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1. Introduction and preliminaries
The concept of statistical convergence for sequences of real numbers was introduced

by Fast [1] and Steinhaus [2] independently and since then several generalizations and

applications of this notion have been investigated by various authors (see [3-7]). This

notion was defined in normed spaces by Kolk [8].

We recall some basic facts concerning Fréchet spaces.

Definition 1.1. [9] Let X be a vector space. A paranorm P : X ® [0, ∞) is a function

on X such that

(1) P(0) = 0;

(2) P(-x) = P(x);

(3) P(x + y) ≤ P(x) + P(y) (triangle inequality)

(4) If {tn} is a sequence of scalars with tn ® t and {xn} ⊂ X with P(xn - x) ® 0, then

P(tnxn - tx) ® 0 (continuity of multiplication).

The pair (X, P) is called a paranormed space if P is a paranorm on X.

The paranorm is called total if, in addition, we have

(5) P(x) = 0 implies x = 0.

A Fréchet space is a total and complete paranormed space.

The stability problem of functional equations originated from a question of Ulam

[10] concerning the stability of group homomorphisms. Hyers [11] gave a first affirma-

tive partial answer to the question of Ulam for Banach spaces. Hyers’ theorem was

generalized by Aoki [12] for additive mappings and by Rassias [13] for linear mappings

by considering an unbounded Cauchy difference. A generalization of Rassias’ theorem
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was obtained by Găvruta [14] by replacing the unbounded Cauchy difference by a gen-

eral control function in the spirit of Rassias’ approach.

In 1990, Rassias [15] during the 27th International Symposium on Functional Equa-

tions asked the question whether such a theorem can also be proved for p ≥ 1. In

1991, Gajda [16] following the same approach as in Rassias [13], gave an affirmative

solution to this question for p > 1. It was shown by Gajda [16], as well as by Rassias

and Šemrl [17] that one cannot prove a Rassias-type theorem when p = 1 (cf. the

books of Czerwik [18], Hyers et al. [19]).

In 1982, Rassias [20] followed the innovative approach of the Rassias’ theorem [13] in

which he replaced the factor ∥x∥p + ∥y∥p by ∥x∥p · ∥y∥q for p, q Î ℝ with p + q ≠ 1.

The functional equation

f (x + y) + f (x − y) = 2f (x) + 2f (y)

is called a quadratic functional equation. In particular, every solution of the quadra-

tic functional equation is said to be a quadratic mapping. A Hyers-Ulam stability pro-

blem for the quadratic functional equation was proved by Skof [21] for mappings f : X

® Y, where X is a normed space and Y is a Banach space. Cholewa [22] noticed that

the theorem of Skof is still true if the relevant domain X is replaced by an Abelian

group. Czerwik [23] proved the Hyers-Ulam stability of the quadratic functional equa-

tion. The stability problems of several functional equations have extensively been

investigated by a number of authors and there are many interesting results concerning

this problem (see [24-30]).

Jun and Kim [31] considered the following cubic functional equation

f (2x + y) + f (2x − y) = 2f (x + y) + 2f (x − y) + 12f (x). (1:1)

It is easy to show that the function f(x) = x3 satisfies the functional equation (1.1),

which is called a cubic functional equation and every solution of the cubic functional

equation is said to be a cubic mapping.

Lee et al. [32] considered the following quartic functional equation

f (2x + y) + f (2x − y) = 4f (x + y) + 4f (x − y) + 24f (x) − 6f (y). (1:2)

It is easy to show that the function f(x) = x4 satisfies the functional equation (1.2),

which is called a quartic functional equation and every solution of the quartic func-

tional equation is said to be a quartic mapping.

Throughout this article, assume that (X, P) is a Fréchet space and that (Y, ∥ · ∥) is a
Banach space.

In this article, we prove the Hyers-Ulam stability of the following additive-quadratic-

cubic-quartic functional equation

f (x+ 2y) + f (x− 2y) = 4f (x+ y) + 4f (x− y)− 6f (x) + f (2y) + f (−2y)− 4f (y)− 4f (−y) (1:3)

in paranormed spaces.

One can easily show that an odd mapping f : X ® Y satisfies (1.3) if and only if the

odd mapping f : X ® Y is an additive-cubic mapping, i.e.,

f (x + 2y) + f (x − 2y) = 4f (x + y) + 4f (x − y) − 6f (x).
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It was shown in [[33], Lemma 2.2] that g(x) := f(2x) - 2f(x) and h(x) := f(2x) - 8f(x)

are cubic and additive, respectively, and that f (x) = 1
6g(x) − 1

6h(x).

One can easily show that an even mapping f : X ® Y satisfies (1.3) if and only if the

even mapping f : X ® Y is a quadratic-quartic mapping, i.e.,

f (x + 2y) + f (x − 2y) = 4f (x + y) + 4f (x − y) − 6f (x) + 2f (2y) − 8f (y).

It was shown in [[34], Lemma 2.1] that g(x) := f(2x) - 4f(x) and h(x) := f(2x) - 16f(x)

are quartic and quadratic, respectively, and that f (x) = 1
12g(x) − 1

12h(x) .

2. Hyers-Ulam stability of the functional equation (1.3): an odd mapping
case
For a given mapping f, we define

Df (x, y) := f (x + 2y) + f (x − 2y) − 4f (x + y) − 4f (x − y) + 6f (x)

−f (2y) − f (−2y) + 4f (y) + 4f (−y).

In this section, we prove the Hyers-Ulam stability of the functional equation Df(x, y)

= 0 in paranormed spaces: an odd mapping case.

Note that P(2x) ≤ 2P(x) for all x Î Y.

Theorem 2.1. Let r, θ be positive real numbers with r >1, and let f : Y ® X be an

odd mapping such that

P(Df (x, y)) ≤ θ(‖x‖r + ∥∥y∥∥r) (2:1)

for all x, y Î Y. Then there exists a unique additive mapping A : Y ® X such that

P(f (2x) − 8f (x) − A(x)) ≤ 2r + 9
2r − 2

θ‖x‖r (2:2)

for all x Î Y.

Proof. Letting x = y in (2.1), we get

P(f (3y) − 4f (2y) + 5f (y)) ≤ 2θ
∥∥y∥∥r (2:3)

for all y Î Y.

Replacing x by 2y in (2.1), we get

P(f (4y) − 4f (3y) + 6f (2y) − 4f (y)) ≤ (2p + 1)θ
∥∥y∥∥r (2:4)

for all y Î Y.

By (2.3) and (2.4),

P(f (4y) − 10f (2y) + 16f (y))

≤ P(4(f (3y) − 4f (2y) + 5f (y))) + P(f (4y)− 4f (3y) + 6f (2y) − 4f (y))

≤ 4P(f (3y) − 4f (2y) + 5f (y)) + P(f (4y) − 4f (3y) + 6f (2y) − 4f (y))

≤ 8θ
∥∥y∥∥r + (2r + 1)θ

∥∥y∥∥r = (2r + 9)θ
∥∥y∥∥r

(2:5)

for all y Î Y. Replacing y by x
2 and letting g(x) := f(2x) - 8f(x) in (2.5), we get

P
(
g(x) − 2g

( x

2

))
≤ 2r + 9

2r
θ‖x‖r
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for all x Î Y. Hence

P
(
2lg

( x

2l

)
− 2mg

( x
2m

))
≤

m−1∑
j=l

(2r + 9)2j

2rj+r
θ‖x‖r (2:6)

for all nonnegative integers m and l with m >l and all x Î Y. It follows from (2.6)

that the sequence {2kg( x
2k )} is Cauchy for all x Î Y. Since X is complete, the sequence

{2kg( x
2k )} converges. So one can define the mapping A : Y ® X by

A(x) := lim
k→∞

2kg
( x

2k

)

for all x Î Y.

By (2.1),

P(DA(x, y)) = lim
k→∞

P
(
2kDg

( x

2k
,
y

2k

))
≤ 2kθ

2rk
(2r + 8)(‖x‖r + ∥∥y∥∥r) = 0

for all x, y Î Y. So DA(x, y) = 0. Since g : Y ® X is odd, A : Y ® X is odd. So the

mapping A : Y ® X is additive. Moreover, letting l = 0 and passing the limit m ® ∞

in (2.6), we get (2.2). So there exists an additive mapping A : Y ® X satisfying (2.2).

Now, let T : Y ® X be another additive mapping satisfying (2.2). Then we have

P(A(x) − T(x)) = P
(
2pA

( x
2q

)
− 2qT

( x
2q

))

≤ P
(
2q

(
A

( x
2q

)
− g

( x
2q

)))
+ P

(
2q

(
T

( x
2q

)
− g

( x
2q

)))

≤ 2(2r + 9)2q

(2r − 2)2rq
θ‖x‖r ,

which tends to zero as q ® ∞ for all x Î Y. So we can conclude that A(x) = T(x) for

all x Î Y. This proves the uniqueness of A. Thus the mapping A : Y ® X is a unique

additive mapping satisfying (2.2).

Theorem 2.2. Let r be a positive real number with r < 1, and let f : X ® Y be an odd

mapping such that
∥∥Df (x, y)

∥∥ ≤ P(x)r + P(y)r (2:7)

for all x, y Î X. Then there exists a unique additive mapping A : X ® Y such that

∥∥f (2x) − 8f (x) − A(x)
∥∥ ≤ 9 + 2r

2 − 2r
P(x)r (2:8)

for all x Î X.

Proof. Letting x = y in (2.7), we get
∥∥f (3y) − 4f (2y) + 5f (y)

∥∥ ≤ 2P(y)r (2:9)

for all y Î X.

Replacing x by 2y in (2.7), we get
∥∥f (4y) − 4f (3y) + 6f (2y) − 4f (y)

∥∥ ≤ (2p + 1)P(y)r (2:10)

for all y Î X.
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By (2.9) and (2.10),
∥∥f (4y) − 10f (2y) + 16f (y)

∥∥
≤ ∥∥4(f (3y) − 4f (2y) + 5f (y))

∥∥ +
∥∥f (4y) − 4f (3y) + 6f (2y) − 4f (y)

∥∥
≤ 4

∥∥f (3y) − 4f (2y) + 5f (y)
∥∥ +

∥∥f (4y) − 4f (3y) + 6f (2y) − 4f (y)
∥∥

≤ 8P(y)r + (2r + 1)P(y)r = (2r + 9)P(y)r

(2:11)

for all y Î X. Replacing y by x and letting g(x) := f(2x) - 8f(x) in (2.11), we get
∥∥∥∥g(x) − 1

2
g(2x)

∥∥∥∥ ≤ 2r + 9
2

P(x)r

for all x Î X. Hence

∥∥∥∥ 1
2l
g(2lx) − 1

2m
g(2mx)

∥∥∥∥ ≤
m−1∑
j=l

(2r + 9)2r j
2j+1

P(x)r (2:12)

for all nonnegative integers m and l with m >l and all x Î X. It follows from (2.12)

that the sequence { 1
2k g(2

kx)} is Cauchy for all x Î X. Since Y is complete, the

sequence { 1
2k g(2

kx)} converges. So one can define the mapping A : X ® Y by

A(x) := lim
k→∞

1
2k

g(2kx)

for all x Î X.

By (2.7),

∥∥DA(x, y)∥∥ = lim
k→∞

∥∥∥∥ 1
2k

Dg(2kx, 2ky)

∥∥∥∥ ≤ 2rk

2k
(2r + 8)(P(x)r + P(y)r) = 0

for all x, y Î X. So DA(x, y) = 0. Since g : X ® Y is odd, A : X ® Y is odd. So the

mapping A : X ® Y is additive. Moreover, letting l = 0 and passing the limit m ® ∞

in (2.12), we get (2.8). So there exists an additive mapping A : X ® Y satisfying (2.8).

Now, let T : X ® Y be another additive mapping satisfying (2.8). Then we have

∥∥A(x) − T(x)
∥∥ =

∥∥∥∥ 1
2q

A(2qx) − 1
2q

T(2qx)

∥∥∥∥
≤

∥∥∥∥ 1
2q

(A(2qx) − g(2qx))

∥∥∥∥ +

∥∥∥∥ 1
2q

(T(2qx) − g(2qx))

∥∥∥∥
≤ 2(9 + 2r)2rq

(2 − 2r)2q
P(x)r ,

which tends to zero as q ® ∞ for all x Î X. So we can conclude that A(x) = T(x) for

all x Î X. This proves the uniqueness of A. Thus the mapping A : X ® Y is a unique

additive mapping satisfying (2.8).

Theorem 2.3. Let r, θ be positive real numbers with r > 3, and let f : Y ® X be an

odd mapping satisfying (2.1). Then there exists a unique cubic mapping C : Y ® X such

that

P(f (2x) − 2f (x) − C(x)) ≤ 2r + 9
2r − 8

θ‖x‖r
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for all x Î Y.

Proof. Replacing y by x
2 and letting g(x) := f(2x) - 2f(x) in (2.5), we get

P
(
g(x) − 8g

( x

2

))
≤ 2r + 9

2r
θ‖x‖r

for all x Î Y.

The rest of the proof is similar to the proof of Theorem 2.1.

Theorem 2.4. Let r be a positive real number with r < 3, and let f : X ® Y be an odd

mapping satisfying (2.7). Then there exists a unique cubic mapping C : X ® Y such that

∥∥f (2x) − 2f (x) − C(x)
∥∥ ≤ 9 + 2r

8 − 2r
P(x)r

for all x Î X.

Proof. Replacing y by x and letting g(x) := f(2x) - 2f(x) in (2.11), we get
∥∥∥∥g(x) − 1

8
g(2x)

∥∥∥∥ ≤ 2r + 9
8

P(x)r

for all x Î X.

The rest of the proof is similar to the proof of Theorem 2.2.

3. Hyers-Ulam stability of the functional equation (1.3): an even mapping
case
In this section, we prove the Hyers-Ulam stability of the functional equation Df(x, y) =

0 in paranormed spaces: an even mapping case.

Note that P(2x) ≤ 2P(x) for all x Î Y.

Theorem 3.1. Let r, θ be positive real numbers with r > 2, and let f : Y ® X be an

even mapping satisfying f(0) = 0 and (2.1). Then there exists a unique quadratic map-

ping Q2 : Y ® X such that

P(f (2x) − 16f (x) − Q2(x)) ≤ 2r + 9
2r − 4

θ‖x‖r

for all x Î Y.

Proof. Letting x = y in (2.1), we get

P(f (3y) − 6f (2y) + 15f (y)) ≤ 2θ
∥∥y∥∥r (3:1)

for all y Î Y.

Replacing x by 2y in (2.1), we get

P(f (4y) − 4f (3y) + 4f (2y) + 4f (y)) ≤ (2r + 1)θ
∥∥y∥∥r (3:2)

for all y Î Y.

By (3.1) and (3.2),

P(f (4y) − 20f (2y) + 64f (y))

≤ P(4(f (3y) − 6f (2y) + 15f (y))) + P(f (4y) − 4f (3y) + 4f (2y) + 4f (y))

≤ 4P(f (3y) − 6f (2y) + 15f (y)) + P(f (4y) − 4f (3y) + 4f (2y) + 4f (y))

≤ 8θ
∥∥y∥∥r + (2r + 1)θ

∥∥y∥∥r = (2p + 9)θ
∥∥y∥∥r

(3:3)
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for all y Î Y. Replacing y by x
2 and letting g(x) := f(2x) - 16f(x) in (3.3), we get

P
(
g(x) − 4g

( x

2

))
≤ 2r + 9

2r
θ‖x‖r

for all x Î Y.

The rest of the proof is similar to the proof of Theorem 2.1.

Theorem 3.2. Let r be a positive real number with r < 2, and let f : X ® Y be an

even mapping satisfying f(0) = 0 and (2.7). Then there exists a unique quadratic map-

ping Q2 : X ® Y such that

∥∥f (2x) − 16f (x) − Q2(x)
∥∥ ≤ 9 + 2r

4 − 2r
P(x)r (3:4)

for all x Î X.

Proof. Letting x = y in (2.7), we get
∥∥f (3y) − 6f (2y) + 15f (y)

∥∥ ≤ 2P(y)r (3:5)

for all y Î X.

Replacing x by 2y in (2.7), we get
∥∥f (4y) − 4f (3y) + 4f (2y) + 4f (y)

∥∥ ≤ (2r + 1)P(y)r (3:6)

for all y Î X.

By (3.5) and (3.6),
∥∥f (4y) − 20f (2y) + 64f (y)

∥∥
≤ ∥∥4(f (3y) − 6f (2y) + 15f (y))

∥∥ +
∥∥f (4y) − 4f (3y) + 4f (2y) + 4f (y)

∥∥
≤ 4

∥∥f (3y) − 6f (2y) + 15f (y)
∥∥ +

∥∥f (4y) − 4f (3y) + 4f (2y) + 4f (y)
∥∥

≤ 8P(y)r + (2r + 1)P(y)r = (2p + 9)P(y)r

(3:7)

for all y Î X. Replacing y by x and letting g(x) := f(2x) - 16f(x) in (3.7), we get
∥∥∥∥g(x) − 1

4
g(2x)

∥∥∥∥ ≤ 2r + 9
4

P(x)r

for all x Î X.

The rest of the proof is similar to the proof of Theorem 2.2.

Theorem 3.3. Let r, θ be positive real numbers with r > 4, and let f : Y ® X be an

even mapping satisfying f(0) = 0 and (2.1). Then there exists a unique quartic mapping

Q4 : Y ® X such that

P(f (2x) − 4f (x) − Q4(x)) ≤ 2r + 9
2r − 16

θ‖x‖r

for all x Î Y.

Proof. Replacing y by x
2 and letting g(x) := f(2x) - 4f(x) in (3.3), we get

P
(
g(x) − 16g

( x

2

))
≤ 2r + 9

2r
θ‖x‖r

for all x Î Y.

The rest of the proof is similar to the proof of Theorem 2.1.

Park and Lee Advances in Difference Equations 2012, 2012:63
http://www.advancesindifferenceequations.com/content/2012/1/63

Page 7 of 9



Theorem 3.4. Let r be a positive real number with r < 4, and let f : X ® Y be an

even mapping satisfying f(0) = 0 and (2.7). Then there exists a unique quartic mapping

Q4 : X ® Y such that

∥∥f (2x) − 4f (x) − Q4(x)
∥∥ ≤ 9 + 2r

16 − 2r
P(x)r

for all x Î X.

Proof. Replacing y by x and letting g(x) := f(2x) - 4f(x) in (3.7), we get
∥∥∥∥g(x) − 1

16
g(2x)

∥∥∥∥ ≤ 2r + 9
16

P(x)r

for all x Î X.

The rest of the proof is similar to the proof of Theorem 2.2.

Let fo(x) :=
f (x)−f (−x)

2
and fe(x) :=

f (x)+f (−x)
2

. Then fo is odd and fe is even. fo, fe satisfy

the functional equation (1.3). Let go(x) := fo(2x) - 2fo(x) and ho(x) := fo(2x) - 8fo(x).

Then fo(x) = 1
6go(x) − 1

6ho(x) . Let ge(x) := fe(2x) - 4fe(x) and he(x) := fe(2x) - 16fe(x).

Then fe(x) = 1
12ge(x) − 1

12he(x) . Thus

f (x) =
1
6
go(x) − 1

6
ho(x) +

1
12

ge(x) − 1
12

he(x).

Theorem 3.5. Let r, θ be positive real numbers with r > 4. Let f : Y ® X be a map-

ping satisfying f(0) = 0 and (2.1). Then there exist an additive mapping A : Y ® X, a

quadratic mapping Q2 : Y ® X, a cubic mapping C : Y ® X and a quartic mapping

Q4 : Y ® X such that

P(24f (x) − 4A(x) − 2Q2(x) − 4C(x) − 2Q4(x))

≤
(
4(2r + 9)
2r − 2

+
2(2r + 9)
2r − 4

+
4(2r + 9)
2r − 8

+
2(2r + 9)
2r − 16

)
θ‖x‖r

for all x Î Y.

Theorem 3.6. Let r be a positive real number with r < 1. Let f : X ® Y be a mapping

satisfying f(0) = 0 and (2.7). Then there exist an additive mapping A : X ® Y, a quad-

ratic mapping Q2 : X ® Y, a cubic mapping C : X ® Y and a quartic mapping Q4 : X

® Y such that
∥∥24f (x) − 4A(x) − 2Q2(x) − 4C(x) − 2Q4(x)

∥∥
≤

(
4(2r + 9)
2 − 2r

+
2(2r + 9)
4 − 2r

+
4(2r + 9)
8 − 2r

+
2(2r + 9)
16 − 2r

)
P(x)r

for all x Î X.

Acknowledgements
This study was supported by the Daejin University Research Grants in 2012.

Author details
1Research Institute for Natural Sciences, Hanyang University, Seoul 133-791, Korea 2Department of Mathematics, Daejin
University, Kyeonggi 487-711, Korea

Park and Lee Advances in Difference Equations 2012, 2012:63
http://www.advancesindifferenceequations.com/content/2012/1/63

Page 8 of 9



Authors’ contributions
All authors conceived of the study, participated in its design and coordination, drafted the manuscript, participated in
the sequence alignment, and read and approved the final manuscript.

Competing interests
The authors declare that they have no competing interests.

Received: 5 March 2012 Accepted: 17 May 2012 Published: 17 May 2012

References
1. Fast, H: Sur la convergence statistique. Colloq Math. 2, 241–244 (1951)
2. Steinhaus, H: Sur la convergence ordinaire et la convergence asymptotique. Colloq Math. 2, 73–34 (1951)
3. Fridy, JA: On statistical convergence. Analysis. 5, 301–313 (1985)
4. Karakus, S: Statistical convergence on probabilistic normed spaces. Math Commun. 12, 11–23 (2007)
5. Mursaleen, M: λ-statistical convergence. Math Slovaca. 50, 111–115 (2000)
6. Mursaleen, M, Mohiuddine, SA: On lacunary statistical convergence with respect to the intuitionistic fuzzy normed

space. J Comput Anal Math. 233, 142–149 (2009). doi:10.1016/j.cam.2009.07.005
7. Šalát, T: On the statistically convergent sequences of real numbers. Math Slovaca. 30, 139–150 (1980)
8. Kolk, E: The statistical convergence in Banach spaces. Tartu Ul Toime. 928, 41–52 (1991)
9. Wilansky, A: Modern Methods in Topological Vector Space. McGraw-Hill International Book Co., New York (1978)
10. Ulam, SM: A Collection of the Mathematical Problems. Interscience Publication, New York (1960)
11. Hyers, DH: On the stability of the linear functional equation. Proc Natl Acad Sci USA. 27, 222–224 (1941). doi:10.1073/

pnas.27.4.222
12. Aoki, T: On the stability of the linear transformation in Banach spaces. J Math Soc Jpn. 2, 64–66 (1950). doi:10.2969/

jmsj/00210064
13. Rassias, TM: On the stability of the linear mapping in Banach spaces. Proc Am Math Soc. 72, 297–300 (1978).

doi:10.1090/S0002-9939-1978-0507327-1
14. Găvruta, P: A generalization of the Hyers-Ulam-Rassias stability of approximately additive mappings. J Math Anal Appl.

184, 431–436 (1994). doi:10.1006/jmaa.1994.1211
15. Rassias, TM: Problem 16; 2, in Report of the 27th International Symposium on Functional Equations. Aequationes Math

39, 292–293 (1990). 309
16. Gajda, Z: On stability of additive mappings. Int J Math Math Sci. 14, 431–434 (1991). doi:10.1155/S016117129100056X
17. Rassias, TM, Šemrl, P: On the behaviour of mappings which do not satisfy Hyers-Ulam stability. Proc Am Math Soc. 114,

989–993 (1992). doi:10.1090/S0002-9939-1992-1059634-1
18. Czerwik, P: Functional Equations and Inequalities in Several Variables. World Scientific Publishing Company, New Jersey

(2002)
19. Hyers, DH, Isac, G, Rassias, TM: Stability of Functional Equations in Several Variables. Birkhäuser, Basel (1998)
20. Rassias, JM: On approximation of approximately linear mappings by linear mappings. J Funct Anal. 46, 126–130 (1982).

doi:10.1016/0022-1236(82)90048-9
21. Skof, F: Proprietà locali e approssimazione di operatori. Rend Sem Mat Fis Milano. 53, 113–129 (1983). doi:10.1007/

BF02924890
22. Cholewa, PW: Remarks on the stability of functional equations. Aequationes Math. 27, 76–86 (1984). doi:10.1007/

BF02192660
23. Czerwik, S: On the stability of the quadratic mapping in normed spaces. Abh Math Sem Univ Hamburg. 62, 59–64

(1992). doi:10.1007/BF02941618
24. Aczel, J, Dhombres, J: Functional Equations in Several Variables. Cambridge University Press, Cambridge (1989)
25. Eshaghi Gordji, M, Savadkouhi, MB: Stability of a mixed type cubic-quartic functional equation in non-Archimedean

spaces. Appl Math Lett. 23, 1198–1202 (2010). doi:10.1016/j.aml.2010.05.011
26. Isac, G, Rassias, TM: On the Hyers-Ulam stability of ψ-additive mappings. J Approx Theory. 72, 131–137 (1993).

doi:10.1006/jath.1993.1010
27. Jun, K, Lee, Y: A generalization of the Hyers-Ulam-Rassias stability of the pexiderized quadratic equations. J Math Anal

Appl. 297, 70–86 (2004). doi:10.1016/j.jmaa.2004.04.009
28. Jung, S: Hyers-Ulam-Rassias Stability of Functional Equations in Mathematical Analysis. Hadronic Press lnc., Palm Harbor,

FL (2001)
29. Park, C: Homomorphisms between Poisson JC*-algebras. Bull Braz Math Soc. 36, 79–97 (2005). doi:10.1007/s00574-005-

0029-z
30. Rassias, JM: Solution of a problem of Ulam. J Approx Theory. 57, 268–273 (1989). doi:10.1016/0021-9045(89)90041-5
31. Jun, K, Kim, H: The generalized Hyers-Ulam-Rassias stability of a cubic functional equation. J Math Anal Appl. 274,

867–878 (2002). doi:10.1016/S0022-247X(02)00415-8
32. Lee, S, Im, S, Hwang, I: Quartic functional equations. J Math Anal Appl. 307, 387–394 (2005). doi:10.1016/j.

jmaa.2004.12.062
33. Eshaghi-Gordji, M, Kaboli-Gharetapeh, S, Park, C, Zolfaghari, S: Stability of an additive-cubic-quartic functional equation.

Adv Diff Equ 2009 (2009). Article ID 395693, 20
34. Eshaghi-Gordji, M, Abbaszadeh, S, Park, C: On the stability of a generalized quadratic and quartic type functional

equation in quasi-Banach spaces. J Inequal Appl 2009 (2009). Article ID 153084, 26

doi:10.1186/1687-1847-2012-63
Cite this article as: Park and Lee: An AQCQ-functional equation in paranormed spaces. Advances in Difference
Equations 2012 2012:63.

Park and Lee Advances in Difference Equations 2012, 2012:63
http://www.advancesindifferenceequations.com/content/2012/1/63

Page 9 of 9

http://www.ncbi.nlm.nih.gov/pubmed/16578012?dopt=Abstract

	Abstract
	1. Introduction and preliminaries
	2. Hyers-Ulam stability of the functional equation (1.3): an odd mapping case
	3. Hyers-Ulam stability of the functional equation (1.3): an even mapping case
	Acknowledgements
	Author details
	Authors' contributions
	Competing interests
	References

