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Abstract

In this article, using comparison with second-order dynamic equations, we establish
sufficient conditions for oscillatory solutions of an nth-order neutral dynamic
equation with distributed deviating arguments. The arguments are based on Taylor
monomials on time scales.
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1. Introduction
In this article, we investigate the oscillatory and asymptotic behavior of solutions of

higher-order neutral dynamic equations with forcing term of the form

[xα(t) + p(t)x(τ (t))]�
n
+

d∫
c

2∑
i=1

λiqi(t, ξ)fi(x(ηi(t, ξ)))�ξ = g(t), t ∈ [t0,∞)T, (1:1)

where a ≥ 1 is the quotient of two odd positive integers, l1, l2 Î {-1, 0, 1}, c, d,

t0 ∈ T , and [t0,∞)T := [t0,∞) ∩ T denotes a time scale interval with sup T = ∞ .

In recent years, there has been much research activity concerning the oscillation and

non-oscillation of solutions of dynamic equations on time scales. We refer the reader

to the monographs [1-3], the articles [4-11], and the references cited therein. However,

most of the obtained results are concerned with second-order dynamic equations

whereas for higher order equations results are very seldom.

Motivated by Candan and Dahiya [12], the main purpose of this article is to derive

some oscillation and asymptotic criteria for Equation (1.1) via comparison with sec-

ond-order dynamic equations whose oscillatory character are known.

Recall that a time scale T is an arbitrary non-empty closed subset of the real

numbers ℝ. The most well-known examples are T = R , T = Z, and

T = qZ := {qn : n ∈ Z} ∪ {0} , where q > 1. The forward and backward jump operators

are defined by

σ (t) := inf{s ∈ T : s > t} and ρ(t) := sup{s ∈ T : s < t},

respectively, where inf ∅ := supT and sup ∅ := infT. A point t ∈ T is said to be

left-dense if t > infT and r(t) = t, right-dense if t < supT and s(t) = t, left-scattered

if r(t) < t, and right-scattered if s(t) > t. A function f that is defined on a time scale is
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called rd-continuous if it is continuous at every right-dense point and if the left-sided

limit exists (finite) at every left-dense point. The set of all rd-continuous functions is

denoted by Crd. For details, see the monographs [1,2].

We assume throughout that the following conditions are satisfied:

(i) p ∈ Crd([t0, ∞)T, [0,∞)) with p(t) <1;

(ii) g ∈ Crd([t0, ∞)T,R);

(iii) qi ∈ Crd([t0,∞)T × [c, d]T, (0, ∞)) with
∫ d
c qi(t, ξ)�ξ > t−n as t ® ∞ for i =

1, 2;

(iv) fi Î C(ℝ, ℝ) and xfi(x) ≥ Lix
2 for some constants Li >0 for i = 1, 2;

(v) τ ∈ Crd(T,T) , τ(t) ≤ t, and limt ® ∞τ(t) = ∞;

(vi) η1 ∈ Crd(T × [c, d]T ,T) , h1(t, ξ) ≥ t for all ξ ∈ [c, d]T ;

(vii) η2 ∈ Crd(T × [c, d]T , T) , h2(t, ξ) ≤ t for all ξ ∈ [c, d]T , nondecreasing in ξ,

and limt ® ∞ h2(t, ξ) = ∞.

By the solution of Equation (1.1), we mean a function x : [Tx,∞)T → R , where Tx ≥

t0 depends on the particular solution, which satisfies (1.1) for sufficiently large t, and

sup{|x(t)|: t ≥ T} >0 for any T ≥ Tx. As usual, such a solution is said to be oscillatory if

it is neither eventually positive nor eventually negative; otherwise, it is called non-oscil-

latory. We note that the substitution y: = -x transforms (1.1) into an equation of the

same form, hence we will consider only eventually positive solutions of Equation (1.1)

whenever a non-oscillatory solution is concerned.

We recall the definition of the Taylor monomials as follows:

Definition 1.1. [1]The Taylor monomials are the functions gk, hk : T × T → R , k Î N0,

which are defined recursively as follows:

g0(t, s) = h0(t, s) ≡ 1 for all t, s ∈ T,

and for k Î N0,

gk+1(t, s) =

t∫
s

gk(σ (τ ), s)�τ for all t, s ∈ T,

hk+1(t, s) =

t∫
s

hk(τ , s)�τ for all t, s ∈ T.

Definition 1.2. [1] If T has a left-scattered maximum m, then Tκ := T − {m}. Other-
wise, Tκ := T . And Tκk

:= (Tκ)κ
k−1 , k ≥ 2.

Theorem 1.3. [1] The functions hk and gk satisfy

hk(t, s) = (−1)kgk(s, t) for all t ∈ T, s ∈ Tκk
.

Finding gk, hk for k > 1 is not easy in general. But for a particular given time scale,

for example for T = R and T = Z, one can easily find the functions gk and hk. We have

for k Î N0,

Mert Advances in Difference Equations 2012, 2012:68
http://www.advancesindifferenceequations.com/content/2012/1/68

Page 2 of 11



hk(t, s) = gk(t, s) =
(t − s)k

k!
for all t, s ∈ R (1:2)

and

hk(t, s) =
(t − s)

k−

k!
and gk(t, s) =

(t − s + k − 1)
k−

k!
for all t, s ∈ Z, (1:3)

where tm , m Î N0, is the usual falling (factorial) function; tm := (t − m + 1)tm−1 ,

t0 := 1 .

For completeness, we recall the following:

Theorem 1.4. [1]Let a ∈ Tκ , b ∈ T , and assume f : T × Tκ → R is continuous at (t, t),

where t ∈ Tκ with t > a. Also assume that fΔ(t, ·) is rd-continuous on [a, σ (t)]T . Suppose

that for each ε > 0, there exists a neighborhood U of t, independent of τ ∈ [a, σ (t)]T , such

that

|f (σ (t), τ ) − f (s, τ ) − f�(t, τ )(σ (t) − s)| ≤ ε|σ (t) − s| for all s ∈ U,

where fΔ denotes the derivative of f with respect to the first variable. Then

(1) g(t) :=
∫ t
a f (t, τ )�τ implies g�(t) =

∫ t

a
f�(t, τ )�τ + f (σ (t), t) .

(2) h(t) :=
∫ b

t
f (t, τ )�τ implies h�(t) =

∫ b

t
f�(t, τ )�τ − f (σ (t), t) .

2. Preparatory lemmas
The following lemmas will be a crucial tool in obtaining the main results in this article.

The first one is the well-known lemma due to Kiguradze and Kneser in the case T = R
and T = Z, respectively (see [13]).

Lemma 2.1. [13]Let n Î N and f be n-times differentiable on T . Assume sup T = ∞
and for any ε > 0, the set Lε(∞) := {t ∈ T : t > 1

ε
} . Suppose there exists ε > 0 such that

f (t) > 0, sgn(f�n
(t)) ≡ s ∈ {−1, 1} for all t ∈ Lε(∞)

and f�n
(t) 
≡ 0 on Lδ(∞) for any δ > 0. Then there exists l Î [0, n]∩N0 such that n + l

is even for s = 1 and odd for s = -1 with

f�i
(t) > 0 for all t ∈ Lδi(∞) (with δi ∈ (0, ε)), i ∈ [1, l − 1] ∩ N0,

(−1)l+if�i
(t) > 0 for all t ∈ Lε(∞), i ∈ [l,n − 1] ∩ N0.

The following result provides an explicit formula for the Taylor monomials hk(t, s)

on time scales T unbounded from above and for which the forward jump operator has

a certain explicit form given by s(t) = at + b, where a ≥ 1, b ≥ 0 are constants. In

addition to the fact that it unifies the formulas (1.2) and (1.3), it can also be applied to

time scales T that are different from ℝ and ℤ; for example, T = hZ := {hn : n ∈ Z}
with h > 0, or

T = qZ := {qn : n ∈ Z} ∪ {0} with q > 1
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(see [[1], Example 1.104]).

Lemma 2.2. [14]Let T be a time scale which is unbounded above with s(t) = at + b,

where a ≥ 1, b ≥ 0 are constants. Then the Taylor monomials hk(t, s) on T are given by

the formula

hk(t, s) =
k−1∏
i=0

(t − σ i(s))
βi

, t, s ∈ T, k ∈ N0,

where βi :=
∑i

j=0 a
j and s0(s): = s.

The analog of the Kiguradze’s second lemma is the following.

Lemma 2.3. [14]Let T be a time scale which is unbounded above with s(t) = at+ b,

where a ≥ 1, b ≥ 0 are constants. If x is an n + 1-times differentiable function on

[t0,∞)T with x�i
(t) ≥ 0 , i = 1, 2, ..., n, and x�n+1

(t) ≤ 0 , then

x(t) ≥ hn−1(t, σ (t0))
βn−1

x�n−1
(t), t ≥ σ n−1(t0),

where, as earlier, βi :=
∑i

j=0 a
j .

We will also use the time scale version of a lemma due to Onose [15] for T = R . The

result here is for an arbitrary time scale and since the proof of this result is similar to

the proof of Lemma 2.4 in Erbe et al. [14] we state it without proof.

Lemma 2.4. Let n be even and consider the delay dynamic inequalities

x�n
(t) + f (t, x(φ(t))) ≤ 0, t ∈ [t0,∞)T, (2:1)

x�n
(t) + f (t, x(φ(t))) ≥ 0, t ∈ [t0,∞)T, (2:2)

and the equation

x�n
(t) + f (t, x(φ(t))) = 0, t ∈ [t0,∞)T. (2:3)

Here, we assume f : [t0,∞)T × R → R is a function with the property

f (·, w(·)) ∈ Crd([t0,∞)T, R) for any function w ∈ Crd([t0,∞)T, R), f(t, u) is continu-

ous and non-decreasing in u, and uf(t, u) >0 for all u ≠ 0. Also, the delay function

φ ∈ Crd(T,T) , j(t) ≤ t, and satisfy limt®∞ j(t) = ∞.

If inequality (2.1) ((2.2)) has an eventually positive (negative) solution, then Equation

(2.3) has an eventually positive (negative) solution.

3. Main results
In this section, we give the main results of the article.

Theorem 3.1. Let l1 = 0 and l2 = (-1)n + 1. Assume that there exists an oscillatory

function h ∈ Cn
rd([t0,∞)T,R) with

h�n
(t) = g(t), lim

t→∞h(t) = lim
t→∞h�(t) = 0 (3:1)

and that the second-order delay dynamic equation

u��(t) +
L2λ

(βl−1)
1/α

βn−l−1

gn−l−1(η2(t),T)(hl−1(η2(t), σ (T)))1/αφ1(t)u1/α(η2(t)) = 0, (3:2)
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where φ1(t) :=
∫ d
c (1 − p(η2(t, ξ)))1/αq2(t, ξ)�ξ is oscillatory for every constant l,

0 <l < 1, every integer l, 1 ≤ l ≤ n - 1 and every T sufficiently large.

(i) If n is odd, then every solution of Equation (1.1) is either oscillatory or satisfies

lim inf
t→∞ |x(t)| = 0.

(ii) If n is even, then every solution of Equation (1.1) is either oscillatory or else

lim
t→∞|x(t)| = ∞ or lim inf

t→∞ |x(t)| = 0.

Proof. Assume to the contrary that there exists a non-oscillatory solution x of Equa-

tion (1.1). Without loss of generality, we may assume that x(t) >0, x(τ(t)) >0, and x(h2

(t, ξ)) >0 for t ≥ t1 for some sufficiently large t1 ≥ t0 and ξ ∈ [c, d]T . For the sake of

convenience, set z(t): = xa(t) + p(t)x(τ(t)). Then z(t) >0 for t ≥ t1. Define the function y

(t): = z(t) - h(t). From Equation (1.1), it follows that

λ2y
�n
(t) = −

d∫
c

q2(t, ξ)f2(x(η2(t, ξ)))�ξ , t ≥ t1,

so that y�
n
(t) is eventually of one-signed. Hence, lower-order derivatives y�

i
(t) , 0 ≤

i ≤ n - 1, are monotone and one-signed eventually. We must have y(t) >0, since other-

wise we obtain a contradiction with the fact that h is oscillatory. By Lemma 2.1, there

exists T ≥ t1 and an integer 0 ≤ l ≤ n with (-1)n-l-1l2 = 1 (l is even) such that

y�
i
(t) > 0, i = 0, 1, . . . , l − 1, t ≥ T,

(−1)i−ly�
i
(t) > 0, i = l, l + 1, . . . , n, t ≥ T.

(3:3)

Suppose that 0 < l < n. By the time scales Taylor’s formula with remainder, we may

write

y�
l
(t) =

n−l−1∑
k=0

y�
l+k
(τ )hk(t, τ ) + λ2

τ∫
t

hn−l−1(t, σ (s))(−λ2y�
n
(s))�s

=
n−l−1∑
k=0

(−1)ky�
l+k
(τ )gk(τ , t) + (−1)n−l−1λ2

τ∫
t

gn−l−1(σ (s), t)(−λ2y
�n
(s))�s.

Now, using (3.3), we have

y�
l
(t) ≥

τ∫
t

gn−l−1(σ (s), t)(−λ2y�
n
(s))�s, T ≤ t ≤ τ . (3:4)

Letting τ ® ∞ and integrating from T to t, we obtain

y�
l−1
(t) ≥ y�

l−1
(T) +

t∫
T

∞∫
r

gn−l−1(σ (s), r)(−λ2y
�n
(s))�s�r

= y�
l−1
(T) +

t∫
T

⎡
⎢⎣

σ (s)∫
T

gn−l−1(σ (s), r)�r

⎤
⎥⎦ (−λ2y

�n
(s))�s

+

∞∫
t

⎡
⎣

t∫
T

gn−l−1(σ (s), r)�r

⎤
⎦ (−λ2y

�n
(s))�s, t ≥ T.
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In the above equation, to change the order of integration, we have used the following

equalities:

⎡
⎣

∞∫
t

t∫
T

gn−l−1(σ (s), r)(−λ2y�
n
(s))�r�s

⎤
⎦

�

=

∞∫
t

gn−l−1(σ (s), t)(−λ2y�
n
(s))�s

−
σ (t)∫
T

gn−l−1(σ (t), r)(−λ2y�
n
(t))�r,

∞∫
t

gn−l−1(σ (s), t)(−λ2y�
n
(s))�s =

⎡
⎣

t∫
T

∞∫
r

gn−l−1(σ (s), r)(−λ2y�
n
(s))�s�r

⎤
⎦

�

,

σ (t)∫
T

gn−l−1(σ (t), r)(−λ2y�
n
(t))�r =

⎡
⎢⎣

t∫
T

σ (s)∫
T

gn−l−1(σ (s), r)(−λ2y�
n
(s))�r�s

⎤
⎥⎦

�

,

all of which follow from Theorem 1.4. Now, by direct integration, it follows that

y�
l−1
(t) ≥ y�

l−1
(T) +

t∫
T

gn−1(σ (s),T)(−λ2y
�n
(s))�s

+

∞∫
t

[gn−1(σ (s),T) − gn−l(σ (s), t)](−λ2y
�n
(s))�s, t ≥ T.

It can easily be verified that we have for s ≥ t ≥ T,

gn−l(σ (s),T) − gn−l(σ (s), t) ≥ (t − T)

∏n−l
i=2 (σ i(s) − T)∏n−l−1

i=1 βi

.

By virtue of this inequality and the definition of gn-l(s(s), T), we obtain

y�
l−1
(t) ≥ y�

l−1
(T) +

1∏n−l−1
i=1 βi

t∫
T

n−l∏
i=1

(σ i(s) − T)(−λ2y
�n
(s))�s

+
(t − T)∏n−l−1
i=1 βi

∞∫
t

n−l∏
i=1

(σ i(s) − T)(−λ2y
�n
(s))�s, t ≥ T.

(3:5)

Let us denote the right-hand side of (3.5) by u(t). It is clear that u(t) >0, and it can

easily be verified that it satisfies the second-order dynamic equation

u��(t) +
gn−l−1(σ 2(t),T)

βn−l−1
(−λ2y

�n
(t)) = 0, t ≥ T. (3:6)

On the other hand, from limt®∞h
Δ(t) = 0, yΔ(t) >0, and yΔΔ(t) >0 with z(t) = y(t) + h

(t), we see that zΔ(t) >0 eventually. Hence,

z(t) = xα(t) + p(t)x(τ (t)) ≤ xα(t) + p(t)z(t)

or

(1 − p(t))z(t) ≤ xα(t).
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Since yΔ(t) >0, yΔΔ(t) >0, and limt®∞ h(t) = 0, there exists a constant 0 <l < 1 such

that for T sufficiently large,

z(t) ≥ λαy(t), t ≥ T.

Then

xα(t) ≥ λα(1 − p(t))y(t), t ≥ T. (3:7)

By Lemma 2.3,

y(t) ≥ hl−1(t, σ (T))
βl−1

y�
l−1
(t), t ≥ σ l−1(T). (3:8)

Combining the inequalities (3.7) and (3.8) with the fact that y�
l−1
(t) ≥ u(t) , we get

x(η2(t, ξ)) ≥ [λα(1 − p(η2(t, ξ)))y(η2(t, ξ))]1/α

≥ λ

(βl−1)
1/α

(1 − p(η2(t, ξ)))1/α(hl−1(η2(t), σ (T)))1/αu1/α(η2(t)), t ≥ T1,
(3:9)

where h2(t): = h2(t, c), for T1 > T sufficiently large. Using xf2(x) ≥ L2x
2, multiplying

both sides of (3.9) by L2q2(t, ξ) and integrating from c to d, it follows from (3.6) that

u��(t)+
L2λ

(βl−1)
1/α

βn−l−1

gn−l−1(η2(t),T)(hl−1(η2(t), σ (T)))1/αφ1(t)u1/α(η2(t)) ≤ 0, t ≥ T1,

where φ1(t) =
∫ d
c (1 − p(η2(t, ξ)))1/αq2(t, ξ)�ξ . Applying Lemma 2.4, we see that

Equation (3.2) has an eventually positive solution, which is a contradiction.

It is clear that the case l = n is only possible when n is even. In this case,

lim
t→∞y�

i
(t) = ∞ for all 0 ≤ i ≤ n − 2,

which implies that

lim
t→∞x(t) = ∞,

since z(t) = y(t) + h(t) ≤ xa(t) + x(τ(t)) and limt®∞ h(t) = 0.

If l = 0, it follows from (3.4) that lim inft®∞ x(t) = 0, since

∞∫ d∫
c

gn−1(σ (s),T)q2(s, ξ)�ξ�s = ∞.

□
Theorem 3.2. Let l2 = 0 and l1 = (-1)n+1. Assume that there exists an oscillatory

function h ∈ Cn
rd([t0,∞)T,R) satisfying (3.1) and that the second-order dynamic equa-

tion

u��(t) +
L1β

(βl−1)
1/α

βn−l−1

gn−l−1(t,T)(hl−1(t, σ (T)))1/αφ2(t)u1/α(t) = 0, (3:10)

where φ2(t) :=
∫ d
c (1 − p(η1(t, ξ)))1/αq1(t, ξ)�ξ is oscillatory for every constant b, 0

<b < 1, every integer l, 1 ≤ l ≤ n - 1 and every T sufficiently large.
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(i) If n is odd, then every solution of Equation (1.1) is either oscillatory or satisfies

lim inf
t→∞ |x(t)| = 0.

(ii) If n is even, then every solution of Equation (1.1) is either oscillatory or else

lim
t→∞|x(t)| = ∞ or lim inf

t→∞ |x(t)| = 0.

Proof. Assume to the contrary that there exists a non-oscillatory solution x of Equa-

tion (1.1). Without loss of generality, assume that x(t) >0 eventually. Define z(t): = xa

(t) + p(t)x(τ(t)). Proceeding as in the proof of Theorem 3.1 until we reach inequality

(3.9) with l2 and l replaced by l1 and b, respectively, and combining the inequalities

(3.7) and (3.8) with the fact that y�
l−1
(t) ≥ u(t) , we obtain

x(η1(t, ξ)) ≥
[

βα

βl−1
(1 − p(η1(t, ξ)))hl−1(t, σ (T))u(t)

]1/α

≥ β

(βl−1)
1/α

(1 − p(η1(t, ξ)))1/α(hl−1(t, σ (T)))1/αu1/α(t), t ≥ T1.
(3:11)

Multiplying both sides of (3.11) by L1q1(t, ξ), using the fact that xf1(x) ≥ L1x
2, and

integrating from c to d, we get from (3.6) that

u��(t) +
L1β

(βl−1)
1/α

βn−l−1

gn−l−1(t, T)(hl−1(t, σ (T)))1/αφ2(t)u1/α(t) ≤ 0, t ≥ T1,

where φ2(t) :=
∫ d
c (1 − p(η1(t, ξ)))1/αq1(t, ξ)�ξ . Applying Lemma 2.4, we see that

Equation (3.10) has an eventually positive solution, which is a contradiction. The rest

is similar to that of Theorem 3.1 and hence is omitted. □
Theorem 3.3. Let n be odd and l1 = l2 = 1. Assume that there exists an oscillatory

function h ∈ Cn
rd([t0,∞)T,R) satisfying (3.1). Further, assume also that either Equation

(3.2) is oscillatory for every constant l, 0 <l < 1, or Equation (3.10) is oscillatory for

every constant b, 0 <b < 1, and every integer l, 1 ≤ l ≤ n - 1, and every T sufficiently

large. Then every solution of Equation (1.1) is either oscillatory or satisfies

lim inf
t→∞ |x(t)| = 0.

Proof. Assume to the contrary that there exists a non-oscillatory solution x of Equa-

tion (1.1). Without loss of generality, assume that x(t) >0 eventually. In case 0 < l < n,

proceeding as in the proof of Theorem 3.1, we get

u��(t) +
gn−l−1(σ 2(t),T)

βn−l−1

d∫
c

q1(t, ξ)f1(x(η1(t, ξ)))�ξ

+
gn−l−1(σ 2(t),T)

βn−l−1

d∫
c

q2(t, ξ)f2(x(η2(t, ξ)))�ξ = 0, t ≥ T.

It is clear that the above equation leads to the dynamic inequalities

u��(t) +
gn−l−1(σ 2(t),T)

βn−l−1

d∫
c

q2(t, ξ)f2(x(η2(t, ξ)))�ξ ≤ 0, t ≥ T (3:12)
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and

u��(t) +
gn−l−1(σ 2(t),T)

βn−l−1

d∫
c

q1(t, ξ)f1(x(η1(t, ξ)))�ξ ≤ 0, t ≥ T. (3:13)

If we assume that (3.2) is oscillatory, then, in view of (3.12), the rest of the proof fol-

lows as in the proof of Theorem 3.1. Similarly, if (3.10) is oscillatory, then, because of

(3.13), it follows from the proof of Theorem 3.2. The rest is similar to that of Theo-

rems 3.1 and 3.2, and hence it is omitted. □

4. An application
Now several criteria for Equation (1.1) can now be obtained from known oscillation

criteria that already exist for second-order dynamic equations. At this stage, we will

give an example to illustrate the extent of the use of the main results.

The following result deals with the second-order delay dynamic equation

x��(t) + q(t)xγ (φ(t)) = 0, t ∈ [t0,∞)T, (4:1)

where 0 <g < 1 is the quotient of two odd positive integers, q ∈ Crd([t0,∞)T,R) , q(t)

≥ 0, q(t) ≢ 0 on [T,∞)T for any T ≥ t0, and the delay function j is as in Lemma 2.4.

Theorem 4.1. [10]Suppose that 0 <g < 1. If

∞
∫ φγ (t)q(t)�t = ∞, (4:2)

then Equation (4.1) is oscillatory.

From Theorem 4.1, we obtain the following corollaries:

Corollary 4.2. Let a > 1, l1 = 0, and l2 = (-1)n+1. Assume that there exists an oscil-

latory function h ∈ Cn
rd([t0,∞)T,R) satisfying (3.1) and that

∞
∫ (η2(t))

n − 1
α φ1(t)�t = ∞,

(4:3)

where φ1(t) =
∫ d
c (1 − p(η2(t, ξ)))1/αq2(t, ξ)�ξ .

(i) If n is odd, then every solution of Equation (1.1) is either oscillatory or satisfies

lim inf
t→∞ |x(t)| = 0.

(ii) If n is even, then every solution of Equation (1.1) is either oscillatory or else

lim
t→∞|x(t)| = ∞ or lim inf

t→∞ |x(t)| = 0.

Proof. Condition (4.3) is sufficient for (4.2) to hold with

q(t) =
L2λ

(βl−1)
1/α

βn−l−1

gn−l−1(η2(t),T)(hl−1(η2(t), σ (T)))1/αφ1(t).

Note that if (4.2) is satisfied for l = n - 1, then it holds for all 1 ≤ l ≤ n - 1. Hence,

Equation (3.2) is oscillatory. □
Corollary 4.3. Let a > 1, l2 = 0, and l1 = (-1)n+1. Assume that there exists an oscil-

latory function h ∈ Cn
rd([t0,∞)T,R) satisfying (3.1) and that
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∞
∫ t

n−1
α φ2(t)�t = ∞, (4:4)

where φ2(t) :=
∫ d
c (1 − p(η1(t, ξ)))1/αq1(t, ξ)�ξ .

(i) If n is odd, then every solution of Equation (1.1) is either oscillatory or satisfies

lim inf
t→∞ |x(t)| = 0.

(ii) If n is even, then every solution of Equation (1.1) is either oscillatory or else

lim
t→∞|x(t)| = ∞ or lim inf

t→∞ |x(t)| = 0.

Proof. Condition (4.4) is sufficient for (4.2) to hold with

q(t) =
L1β

(βl−1)
1/α

βn−l−1

gn−l−1(t,T)(hl−1(t, σ (T)))1/αφ2(t).

Note that if (4.2) is satisfied for l = n - 1, then it holds for all 1 ≤ l ≤ n - 1. Hence,

Equation (3.10) is oscillatory. □
Corollary 4.4. Let n be odd, a > 1, and l1 = l2 = 1. Assume that there exists an

oscillatory function h ∈ Cn
rd([t0,∞)T,R) satisfying (3.1) and that either (4.3) or (4.4)

holds. Then every solution of Equation (1.1) is either oscillatory or satisfies

lim inf
t→∞ |x(t)| = 0.

Proof. The proof follows as in the proof of Corollaries 4.2 and 4.3. □
Additional criteria for Equation (1.1) may also be given using other known condi-

tions for oscillation of second-order dynamic equations. We leave this to the interested

reader.
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