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1 Introduction
There has been a particular interest in the theory of Korteweg-de Vries (KdV) equation

due to its significance in nonlinear dispersive wave theory. Many different real-world

nonlinear physical problems are modeled by this well-known equation [1-4]. For exam-

ple, this equation has many direct physical applications to solids, liquids, gases, plasma,

the FPU problem, rotating flow in tube [2,5], and so on. We refer the readers to Jeffrey

and Kakutani [6] and Miura [7] for more applications.

Due to physical reasons, Kato [8-10], Bona and Smith [11], Goldstein [12], Bourgain

[13], Colliander et al. [14] among others, considered one-dimensional initial-value pro-

blem of KdV equation, i.e., initial-value problem posed on the entire real line has been

extensively studied in the last decades.

On the other hand, it has widely been argued and accepted [15,16] that for various

reasons, time delay should be taken into consideration in modeling. Zhao and Xu

[17,18] has considered solitary wave solutions of the KdV equation with delays, yet the

initial-value problem of the delay KdV equation has not been dealt with. Therefore, we

want to incorporate a single discrete time delay τ ≥ 0 into KdV equation and consider

the delay KdV-type equation’s initial-value problem.

The aim of this article is to establish the existence and uniqueness for the initial-

value problem of KdV-type equation with time delay. We may take the form as

∂u
∂t

+ u(x, t)
∂u
∂x

+
∂3u
∂x3

= g(x, u(x, t − τ )), t ≥ 0, x ∈ R. (1:1)

where g is a linear or nonlinear scalar-valued function, τ is a positive number. In our

development, the second nonlinear term and the third derivative term in (1.1) will cor-

respond to a negative generator of strongly continuous semigroup Tu(t) of quasi-linear
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operators on a Banach space. Accordingly, our approach will rely primarily on semi-

group methods and (1.1) will be treated as an abstract quasi-linear functional differen-

tial equation in a Banach space.

The rest of this article is organized as follows. Section 2 is devoted to some prelimin-

ary discussion. We establish results on evolution system Uv(t, s) of the operator A(v) =

D3 + uD where D = d/dx, such knowledge is needed for the main results. In Section 3,

we reduce the existence of delay KdV-type equation (1.1) to the local existence of mild

solution of abstract integral equation. In Section 4, we will investigate the classical

solution of (1.1) and some remarks.

2 Preliminary
Before proceeding we shall set forth some notations and terminologies that will be used

throughout the article. X will denote a Banach space over a real or complex field. Let C

= C([-τ, 0]; X) denote the Banach space of continuous X-valued functions on [-τ, 0] with

the supremum norm ∥ · ∥C, where τ > 0. For any real numbers a ≤ b, t Î [a, b] and any

continuous functions u: [a - τ, b] ® X, ut denotes the element of C given by ut(θ) = u(t

+ θ) for θ Î [-τ, 0]. For a linear or nonlinear operator A from X to X, let Dom(A) denote

its domain. A linear operator A : Dom(A) ⊂ X ® X, the resolvent set r(A) of A is the set

of all complex numbers l Î ℂ such that (lI- A): Dom(A) ® X is bijective. B(X, X) will

denote the space of bounded linear operators from X to X and if A Î B(X, X), then ║A║
is the norm of A. If A is linear and l Î r(A), then R(l; A) is (A - lI)-1 Î B(X, X).

Definition 2.1. [16] A strongly continuous semigroup {T(t)}t ≥ 0 of continuous opera-

tors on X is a family of continuous mappings T(t) : X ® X, t ≥ 0, satisfying

(i) T(0)x = x, for all x Î X;

(ii) T(t + s)= T(t)T(s), for all s, t ≥ 0;

(iii) For x Î X fixed, T(·)x : [0, ∞) ® X is continuous.

The infinitesimal generator AT of T(t), t ≥ 0, is the function from X to X defined by

ATx = lim
t→0+

T(t)x − x

t

with Dom(AT) all x for which this limit exists.

Definition 2.2. (Chap. 5 of [19]) A two-parameter family of bounded linear opera-

tors U(t, s), 0 ≤ s ≤ t ≤ T, on X is called an evolution system if the following two condi-

tions are satisfied:

(i) U(s, s) = I, U(t, r)U(r, s) = U(t, s) for 0 ≤ s ≤ r ≤ t ≤ T.

(ii) (t, s) ® U(t, s) is strong continuous for 0 ≤ s ≤ t ≤ T.

G(X, M, b) denotes the set of all linear operators A in X such that -A generates a

strongly continuous semigroup T(t) with ║T(t)║ ≤ Mebt.

For every real s, we introduce a Hilbert space Hs(ℝ) as follow. Let u Î L2(ℝ) and set

‖u‖s =
(∫

(1 + ξ2)
s∣∣û(ξ)∣∣2dξ

)1/2
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where û denotes the Fourier transform of u, ∫ is the integral over all of ℝ. The linear

space of functions u Î L2(ℝ) for which ║u║s is finite is a pre-Hilbert space with the

scalar product

(u, v)s =
∫

(1 + ξ2)
s
û(ξ) ¯̂v(ξ)dξ .

The completion of this space with respect to the norm ∥ · ∥s is a Hilbert space which

we denote by Hs(ℝ). It is clear that H0(ℝ) = L2(ℝ). Obviously for t ≥ s, Hs(ℝ) ⊃ Ht (ℝ)

and ║u║t ≥ ∥u∥s for u Î Ht (ℝ) (see, e.g., Chap. 8 of [19]).

Let X = L2(ℝ) = H0(ℝ) and Y = Hs(ℝ) with s ≥ 3, thus Y ⊂ X. We define an operator

A0 by Dom(A0) = H3(ℝ) and A0u = D3u for u Î Dom(A0) where D = d/dx. For every v

Î Y = Hs(ℝ), s ≥ 3, an operator A1(v) is defined by Dom(A1(v)) = H1(ℝ) and for u Î
Dom(A1(v)), A1(v)u = vDu. Let A(v) = A0 + A1(v), we then have:

Lemma 2.1. [19]For every v Î Y, the operator A(v) Î G(X, 1, ω) with ω ≥ ω0(v) =

c0║v║Y, where c0 > 0 is a constant independent of v Î Y.

Let Br be the ball of radius r > 0 in Y centered at the origin. By the special form of

the family A(v) Î G(X, 1, ω), v Î Br, we get

Lemma 2.2. [8]If v Î C([0, T]; X) has values in Br then there exists a unique evolution

system Uv(t, s), 0 ≤ s ≤ t ≤ T, in X satisfying

(E1) ║Uv(t, s)║ ≤ eω(t - s), for 0 ≤ s ≤ t ≤ T,

(E2) ∂+

∂ t Uv(t, s)w
∣∣
t=s = −A(v(s))w for w Î Y, 0 ≤ s ≤ t ≤ T,

(E3) ∂
∂sUv(t, s)w = Uv(t, s)A(v(s))w for w Î Y, 0 ≤ s ≤ t ≤ T.

The operators A(v) Î G(X, 1, ω), v Î Br also have the following property.

Lemma 2.3. [19]There is a constant c such that for every u,v Î C([0, T]; X) with

values in Br and every w Î Y, we have

∥∥Uu(t, s)w − Uv(t, s)w
∥∥
X ≤ c‖w‖Y

t∫
s

∥∥u(τ ) − v(τ )
∥∥
Xdτ .

3 The existence of local mild solution
In this section, we will consider the local existence of mild solution for the initial-value

problem of the KdV-type equation with delay⎧⎨
⎩

∂u

∂t
(x, t) + u(x, t)

∂u

∂x
(x, t) +

∂3u

∂x3
(x, t) = g(x, ut(x)), t ≥ 0, x ∈ R

u(x, s) = φ(x, s), −τ ≤ s ≤ 0, x ∈ R,
(3:1)

where the initial data j : ℝ × [-τ, 0] ® ℝ are continuous, ut(x) Î C([-τ, 0];ℝ), i.e., ut
(x)(s) = u(x, t + s), - τ ≤ s ≤ 0. We will also assume g is globally Lipschitz in C := C([-τ,

0]; X) uniformly in x Î ℝ, that is, there exists L > 0 such that∣∣g(x,ϕ) − g(x, ϕ̃)
∣∣ ≤ L‖ϕ − ϕ̃‖C for all ϕ, ϕ̃ ∈ C .

We prove our main existence theorem in an integrated form using a method derived

from the fundamental results of Pazy [19], Travis and Webb [20], and Wu [16].

Motivated by Wu [16], we define the mild solution as following.

Definition 3.1. Let A(v) Î G(X, 1, ω), v Î Br and Uv(t, s), 0 ≤ s ≤ t ≤ T be the evolu-

tion system given by Lemma 2.2. For every function v Î C([0, T]; X) with values in Br

and j Î C, a continuous solution u of the integral equation
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u(t) = Uv(t, 0)φ +

t∫
0

Uv(t, r)f (r, u(r − τ ))dr

will be called a mild solution of the initial-value problem

{
∂

∂t
u(x, t) = A(v)u + f (t, u(x, t − τ )), 0 ≤ t ≤ T, x ∈ R,

u(x, s) = φ(x, s), −τ ≤ s ≤ 0, x ∈ R,

Define F : C ® X by F(�)(x) := g(x, �(x, ·)), x Î ℝ. Then F is globally Lipschitz in C,

that is,
∥∥F(ϕ) − F(ϕ̃)

∥∥
X ≤ L‖ϕ − ϕ̃‖C for ϕ̃,ϕ ∈ C . For any given v Î C([0, T], X)

with the value in Br, we have

Theorem 3.1. Let F : [0,T] × C ® X be continuous and satisfy a Lipschitz condition∥∥F(t,ϕ) − F(t, ϕ̃)
∥∥
X ≤ L‖ϕ − ϕ̃‖C, t ∈ [0,T], ϕ, ϕ̃ ∈ C, (3:2)

where L is a positive constant. Then for a given j Î C, there exists a unique continu-

ous function u : [-τ, T] ® X which solves the following initial value problem of abstract

integral equation⎧⎨
⎩u(t) = Uv(t, 0)φ(0) +

1∫
0
Uv(t, s)F(s, us)ds, 0 ≤ t ≤ T,

u0 = φ.
(3:3)

Proof. For any given v Î C([0, T], X) with the values in Br, there exists a unique evo-

lution system Uv(t, s), 0 ≤ s ≤ t ≤ T in X satisfying ║Uv(t, s)║ ≤ eω(t - s) for t ≥ 0, where

ω is a fixed constant. For any continuous function w : [-τ, T] ® X, Uv(t, s)F(s, ws) is

continuous in s Î [0, t] by virtue of the continuity of F, the continuity of ws as a func-

tion in s from [0, t] to C and the continuity of Uv(t, s), 0 ≤ s ≤ t ≤ T. Define

u0(t) =
{

φ(t), t ∈ [−τ , 0],
Uv(t, 0)φ(0), t ∈ [0,T].

In general, for each positive integer n, define

un(t) =

⎧⎨
⎩

φ(t), t ∈ [−τ , 0],

Uv(t, 0)φ(0) +
t∫
0
Uv(t, s)F(s, un−1

s )ds, t ∈ [0,T].

Since F is continuous, there exists N such that
∥∥F(s, u0s )∥∥X ≤ N for 0 ≤ s ≤ T. Then

for 0 ≤ s ≤ T, we have∥∥u1(t) − u0(t)
∥∥
X ≤ teωTN,

and, in general,

∥∥un(t) − un−1(t)
∥∥
X ≤ NLn−1enωT

tn

n!
.

Thus, for any natural number m and t Î [-τ, T],

m∑
k=1

∥∥∥uk(t) − uk−1(t)
∥∥∥
X

≤
m∑
k=1

NLk−1ekωTtk

k!
≤ N

L
eLTe

ωT
.
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By Weierstrass test, the function series

u0(t) + [u1(t) − u0(t)] + · · · + [un(t) − un−1(t)] + · · ·

is uniformly convergent on [-τ, T], that is, the limit u(t) := lim
n→∞ un(t) exists uni-

formly on [-τ, T] and u(t) is continuous on [-τ, T].

To establish that u(t) satisfies (3.3), we observe that

||u(t) − Uv(t, 0)φ(0) −
t∫

0

Uv(t, s)F(s, us)ds||X

≤ ||u(t) − un(t)||X + ||
t∫

0

Uv(t, s)[F(s, us) − F(s, un−1
s )] ≤ 2N

∞∑
k=n+1

Lk−1ekωT
tk

k!
.

Finally, to verify the uniqueness assertion, we suppose u*(t) satisfies (3.3), that is,

u∗(t) = Uv(t, 0)φ(0) +

t∫
0

Uv(t, s)F(s, u∗
s )ds, 0 ≤ t

Thus,

u(t) − u∗(t) =

t∫
0

Uv(t, s)[F(s, us) − F(s, u∗
s )]ds. (3:4)

Let K = max
0≤s≤T

∥∥us − u∗
s

∥∥
C , then (3.4) yields

∥∥u(t) − u∗(t)
∥∥
X ≤ K∗eωTt, K∗ = LK for t ∈ [0,T].

Substituting above inequality into (3.4), we get

∥∥u(t) − u∗(t)
∥∥
X ≤ K∗e2ωT t

2

2!
for t ∈ [0,T].

Then

∥∥u(t) − u∗(t)
∥∥
X ≤ K∗ekωT

tk

k!
, k = 1, 2, . . . .

Let k ® ∞, we have ║u(t) - u*(t)║X = 0. Therefore, u(t) ≡ u*(t) for t Î [-τ, T] and the

proof is complete.

For every given function j Î C and v Î C([0, T]; X) with values in Br, the initial-

value problem⎧⎨
⎩

du
dt

= A(v)u + F, for 0 ≤ t ≤ T,

u0 = φ,

where A(v) = vD + D3, possesses a unique mild solution.

We note that (E2) and (E3) of Lemma 2.2 imply the following conditions, respec-

tively (Chap. 5 of [19]):
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(E4) For every u Î C([0, T’] : X) where 0 ≤ T’ ≤ T, satisfying u(t) Î Br for 0 ≤ t ≤ T’,

we have

Uu(t, s)Y ⊂ Y, for 0 ≤ s ≤ t ≤ T′,

and Uu(t, s) is strongly continuous in Y for 0 ≤ s ≤ t ≤ T’.

(E5) Closed convex bounded subset of Y are also closed in X.

It is not difficult to obtain the following result.

Corollary 3.2. If F with values in Y satisfies the conditions of Theorem 3.1, then for

every g Î C([-τ, T];Y) and v Î C([0, T], X) with the value in Br, the integral equation

w(t) =

⎧⎨
⎩ g(t) +

t∫
0
Uv(t, s)F(s,ws)ds, 0 ≤ t ≤ T,

g(t), τ ≤ t ≤ 0,

has a unique solution w Î C([0, T’];Y).

Let C([-τ, 0];Y) denote the Banach space of continuous Y-valued function on [-τ, 0]

with supremum norm ‖·‖CY . Next, we consider the following initial value problem of

integral equation⎧⎨
⎩u(t) = Uu(t, 0)φ(0) +

t∫
0
Uu(t, s)F(s, us)ds, 0 ≤ t ≤ T,

u0 = φ.
(3:5)

Theorem 3.3. If F : [0, T] × C ® X with values in Y and satisfy a Lipschitz condition∥∥F(t,ϕ) − F(t, ϕ̃)
∥∥
Y ≤ L‖ϕ − ϕ̃‖C, t ∈ [0,T], ϕ, ϕ̃ ∈ C, (3:6)

where L is a positive constant and
φ ∈ C([−τ , 0];Y),φ(0) ∈ B r

2
. Then there is a T’,

0 ≤ T’ ≤ T such that the initial-value problem of integral equation (3.5) has a unique

solution u Î C([-τ, T’]; X) with u(t) Î Br for 0 ≤ t ≤ T’. Moreover, the mapping j ® u

is Lipschitz continuous from C into C([-τ, T’]; X).

We note that (3.6) implies (3.2). Therefore, the initial value problem (3.3) possesses a

unique solution u Î C([0, T]; X). That is for every given v Î C([0, T], X) with the

values in Br, (3.3) defines a mapping v ® u = G(v), that is, G: C([0, T]; X) ® C([0, T];

X) such that

u(t) = Gv(t) := Uv(t, 0)φ(0) +

t∫
0

Uv(t, s)F(s, us)ds, 0 ≤ t ≤ T.

The fixed points of this mapping are defined to be solutions of (3.5).

Proof. We note first that from the construction of Uv(t, s) and (E4) it follows that∥∥Uv(t, s)
∥∥
Y ≤ γ for 0 ≤ s ≤ t ≤ T (3:7)

where v Î C([0, T], X) with the values in Br. If ║w║Y <r and v Î Br then∥∥A(v)u∥∥Y ≤ (1 + r)‖u‖Y . (3:8)

Since F is continuous, there exists N* such that ║F(s, �)║Y ≤ N* ║j(0)║Y, s Î [0, T],
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where ϕ ∈ C([−τ , 0];Y), ‖ϕ‖CY
≤ max{‖φ‖CY

, r}. .
Let N := max{L, N*}, and choose

T′ = min{T, r
2eγ (1 + r +N)‖φ‖CY

,
1
γ L

,
1
N

(√
1 +

2N
cr

− 1

)
,
ln(ω + 3L) − ln(3L)

ω
}, (3:9)

where c is the constant appearing in Lemma 2.3. We consider the subset Ω of C([0,

T’]; X) defined by

	 = {u : u ∈ C([0,T′];X), u(0) = φ0,
∥∥u(t) − φ0

∥∥
Y ≤ r

2
for 0 ≤ t ≤ T′},

where j0 := j (0). By our assumptions and Lemma 2.2, it is clear that Ω ⊂ Br, G is

defined on Ω. From (E5) it follows that Ω is a closed subset of C([0, T’]; X). Next we

consider the mapping

u(t) = Gv(t) = Uv(t, 0)φ0 +

t∫
0

Uv(t, s)F(s, us)ds.

Clearly for any v Î Ω, u(0) = Gv(0) = j0, let u = j on [-τ, 0]. It is clear that G’s

range is in C([0, T’]; X). We claim that G : Ω ® Ω. From (E4) it follows that G(v(t)) Î
Y for 0 ≤ t ≤ T’. By (3.7) and (3.8), we have

∥∥u(t) − φ0
∥∥
Y =

∥∥Gv(t) − φ0
∥∥
Y

≤ ∥∥Uv(t, 0)φ0 − φ0
∥∥
Y +

t∫
0

∥∥Uv(t, s)F(s, us) − F(s,φ)
∥∥
Yds +

t∫
0

∥∥Uv(t, s)F(s,φ)
∥∥
Yds

≤
t∫

0

∥∥Uv(t, s)A(v)φ0
∥∥
Yds+

t∫
0

∥∥Uv(t, s)
∥∥
Y

∥∥F(s, us) − F(s,φ)
∥∥
Yds

+

t∫
0

∥∥Uv(t, s)F(s,φ)
∥∥
Yds

≤ γ (1 + r)‖φ0‖YT′ + γ L

t∫
0

‖us − φ‖Cds + γN‖φ0‖YT′

From the last inequality it follows that

‖ut − φ‖CY
≤ γT′(1 + r +N)‖φ‖CY

+ γ L

t∫
0

‖us − φ‖CY
ds.

By Gronwall’s inequality and (3.9), we get

‖ut − φ‖CY
≤ γT′(1 + r +N)‖φ‖CYeγ LT

′ ≤ r
2
.

Obviously,
∥∥u(t) − φ0

∥∥
Y ≤ r

2 . Therefore G : Ω ® Ω.
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Moreover, if v1, v2 Î Ω and u1 = G(v1), u2 = G(v2), then by Lemma 2.3, we get∥∥u1(t) − u2(t)
∥∥
X

≤ ∥∥Uv1(t, 0)φ0 − Uv2(t, 0)φ0
∥∥
X +

t∫
0

∥∥Uv1(t, s)F(s, u1s) − Uv2(t, s)F(s, u2s)
∥∥
Xds

≤ c‖φ0‖Y
t∫

0

‖v1 − v2‖Xdτ +

t∫
0

∥∥(
Uv1(t, s) − Uv2(t, s)

)
F(s, u1s)

∥∥
Xds

+

t∫
0

∥∥Uv2(t, s)(F(s, u1s) − F(s, u2s))
∥∥
Xds

≤ c‖φ0‖YT′‖v1 − v2‖∞ + c

t∫
0

∥∥F(s, u1s)∥∥Y

s∫
0

∥∥v1(τ ) − v2(τ )
∥∥
Xdτds

+L

t∫
0

∥∥Uv2(t, s)
∥∥ ‖u1s − u2s‖Cds

≤ cT′‖φ0‖Y‖v1 − v2‖∞ + c‖φ0‖YN
T′2

2
‖v1 − v2‖∞ +

L
ω

(
eωT

′ − 1
)

‖u1 − u2‖∞

≤ 1
2

‖v1 − v2‖∞ +
1
3

‖u1 − u2‖∞,

where ║·║∞ is the usual supremum norm in C([0, T’]; X). From the last inequality, it

follows readily that

∥∥G(v1) − G(v2)
∥∥

∞ ≤ 3
4

‖v1 − v2‖∞.

So G is a contraction. From the contraction mapping theorem it follows that G has a

unique fixed point u Î Ω which is the desired solution of (3.5).

The Lipschitz continuity of the map j ® u is the consequence of the following argu-

ment. Let û be a solution of (3.5) on [0, T’] with the initial value φ̂ . Then

∥∥u(t) − û(t)
∥∥
X

≤
∥∥∥Uu(t, 0)φ(0) − Uû(t, 0)φ̂(0)

∥∥∥
X
+

t∫
0

∥∥Uu(t, s)F(s, us) − Uû(t, s)F(s, ûs)
∥∥
Xds

≤ ∥∥Uu(t, 0)φ(0) − Uû(t, 0)φ(0)
∥∥
X +

∥∥∥Uû(t, 0)φ(0) − Uû(t, 0)φ̂(0)
∥∥∥
X

+

t∫
0

∥∥Uu(t, s)F(s, us) − Uû(t, s)F(s, us)
∥∥
Xds

+

t∫
0

∥∥Uû(t, s)F(s, us) − Uû(t, s)F(s, ûs)
∥∥
Xds

≤ eωt
∥∥∥φ(0) − φ̂(0)

∥∥∥
X
+ c

∥∥φ(0)
∥∥
Y

t∫
0

∥∥u(s) − û(s)
∥∥
Xds

+L

t∫
0

eω(t−s)
∥∥us − ûs

∥∥
Cds + c

t∫
0

∥∥F(s, us)∥∥Y
s∫

0

∥∥u(s) − û(s)
∥∥
Xdξds

≤ eωt
∥∥∥φ(0) − φ̂(0)

∥∥∥
X
+ c

∥∥φ(0)
∥∥
Y

t∫
0

∥∥u(s) − û(s)
∥∥
Xds

+L

t∫
0

eω(t−s)
∥∥us − ûs

∥∥
Cds + cN

∥∥φ(0)
∥∥
YT

′
t∫

0

∥∥u(s) − û(s)
∥∥
Xds.
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By the fact that ω > 0, for 0 ≤ t ≤ T’, we get∥∥ut − ût
∥∥
C

≤ eωt
∥∥∥φ − φ̂

∥∥∥
C
+ L

t∫
0

eω(t−s)
∥∥us − ûs

∥∥
C +

cr
2
(1 +NT′)

t∫
0

∥∥us − ûs
∥∥
Cds

≤ eωt
∥∥∥φ − φ̂

∥∥∥
C
+ Leωt

t∫
0

e−ωs
∥∥us − ûs

∥∥
C +

cr
2
(1 +NT′)

t∫
0

eω(t−s)
∥∥us − ûs

∥∥
Cds

which implies, by Gronwall’s inequality, that

∥∥ut − ût
∥∥
C ≤ e(ω+L+

cr
2 (1+NT′))

t∥∥∥φ − φ̂

∥∥∥
C

and therefore

∥∥u − û
∥∥

∞ ≤ e
(
ω+L+ cr2 (1+NT′)

)T′ ∥∥∥φ − φ̂

∥∥∥
C

which yields the Lipschitz continuity of the map j ® u and the proof is complete.

Summarizing the above theorems, we proved the following.

Theorem 3.4. Let F : [0, T] × C ® X with values in Y be continuous and satisfy∥∥F(t,ϕ) − F(t, ϕ̃)
∥∥
Y ≤ L‖ϕ − ϕ̃‖C, t ∈ [0,T], ϕ, ϕ̃ ∈ C,

where L is a positive constant. If φ ∈ C
(
[−τ , 0];Y

)
, φ(0) ∈ B r

2
, then there is a T’, 0

≤ T’ ≤ T such that the initial value problem (3.1) has a unique mild solution u Î C

([-τ, T’];Y) with u(t) Î Br for 0 ≤ t ≤ T’. Moreover, the mapping j ® u is Lipschitz con-

tinuous from C into C([0, T’]; X).

4 The classical solution
In this section, we give the result on existence of local classical solution for (3.1),

moreover, some remarks about the extension.

From (E4), it follows that for any v Î Y, Uu(t, s)v is continuous in Y for 0 ≤ s ≤ t ≤

T’. We have by (E2) of Lemma 2.2 that

∂+

∂t
Uu(t, s)v = lim

h→0

Uu(t + h, s)v − Uu(t, s)v
h

= lim
h→0

Uu(t + h, t) − I

h
Uu(t, s)v = −A(u)Uu(t, s)v.

The right-hand side of the last equality is continuous in X since t ® Uu(t, s)v is con-

tinuous in the Y-norm. Therefore, the right-derivative of Uu(t, s)v is continuous in X

and as a consequence Uu(t, s)v is continuously differentiable in X and

∂

∂t
Uu(t, s)v = −A(u)Uu(t, s)v for s ≤ t ≤ T′.

Theorem 4.1. Assume that F : [0, T] × C ® Y is continuously differentiable, then for

every j Î C, j(θ) Î B for θ Î [-τ, 0] such that φ̇ ∈ C and φ̇− + A(u)φ(0) = F , the

initial value problem (3.1) possesses a unique classical solution u given by (3.5) and u
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Î C([0, T’];Y) ∩ C1([0, T’], X). Moreover, the mapping j ® u is Lipschitz continuous

from C into C1([0, T’]; X).

Proof. We note first that the continuous differentiability of F from [0, T] × C into Y

implies that F is continuous in t and Lipschitz continuous in �, uniformly in t on [0,

T]. Therefore, the initial-value problem (3.1) possesses a unique mild solution u on [0,

T’] by Theorem 3.4. Next we show that this mild solution is continuously differentiable

on [0, T’]. To this end we set B(s) =
∂

∂ϕ
F(s,ϕ) and

g(t) =

⎧⎨
⎩Uu(t, 0)F(0,φ0) − A(u)Uu(t, 0)φ0 +

t∫
0
Uu(t, s)

∂

∂s
F(s, us)ds, 0 ≤ t ≤ T′,

φ̇, −τ ≤ t ≤ 0.

From our assumption, it follows that g Î C([-τ, T’];Y) and that the function h(t, �) =

B(t)� is continuous in t from [0, T’] into Y and uniformly Lipschitz continuous in �

since s ® B(s) is continuous from [0, T’] into Y. Let w be the solution of the integral

equation

w(t) =

⎧⎨
⎩ g(t) +

t∫
0
Uu(t, s)B(s)wsds, 0 ≤ t ≤ T′,

g(t), −τ ≤ t ≤ 0.
(4:1)

The existence and uniqueness of w Î C([-τ, T’];Y) follows from Corollary 3.2. More-

over, from our assumptions and the definition of us we have

F(s, us+h) − F(s, us) = B(s) (us+h − us) + ε1(s, h) (4:2)

and

F (s + h, us+h) − F (s, us+h) =
∂

∂s
F(s, us+h) · h + ε2(s, h) (4:3)

where h-1║�i║X ® 0 as h ® 0 uniformly on [0, T’] for i = 1,2. If

wh(t) = 1
h

[
u(t + h) − u(t)

] − w(t) , then from the definition of u, (4.1), (4.2), and (4.3),

we obtain

wh(t) =
{
1
h

[
Uu(t + h, 0)φ0 − Uu(t, 0)φ0

]
+ A(u)Uu(t, 0)φ0

}

+
1
h

t∫
0

Uu(t, s)
(
ε1(s, h) + ε2(s, h)

)
ds

+

t∫
0

Uu(t, s)
[

∂

∂s
F(s, us+h) − ∂

∂s
F(s, us)

]
ds

+

⎡
⎣1
h

h∫
0

Uu(t + h, s)F(s, us)ds − Uu(t, 0)F(0,φ0)

⎤
⎦

+

t∫
0

Uu(t, s)B(s)wh(s)ds.
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It is not difficult to see that the norm of each one of the four first terms on the

right-hand side of above equation tends to zero as h ® 0. Therefore, we have

∥∥wh(t)
∥∥
X ≤ ε(h) +M ∗

t∫
0

∥∥wh(s)
∥∥
Xds (4:4)

where M* = max{║Uu(t, s)║║B(s)║X : 0 ≤ s ≤ t ≤ T’} and ε(h) ® 0 as h ® 0. From

(4.4) it follows by Gronwall’s inequality that ║wh(t)║X ≤ ε(h)eT’M* and therefore ║wh

(t)║X ® 0 as h ® 0. This implies that u(t) is differentiable on [0, T’] and that its deri-

vative is w(t). Since w Î C([-τ, T’];Y), u is continuously differentiable on [-τ, T’].

Finally, we note that from the continuous differentiability of u and the assumptions

on the differentiability of F it follows that s ® F(s, us) is continuously differentiable on

[0, T’]. By [19], u(t) is the classical solution of initial-value problem (3.1). The unique-

ness of u and the Lipschitz continuity of the map j ® u are obvious and the proof is

complete.

Remark 4.2. The argument given above shows clearly that for some s ≥ 3, the classi-

cal solution u of initial-value problem (3.1) is obtained in the class

u ∈ C1 (
[0,T′];Hs−3(R)

) ⋂
C

(
[0,T′];Hs(R)

)
, (4:5)

where T’ depends not only ‖φ0‖H3 , but also the function F. Kato [9] obtained that

for s > 3
2 , φ ∈ Hs , the KdV equation

⎧⎨
⎩

∂u

∂t
(x, t) + u(x, t)

∂u

∂x
(x, t) +

∂3u

∂x3
(x, t) = 0, t ≥ 0, x ∈ R,

u(x, 0) = φ(x).

has a unique solution in the class (4.5). For (3.1), s may be less than 3, but it is diffi-

cult to discuss.

Remark 4.3. Kato [9] also proved that a global solution exists whenever j Î Hs with

s ≥ 2 and stays in Hs. The extension of (3.1) is also difficult. We cannot discuss it like

[16] since the initial-value should satisfy the condition
∥∥φ(0)

∥∥
Y ≤ r

2.
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