

Next, if for ∀θ ∈ [−τ , 0] , E
[
min
1≤i≤N

V (φ (θ) , t, i)
]

< qeλτE
[
max
1≤i≤N

V (φ (θ) , t, i)
]
,

we have

E|φ (θ)|2 <
qα2eλτ

α1
E|φ (0)|2, ∀θ ∈ [−τ , 0] . (4:12)

Thus

E
[
L V (φ, t, i)

] ≤ ηiEV (φ (0) , t, i)+ η̄iqα2
2e

λτ

α1
E|φ (0)|2 ≤

(
ηi +

η̄iqα2
2e

λτ

α2
1

)
EV (φ (0) , t, i) . (4:13)

For t = tk, it follows from (ii) that

EV
(
φ (0) + Ik (φ, φ (−τ (tk)) , tk, i) , t+k , i

)
≤ dikEV (φ (0) , tk, i) + dikEV (φ (−τ (tk)) , tk − τ (tk) , i)

(4:14)

Consequently, the conclusions follow from Theorem 3.1. This completes the proof.

Theorem 4.2. Assume that exist symmetric positive definite matrices Qi and con-

stants dik ≥ 0, d̄ik ≥ 0, d2ik + d̄2ik �= 0, εi > 0, κi > 0, ζi > 0, ζ̄i ≥ 0, μ > 0, λ >

0, i ∈ S, k = 1, 2, . . .
such

that (4.4) holds and the following conditions hold:

(i) for all i Î S

Θi = QiAi + AT
i Qi + εiQ2

i + CT
i QiCi + κiCT

i Ci +
N∑
j=1

γijQj + ζiQi ≤ 0 (4:15)

and

Θ̄i = ε−1
i BT

i Bi + κ−1
i DT

i Q
2
i Di + DT

i QiDi − ζ̄iQi ≤ 0; (4:16)
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(ii) inf
1≤k<+∞

{tk − tk−1} ≥ μ;

(iii) for all i ∈ S, ζi − ζ̄iqα2
2e

λτ

α2
1

− λ >
ln q
μ
,

then the zero solution of Equation (4.1) is exponentially stable in the mean square,

where q = max
i∈S,1≤k<+∞

{
dik + d̄ikeλτ

}
≥ 1.

Proof. By (iii), we choose sufficiently small ε > 0 such that

ζi − ζ̄i(q+ ε) α2
2e

λτ

α2
1

− λ >
ln q
μ
. We define

V(x, t, i) = xT(t) Qix(t). Similar to the proof of Theorem 4.1, we get for t Î (tk−1, tk]

EL V (φ, t, i) ≤ ζiEV (φ (0) , t, i) + ζ̄iα2E|φ (−τ (t))|2. (4:17)

For ∀θ ∈ [−τ , 0] , E
[
min
1≤i≤N

V (φ (θ) , t, i)
]

≤ (
q + ε

)
eλτ E

[
max
1≤i≤N

V (φ (0) , t, i)
]
, we

have

E|φ (θ)|2 ≤ (q+ ε) α2eλτ

α1
E|φ (0)|2. (4:18)

Thus

E
[
L V (φ, t, i)

] ≤
(
−ζi +

ζ̄i(q+ε)α2
2e

λτ

α2
1

)
EV (φ (0) , t, i) . (4:19)

Therefore, the conclusions follow from Theorem 3.2.

In the following, we shall establish tractable exponential stability conditions. To this

end, we take

Qi = riI,ρi = εi =
‖Bi‖
ri

, σi = κi =
ri‖Di‖
‖Ci‖ , ηi = 1

ri

[
λmax

(
riAi + riAT

i +
∑N

j=1
γijrjI

)
+ ri ‖Bi‖ + ri‖Ci‖2 + ri ‖Ci‖ ‖Di‖

]
,

ζi = − 1
ri

[
λmax

(
riAi + riAT

i +
∑N

j=1
γijrjI

)
+ ri ‖Bi‖ + ri‖Ci‖2 + ri ‖Ci‖ ‖Di‖

]
, η̄i = ζ̄i = ‖Bi‖ + ‖Ci‖ ‖Di‖ + ‖Di‖2.

Corollary 4.1. Assume that there exist constants

dik ≥ 0, d̄ik ≥ 0, dik + d̄ik �= 0, δ > 0, λ > 0, ri > 0, i ∈ S, k = 1, 2, . . . such that

(i) for all i Î S

E
[
(x (tk) + Ik (x (tk) , x (tk − τ (tk)) , tk, i))T (x (tk) + Ik (x (tk) , x (tk − τ (tk)) , tk, i))

]
≤ dikE

[
xT (tk) x (tk)

]
+ d̄ikE

[
xT (tk − τ (tk)) x (tk − τ (tk))

]
;

(4:20)

(ii) sup
1≤k<+∞

{tk − tk−1} ≤ δ;

(iii) for all i Î S

1
ri

⎡
⎣λmax

⎛
⎝riAi + riA

T
i +

N∑
j=1

γijrjI

⎞
⎠ + ri ‖Bi‖ + ri‖Ci‖2 + ri ‖Ci‖ ‖Di‖

⎤
⎦

+λ + qα2
2e

λτ

α2
1

[‖Bi‖ + ‖Ci‖ ‖Di‖ + ‖Di‖2
] ≤ ln q

δ
,

(4:21)

then the zero solution of Equation (4.1) is exponentially stable in the mean square,

where α1 = min
1≤i≤N

ri,α2 = max
1≤i≤N

ri, q = 1

max
i∈S,1≤k<+∞

{
dik+d̄ikeλτ

} > 1.

Corollary 4.2. Assume that there exist constants

dik ≥ 0, d̄ik ≥ 0, dik + d̄ik �= 0, μ > 0, λ > 0, ri > 0, i ∈ S, k = 1, 2, . . . such that

(4.20) holds and the following conditions are satisfied:
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(i) inf
1≤k<+∞

{tk − tk−1} ≥ μ;

(ii) for all i Î S

1
ri

⎡
⎣λmax

⎛
⎝riAi + riA

T
i +

N∑
j=1

γijrjI

⎞
⎠ + ri ‖Bi‖ + ri‖Ci‖2 + ri ‖Ci‖ ‖Di‖

⎤
⎦

+λ + qα2
2e

λτ

α2
1

[‖Bi‖ + ‖Ci‖ ‖Di‖ + ‖Di‖2
]
+ ln q

μ
< 0,

(4:22)

then the zero solution of Equation (4.1) is exponentially stable in the mean square,

where q = max
i∈S, 1≤k<+∞

{
dik + d̄ikeλτ

}
≥ 1.

Next, we apply Corollaries 4.1 and 4.2 to establish some very useful criteria in terms

of M matrix which can be verified much more easily. If A is a vector or matrix, by A

≫ 0 we mean all elements of A are positive. If A1 and A2 are vectors or matrices with

same dimensions we write A1 ≫ A2 if and only if A1 − A2 ≫ 0. Moreover, we also

adopt here the traditional natation by letting

ZN×N =
{
A =

(
aij
)
N×N |aij ≤ 0, i �= j

}
. (4:23)

Definition 4.1. (see [12,28]) A square matrix A =(aij)N×N is called a nonsingular M

matrix if A can be expressed in the form A = sI − B with s >r(B) while all the elements

of B are nonnegative, where I is the identity matrix and r(B) the spectral radius of B.

Remark 4.1. If A is a nonsingular M-matrix, then A has nonpositive off-diagonal and

positive diagonal entries, that is

aii > 0, while aij ≤ 0, i �= j.

Corollary 4.3. There exist constants

dik ≥ 0, d̄ik ≥ 0, dik + d̄ik �= 0, i ∈ S, k = 1, 2, . . . such that (4.20) holds. If there

exists l > 0 such that Ξ − Γ is a nonsingular and for any i Î S

ri
[
λ + qα2

2e
λτ

α2
1

(‖Bi‖ + ‖Ci‖ ‖Di‖ + ‖Di‖2
)] ≤ 1, (4:24)

then the zero solution of Equation (4.1) is exponentially stable in the mean square,

where Ξ is the diagonal matrix

Ξ = diag
[−λmax

(
A1 + AT

1

)− ‖B1‖ − ‖C1‖ 2 − ‖C1‖ ‖D1‖
+ ln q

δ
, ...,−λmax

(
AN + AT

N

)− ‖BN‖ − ‖CN‖2 − ‖CN‖ ‖DN‖ + ln q
δ

]
,

(r1, ..., rN) = (Ξ − Γ )−11 � 0,1 = (1, ..., 1)T ,α1 = min
1≤i≤N

ri,α2 = max
1≤i≤N

ri, q = 1

max
i∈S,1≤k<+∞

{
dik+d̄ikeλτ

} > 1.

Proof. We conclude that all the elements of (Ξ − Γ)−1 are nonnegative. So we have

(4.24) holds, namely all ri are positive. Note

(−Ξ + Γ )r = −1, (4:25)

that is

λmax
(
Ai + AT

i

)
ri +

N∑
j=1

γijrj +
(
‖Bi‖ + ‖Ci‖2 + ‖Ci‖ ‖Di‖ − ln q

δ

)
ri = −1. (4:26)
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Then we have for i Î S

1
ri

⎡
⎣λmax

⎛
⎝riAi + riAiT +

N∑
j=1

γijrjI

⎞
⎠ + ri ‖Bi‖ + ri‖Ci‖2

+ri ‖Ci‖ ‖Di‖ − ri ln q
δ

]
+ qα22 e

λτ

α12

[‖Bi‖ + ‖Ci‖ ‖Di‖ + ‖Di‖2
]

= 1
ri

⎡
⎣λmax (riAi + riAiT ) +

N∑
j=1

γijrj + ri ‖Bi‖ + ri‖Ci‖2

+ri ‖Ci‖ ‖Di‖ − ri ln q
δ

]
+ λ + qα22 e

λτ

α12

(‖Bi‖ + ‖Ci‖ ‖Di‖ + ‖Di‖2
)

= − 1
ri
+ λ + qα22 e

λτ

α12

(‖Bi‖ + ‖Ci‖ ‖Di‖ + ‖Di‖2
) ≤ 0.

(4:27)

The required conclusion follows from Corollary 4.1.

Corollary 4.4. There exist constants

dik ≥ 0, d̄ik ≥ 0, dik + d̄ik �= 0, i ∈ S, k = 1, 2, . . . such that (4.17) holds. If there

exists l > 0 such that Ξ̄ − Γ is a nonsingular and for any i Î S

ri
[
λ + qα2

2e
λτ

α2
1

(‖Bi‖ + ‖Ci‖ ‖Di‖ + ‖Di‖2
)]

< 1, (4:28)

then the zero solution of Equation (4.1) is exponentially stable in the mean square,

where Ξ is the diagonal matrix denoted by

Ξ̄ = diag
[−λmax

(
A1 + AT

1

)− ‖B1‖ − ‖C1‖2 − ‖C1‖ ‖D1‖
− ln q

μ
, ...,−λmax

(
AN + AT

N

)− ‖BN‖ − ‖CN‖2 − ‖CN‖ ‖DN‖ − ln q
μ

]
,

(r1, ..., rN) =
(
Ξ̄ − Γ

)−1
1 � 0,α1 = min

1≤i≤N
ri,α2 = max

i∈S,1≤i≤N
ri, q = max

1≤k<+∞

{
dik + d̄ikeλτ

}
≥ 1.

5 Examples and numerical simulations
In this section, two examples are provided to illustrate our results.

Example 5.1. Let ω(t) be a scalar Brownian motion. Let r(t), t ≥ 0 be a right-contin-

uous Markov chain taking values in S = {1, 2} with the generator(−3 3
1 −1

)
.

Consider the following scalar hybrid impulsive stochastic delay system
{
dx (t) =

[
Ar(t)x (t) + Br(t) x (t − 1)

]
dt +

[
Cr(t) x (t) + Dr(t) x (t − 1)

]
dω (t) , t ≥ 0, t �= tk,

�x (tk) = −0.6x (tk) + 0.4x (tk − 1) , k = 1, 2, . . . ,
(5:1)

where tk = 0.003k, τ(t) = 1, A1 = -1, A2 = -2, B1 = 1, B2 = 2, C1 = 1, C2 = 2, D1 = 2,

D2 = 3, d1k = d2k = 0.32, d̄1k = d̄2k = 0.32. Taking r1 = r2 = 1, we see that there exists

l > 0 such that

0.32 + 0.32eλ < 1,

1
r1

⎡
⎣λmax

⎛
⎝r1A1 + r1AT

1 +
2∑
j=1

γ1jrjI

⎞
⎠ + r1 ‖B1‖

+r1‖C1‖2 + r1 ‖C1‖ ‖D1‖
]
+ λ + qα2

2e
λτ

α2
1

[‖B1‖ + ‖C1‖ ‖D1‖ + ‖D1‖2
]

= 2 + λ + 7eλ

0.32+0.32eλ ≤ − ln(0.32+0.32eλ)
0.003
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and

1
r2

⎡
⎣λmax

⎛
⎝r2A2 + r2A

T
2 +

2∑
j=1

γ2jrjI

⎞
⎠ + r2 ‖B2‖

+ r2‖C2‖2 + r2 ‖C2‖ ‖D2‖
]
+ λ + qα2

2e
λτ

α2
1

[‖B2‖ + ‖C2‖ ‖D2‖ + ‖D2‖2
]

= 8 + λ + 17eλ
0.32+0.32eλ ≤ − ln(0.32+032eλ)

0003 .

By Corollary 4.1, the zero solution of Equation (5.1) is exponentially stable in the

mean square. Figure 1 depicts x(t) of Equation (5.1) is exponentially stable in the mean

square. Figure 2 depicts x(t) of Equation (5.1) without delayed impulses.

Remark 5.1. From Figures 1 and 2, although hybrid stochastic delay system without

impulses may be exponentially unstable in the mean square, adding delayed impulses

may lead to exponentially stable in the mean square, which implies that impulses may

change the stable behavior of an system.

Example 5.2. Let r(t), t ≥ 0 be a right-continuous Markov chain taking values in S =

{1, 2, 3} with the generator(−2 2
1 −1

)
.

Consider the following the 3-D hybrid impulsive stochastic delay system
{
dx (t) =

[
Ar(t)x (t) + Br(t)x (t − 0.5)

]
dt +

[
Cr(t)x (t) + Dr(t)x (t − 0.5)

]
dω (t) , t ≥ 0, t �= tk,

�x (tk) = −0.6x (tk) + 0.4x (tk − 0.5) , k = 1, 2, . . . . ,
(5:2)

where

A1 =
( −1 −1

−0.5 0.4

)
, A2 =

(−0.3 0.4
0.2 0.1

)
, B1 =

(
0.6 0.8
−1 0.6

)
, B2 =

(−1 0.6
0.7 −0.2

)
,

C1 =
(
0.2 0
0 0.8

)
, C2 =

(
1 0
0 0.6

)
, D1 =

(
0.7 0
0 1

)
, D2 =

(
1 0
0 1

)
,

tk = 0.02k, τ(t) = 0.5, ||B1|| = 1.1817, ||B2|| = 1.3650, ||C1|| = 0.8, ||C2|| = 1, ||D1|| =

||D2|| = 1. It is easy to see that d1k = d2k = 0.20, d̄1k = d̄2k = d̄3k = 0.20. By

0 1 2 3 4 5 6 7 8 9 10
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x1

Figure 1 Trajectory of the states x(t) of Equation (5.1).
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computation, we have

λmax
(
Ai + AT

i

)
=
{
1.4518, i = 1,
0.5211, i = 2.

Taking l = 0.5, we have

Ξ = diag [35.1065, 35.2939] .

Hence

Ξ − Γ =
(
16.0354 −2

−1 36.2939

)
.

Ξ − Γ is a nonsingular M-matrix. Then

(r1, r2, r3)T = (Ξ − Γ )−1 1 = (0.0285, 0.0284)T .

0 1 2 3 4 5 6 7 8 9 10
−5

0
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10

15
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35

t

 

 
x1

Figure 2 Trajectory of the states x(t) of Equation (5.1) without delay impulses.
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Figure 3 Trajectory of the states x(t) of Equation (5.2).
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Compute

ri

⎡
⎢⎢⎣0.5 + α2

2e

1
4

α2
1

(‖Bi‖ + ‖Ci‖ ‖Di‖ + ‖Di‖2
)
⎤
⎥⎥⎦ ≤ 1, i = 1, 2.

By Corollary 4.3, the zero solution of Equation (5.2) is exponentially stable in the

mean square. Figure 3 depicts x1(t), x2(t) of Equation (5.2) is exponentially stable in

the mean square.
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