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Abstract

In this article, we establish the generalized Hyers-Ulam (or Hyers-Ulam-Rassais)
stability of Jordan homomorphisms and Jordan derivations of the following
parametric additive functional equation:

m∑
i=1

f (xi) =
1
2m

⎡
⎣ m∑

i=1

f

⎛
⎝mxi +

m∑
j=1,j�=i

xj

⎞
⎠ + f

(
m∑
i=1

xi

)⎤
⎦

for a fixed positive integer m with m ≥ 2, on fuzzy Banach algebras. The concept of
Ulam-Hyers-Rassias stability originated from Rassias stability theorem that appeared in
his article.
Mathematics Subject Classification: Primary, 46S40; Secondary, 39B52; 39B82;
26E50; 46S50; 46H25.
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1. Introduction
The stability problem of functional equations originated from a question of Ulam [1] in

1940, concerning the stability of group homomorphisms. Let (G1, .) be a group and let

(G2, *) be a metric group with the metric d(., .). Given ε >0, does there exist a δ0, such

that if a mapping h: G1 ® G2 satisfies the inequality d(h(x.y), h(x) * h(y)) < δ for all x,

y Î G1, then there exists a homomorphism H: G1 ® G2 with d(h(x), H(x)) < ε for all x

Î G1? In the other words, under what condition does there exist a homomorphism

near an approximate homomorphism? The concept of stability for functional equation

arises when we replace the functional equation by an inequality which acts as a pertur-

bation of the equation. In 1941, Hyers [2] gave the first affirmative answer to the ques-

tion of Ulam for Banach spaces. Let f: E ® E’’ be a mapping between Banach spaces

such that ||f(x+y)-f(x)-f(y)|| ≤ δ for all x, y E, and for some δ >0. Then there exists a

unique additive mapping T: E ® E’ such that ||f(x) - T(x)|| ≤ δ for all x Î E. Moreover

if f(tx) is continuous in t Î ℝ for each fixed x Î E, then T is linear. In 1978, Rassias [3]

proved the following theorem.
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Theorem 1.1. Let f: E ® E’ be a mapping from a normed vector space E into a

Banach space E’ subject to the inequality∥∥f (x + y) − f (x) − f (y)
∥∥ ≤ ε

(
‖x‖p + ∥∥y∥∥p) (1:1)

for all x, y Î E, where and p are constants with ε >0 and p <1. Then there exists a

unique additive mapping T: E ® E’ such that

∥∥f (x) − T(x)
∥∥ ≤ 2ε

2 − 2p
‖x‖p (1:2)

for all x Î E. If p <0 then inequality (1.1) holds for all x, y ≠ 0, and (1.2) for x ≠ 0. Also, if

the function t ↦ f(tx) from ℝ into E’ is continuous in real t for each fixed x Î E, then T is

linear.

In 1991, Gajda [4] answered the question for the case p >1, which was raised by Rassias.

This new concept is known as the generalized Hyers-Ulam stability of functional equations.

Following [5], we give the employing notion of a fuzzy norm.

Let X be a real linear space. A function N: X × ℝ®[0, 1] (the so-called fuzzy subset)

is said to be a fuzzy norm on X if for all x, y Î X and all a, b Î ℝ:

(N1) N(x, a) = 0 for a ≤ 0;

(N2) x = 0 if and only if N(x, a) = 1 for all a >0;

(N3) N(ax, b) = N(x, b
|a|) if a �= 0 ;

(N4) N(x + y, a + b) ≥ min{N(x, a), N(y, b)};

(N5) N(x, .) is non-decreasing function on ℝ and lima®∞ N(x, a) = 1;

(N6) For x ≠ 0, N(x, .) is (upper semi) continuous on ℝ.

The pair (X, N) is called a fuzzy normed linear space. One may regard N(x, a) as the

truth value of the statement “the norm of x is less than or equal to the real number a“.

Example 1.2. Let (X, ||.||) be a normed linear space. Then

N(x, a) =
{ a

a+‖x‖ , a > 0, x ∈ X;
0, a ≤ 0, x ∈ X

is a fuzzy norm on X.

Let (X, N) be a fuzzy normed linear space. Let {xn} be a sequence in X. Then {xn} is said to

be convergent if there exists x Î X such that limn®∞ N(xn - x, a) = 1 for all a >0. In that

case, x is called the limit of the sequence {xn} and we denote it by N -limn®∞ xn = x. A

sequence {xn} in X is called Cauchy if for each ε >0 and each a there exists n0 such that for

all n ≥ n0 and all p >0, we have N(xn+p - xn, a) >1 - ε. It is known that every convergent

sequence in fuzzy normed space is Cauchy. If each Cauchy sequence is convergent, then the

fuzzy norm is said to be complete and the fuzzy normed space is called a fuzzy Banach space.

Let X be an algebra and (X, N) be complete fuzzy normed space, the pair (X, N) is

said to be a fuzzy Banach algebra if for every x, y Î X, a, b Î ℝ

N(xy, ab) ≥ max{N(x, a), N(y, b)}. (1:3)

Let (X, N) be a fuzzy Banach algebra and {xn}, {yn} be convergent sequences in (X, N)

such that N - limn®∞ xn = x and N - limn®∞ yn = y. Then

N(xnyn − xy, 2t) ≥ min{N((xn − x)yn, t), N(x(yn − y), t)}
≥ min{N(xn − x, t), N(yn − y, t)}
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for all t >0. Therefore N - limn®∞ xnyn = xy.

The generalized Hyers-Ulam stability of different functional equations in random

normed and fuzzy normed spaces has been recently studied in [6-9].

Definition 1.3. Suppose A and B are two Banach algebras. We say that a mapping h:

A ® B is a Jordan homomorphism if

h(a + b) = h(a) + h(b), and h(a2) = h(a)2

for all a, b Î A.

Definition 1.4. Suppose A is a Banach algebra. We say that a mapping d: A ® A is

a Jordan derivation if

d(a + b) = d(a) + d(b), and d(a2) = ad(a) + d(a)a

for all a, b Î A.

The stability of different functional equations in various normed spaces and also on

Banach algebras has been recently studied in [2-4,6-29].

In the present article, we investigate the generalized Hyers-Ulam stability of Jordan

homomorphisms and Jordan derivations of the following parametric-additive functional

equation

m∑
i=1

f (xi) =

∑m
i=1 f

(
mxi +

∑m
j=1,j�=i xj

)
+ f

(∑m
i=1 xi

)
2m

(1:4)

where m is a positive integer greater than 2, on fuzzy Banach algebras.

2. Main results
We start our work with the following theorem which can be regard as a general solu-

tion of functional Equation (1.4).

Theorem 2.1. Let V and W be real vector spaces. A mapping f: V ® W satisfies in

(1.4) if and only if f is additive.

Proof. Setting xj = 0 in (1.4) (1 ≤ j ≤ m), we obtain

(m + 1)f (0) = 2m2f (0). (2:1)

Since m ≥ 2, we have

f (0) = 0. (2:2)

Setting x1 = x, xj = 0 (2 ≤ j ≤ m) in (1.1), we obtain

f (mx) = mf (x). (2:3)

Putting x1 = x, x2 = y, xj = 0 (3 ≤ j ≤ m), we get

f (mx + y) + f (my + x) + (m − 1)f (x + y) = 2m(f (x) + f (y)). (2:4)

Putting x1 = x, xj =
y

m−1 (2 ≤ j ≤ m), we get

f (mx + y) + (m − 1)f (2y + x) + f (x + y) = 2m
(
f (x) + (m − 1)f

(
y

m − 1

))
. (2:5)
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Let x = 0 in (2.5), we obtain

2m(m − 1)f
(

y
m − 1

)
= 2f (y) + (m − 1)f (2y). (2:6)

So, (2.5) turns to following

f (mx + y) − (m − 1)f (2y + x) + (m − 2)f (x + y)

= (2m − 2)f (y) − (m − 1)f (2y).
(2:7)

From (2.4) and (2.7), we have

f (mx + y) − (m − 1)f (2y + x) + f (x + y)

= 2mf (x) + 2f (y) + (m − 1)f (2y).
(2:8)

Replacing x by y and y by x in (2.7) and comparing it with (2.8), we get

(m − 1)[f (2x + y) + f (2y + x)] − (m − 3)f (x + y)

= 2[f (x) + f (y)] + (m − 1)[f (2x) + f (2y)].
(2:9)

Letting x = y in (2.4), (2.7), (2.9), respectively, we obtain

2f ((m + 1)x) + (m − 1)f (2x) = 4mf (x), (2:10)

f ((m + 1)x) + (m − 1)f (3x) = (2m + 2)f (x) + (m − 2)f (2x), (2:11)

f (3x) = f (2x) + f (x). (2:12)

From (2.10)-(2.12) we have

f (2x) = 2f (x). (2:13)

Replacing f(2x) and f(2y) by their equivalents by using (2.13) in (2.9), we get

(m − 1)[f (2x + y) + f (2y + x)] − (m − 3)f (x + y) = 2mf (x + y). (2:14)

Replacing y by -x in (2.14), we get

f (x) = −f (x). (2:15)

Replacing x by x - y in (2.14), we get

(m − 1)[f (2x − y) + f (x + y)] − (m − 3)f (x) = 2m(f (x − y) + f (y)). (2:16)

Similarly, replacing y by y - x in (2.14), we obtain

(m − 1)[f (2y − x) + f (x + y)] − (m − 3)f (y) = 2m(f (x) + f (y − x)). (2:17)

Replacing y by -y and x by -x in (2.16) and (2.17), respectively, we obtain

(m − 1)[f (2x + y) + f (x − y)] − (m − 3)f (x) = 2m(f (x + y) + f (−y)), (2:18)

(m − 1)[f (2y + x) + f (y − x)] − (m − 3)f (y) = 2m(f (x + y) + f (−x)). (2:19)

Adding both sides of (2.18) and (2.19) and using (2.15), we get

(m − 1)[f (2x + y) + f (2y + x)] + (m + 3)[f (x) + f (y)] = 4mf (x + y). (2:20)
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Comparing (2.20) and (2.14), we obtain f(x + y) = f(x) + f(y) for all x, y Î V. So, if a

mapping f satisfying (1.4) it must be additive. Conversely, let f: V ® W be additive, it

is clear that f satisfying (1.4) and the proof is complete. In this section we investigate

the fuzzy stability of Jordan homomorphisms.

Theorem 2.2. Suppose (A, N) and (B, N) are two fuzzy Banach algebras and (C, N’)

be a fuzzy normed space. Let �: Am ® C be a function such that for some 0 < a < m,

N′(ϕ(a1, . . . , am), t) ≥ N′
(
αϕ

(a1
m
, . . . ,

am
m

)
, t
)

(2:21)

for all a1 , . . . , am Î A and all t >0. If f: A ® B is a mapping such that

N

⎛
⎝ m∑

i=1

f (ai) −
∑m

i=1 f
(
mai +

∑m
j=1,j�=i aj

)
+ f

(∑m
i=1 aj

)
2m

, t

⎞
⎠ ≥ N′(ϕ(a1, . . . , am), t) (2:22)

and

N(f (a2) − f (a)2, s) ≥ N′(ϕ(a, . . . , a), s) (2:23)

for all a1, . . . , am Î A and all t, s >0. Then there exists a unique Jordan homo-

morphism h: A ® B such that

N(f (a) − h(a), t) ≥ N′(ϕ(a, 0, . . . , 0), (m − α)t) (2:24)

where a Î A and t >0.

Proof. Letting a1 = a and a2 = ··· = am = 0 in (2.22), we obtain

N(m−1f (ma) − f (a), m−1t) ≥ N′(ϕ(a, 0, . . . , 0), t) (2:25)

for all a Î A and all t >0. Replacing a by mj a in (2.25), we have

N(m−j−1f (mj+1a) − m−jf (mja), m−j−1t) ≥ N′(ϕ(mja, 0, . . . , 0), t)

≥ N′(ϕ(a, 0, . . . , 0), α−jt)
(2:26)

for all a Î A, all t >0 and any integer j ≥ 0. So

N

⎛
⎝f (x) − m−nf (mna),

n−1∑
j=0

m−j−1αjt

⎞
⎠

= N

⎛
⎝n−1∑

j=0

[m−j−1(mj+1a) − m−jf (mja)],
n−1∑
j=0

m−j−1αjt

⎞
⎠

≥ min
0≤j≤n−1

{N(m−j−1f (mj+1a) − m−jf (mja), m−j−1αjt)}

≥ N′(ϕ(a, 0, . . . , 0), t)

(2:27)

which yields

N

⎛
⎝m−n−pf (mn+pa) − m−pf (mpa),

n−1∑
j=0

m−j−p−1αjt

⎞
⎠ ≥ N′(ϕ(mpa, 0, . . . , 0), t)

≥ N′(ϕ(a, 0, . . . , 0), α−pt)
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for all a Î A, t >0 and any integers n >0, p ≥ 0. So

N

⎛
⎝m−n−pf (mn+pa) − m−pf (mpa),

n−1∑
j=0

m−j−p−1αj+pt

⎞
⎠ ≥ N′(ϕ(a, 0, . . . , 0), t)

for all a Î A, t >0 and any integers n >0, p ≥ 0. Hence one obtains

N(m−n−pf (mn+pa) − m−pf (mpa), t) ≥ N′
(

ϕ(a, 0, . . . , 0),
t∑n−1

j=0 m−j−p−1αj+p

)
(2:28)

for all x Î X, t >0 and any integers n >0, p ≥ 0. Since, the series
∑+∞

j=0 m−jαj is con-

vergent series, we see by taking the limit p ® ∞ in the last inequality that a sequence{
f (mna)
mn

}
is a Cauchy sequence in the fuzzy Banach algebra (B, N) and so it converges

in B. Therefore a mapping h: A ® B defined by h(a) := N − limn→∞
f (mna)
mn is well

defined for all a Î A. It means that

lim
n→∞N(h(a) − m−nf (mna), t) = 1 (2:29)

for all a Î A and all t >0. In addition, it follows from (2.28) that

N(f (x)−m−nf (mna), t) ≥ N′
(
n−1∑
j=0

m−j−1αjϕ(a, 0, . . . , 0), t

)
= N′

(
ϕ(a, 0, . . . , 0),

t∑n−1
j=0 m−j−1αj

)

for all a Î A and all t >0. So

N(f (a) − h(a), t) ≥ min{N(f (a) − m−nf (mna), (1 − ε)t), N(h(a) − m−nf (mna), εt)}

≥ N′

⎛
⎝n−1∑

j=0

m−j−1αjϕ(a, 0, . . . , 0), t

⎞
⎠ = N′

(
ϕ(a, 0, . . . , 0),

t∑n−1
j=0 m−j−1αj

)

≥ N′(ϕ(a, 0, . . . , 0), (m − α)εt)

for sufficiently large n and for all a Î A, t >0 and ε with 0 < ε <1. Since ε is arbitrary

and N’ is left continuous, we obtain N(f(a) - h(a), t) ≥ N’ (�(a, 0, . . . , 0), (m - a)t) for
all a Î A and t >0. It follows from (2.21) and (2.22) that

N

⎛
⎝ 1
mn

m∑
i=1

f (mnai) −
∑m

i=1 f
(
mn+1ai +

∑m
j=1,j�=i m

naj
)
+ f

(∑m
i=1 m

nai
)

2mn+1
, t

⎞
⎠

≥ N′(ϕ(mna1, . . . , mnam), mnt) ≥ N′(ϕ(a1, . . . , am), mnα−nt)

for all a1, . . . , am Î A, t >0 and all n Î N. Since limn®∞ N’ (�(a1, . . . , am), m
na-nt)

= 1 and so

N

⎛
⎝ 1
mn

m∑
i=1

f (mnai) −
∑m

i=1 f
(
mn+1ai +

∑m
j=1,j�=i m

naj
)
+ f

(∑m
i=1 m

nai
)

2mn+1
, t

⎞
⎠ → 1
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for all a1, . . . , am Î A and all t >0. Therefore, we obtain in view of (2.29)

N

⎛
⎝ m∑

i=1

h(ai) −
∑m

i=1 h
(
mai +

∑m
j=1,j�=i aj

)
+ h

(∑m
i=1 ai

)
2m

, t

⎞
⎠

≥ min

{
N

(
m∑
i=1

h(ai) −
∑m

i=1 h
(
mai +

∑m
j=1,j�=i aj

)
+ h

(∑m
i=1 ai

)
2m

− 1
mn

m∑
i=1

f
(
mnai

) −
∑m

i=1 f
(
mn+1ai +

∑m
j=1,j�=i m

naj
)
+ f

(∑m
i=1 m

nai
)

2mn+1
,
t
2

⎞
⎠

,N

⎛
⎝ 1
mn

m∑
i=1

f
(
mnai

) −
∑m

i=1 f
(
mn+1ai +

∑m
j=1,j�=i m

naj
)
+ f

(∑m
i=1 m

nai
)

2mn+1
,
t
2

⎞
⎠

⎫⎬
⎭

= N

⎛
⎝ 1
mn

m∑
i=1

f
(
mnai

) −
∑m

i=1 f
(
mn+1ai +

∑m
j=1,j�=i m

naj
)
+ f

(∑m
i=1 m

nai
)

2mn+1
,
t

2

⎞
⎠

≥ N′
(

ϕ(a1, . . . , am),
mnα−nt

2

)
→ 1 as n → ∞

which implies ∑m
i=1 h(ai) =

∑m
i=1 h

(
mai+

∑m
j=1,j �=i aj

)
+h(

∑m
i=1 ai)

2m
for all a1, . . . , am Î A. Thus

h: A ® B is a mapping satisfying the Equation (1.4) and the inequality (2.24). To prove

the uniqueness, let there is another mapping k: A ® B which satisfies the inequality

(2.24).

Then, for all a Î A, we have

N(h(a) − k(a), t) = N(m−nh(mna) − m−nk(mna), t)

≥ min
{
N

(
m−nh(mna) − m−nf (mna),

t
2

)
,

N
(
m−nf (mna) − m−nk(mna),

t
2

)}

≥ N′
(

ϕ(mna, 0, . . . , 0),
mn(m − α)t

2

)

≥ N′
(

ϕ(a, 0, . . . , 0),
mn(m − α)t

2αn

)
→ 1 as n → ∞

for all t >0. Therefore h(a) = k(a) for all a Î A. Now we only need to show that h

(a2) = h(a)2 for all a Î A. It follows from (2.24) that

N(f (mna)−h(mna), t) ≥ N′
(

ϕ(mna, 0, . . . , 0)
m − α

, t
)

≥ N′
(

ϕ(a, 0, . . . , 0),
(m − α)t

αn

)

for all a Î A and all t >0. Thus N
(
m−nf (mna) − m−nh (mna) ,m−nt

) ≥ N′
(
ϕ(a, 0, . . . , 0), (m−α)t

αn

)
for all a Î A and all t >0. By the additivity of h it is easy to see that

N(m−nf (mna) − h(a), t) ≥ N′
(

ϕ(a, 0, . . . , 0),
mn(m − α)t

αn

)
(2:30)

for all a Î A and all t >0. Letting n to infinity in (2.30) and using (N5), we see that

h(a) = N − lim
n→∞m−nf (mna), and h(a2) = N − lim

n→∞m−2nf (m2na2) (2:31)

Azadi Kenary et al. Advances in Difference Equations 2012, 2012:70
http://www.advancesindifferenceequations.com/content/2012/1/70

Page 7 of 11



for all a Î A. Using inequality (2.23), we get

N(f (m2na2) − f (mna)2, s) ≥ N′(ϕ(mna, . . . , mna), s) ≥ N′(αnϕ(a, . . . , a), s)

for all a Î A and all s >0. Thus

N

(
f (m2na2) − f (mna)2

m2n
, s

)
≥ N′

(
ϕ(a, . . . , a),

m2ns
αn

)
(2:32)

for all a, b Î A and all s >0. Letting n to infinity in (2.32) and using (N5), we see that

N − lim
n→∞

f (m2na2) − f (mna)2

m2n
= 0. (2:33)

Applying (2.31) and (2.33), we have

h(a2) = N − lim
n→∞

f (m2na2) − f (mna)2

m2n
= N − lim

n→∞
f (m2na2) − f (m2na2) + f (mna)2

m2n

= N − lim
n→∞

f (mna)2

m2n
=

[
N − lim

n→∞
f (mna)
mn

]2
= h(a)2

for all a Î A. To prove the uniqueness of h, assume that h’ is another Jordan homo-

morphism satisfying (2.24). Since both h and h’ are additive, we deduce that

N(h(a) − h′(a), t) = N(h(mna) − h′(mna), mnt) ≥ N′
(

ϕ(mna, 0, . . . , 0)
m − α

,
mnt
2

)

≥ N′
(

ϕ(a, 0, . . . , 0),
mn(m − α)t

2αn

)

for all a Î A and all t >0. Letting n to infinity, we infer that N(h(a) - h’(a), t) = 1 for

all a Î A and all t >0. Hence (N2) implies that h(a) = h’(a) for all a Î A. □
Corollary 2.3. Suppose (A, N) and (B, N) are two fuzzy Banach algebras and (C, N’)

be a fuzzy normed space. If f: A ® B is a mapping such that

N

⎛
⎝ m∑

i=1

f (ai) −
∑m

i=1 f
(
mai +

∑m
j=1,j�=i aj

)
+ f (

∑m
i=1 ai)

2m
, t

⎞
⎠ ≥ N′

(
θ

n∑
i=1

‖ai‖r , t
)

(2:34)

and

N(f (a2) − f (a)2, s) ≥ N′(nθ‖a‖r , s) (2:35)

for all a1, . . . , an, a Î A and all t, s >0. Then there exists a unique Jordan homo-

morphism h: A ® B such that

N(f (a) − h(a), t) ≥ N′(θ‖a‖r , (m − 1)t) (2:36)

where a Î A and t >0.

Proof. Letting ϕ(a1, . . . , an) = θ
∑n

i=1 ‖ai‖r and a = 1. Applying Theorem 2.2, we

obtain the desired results. □

3. Fuzzy stability of Jordan derivations
In this section we prove the stability of Jordan derivations on fuzzy Banach algebras.
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Theorem 3.1. Let (A, N) be a fuzzy Banach algebra and (B, N’) be a fuzzy normed

space.

Let �: Am ® B be a function such that for some 0 < a < m,

N′(ϕ(a1, . . . , am), t) ≥ N′
(
αϕ

(a1
m
, . . . ,

am
m

)
, t
)

(3:1)

for all a, b Î A and all t >0. Suppose that f: A ® A is a function such that

N

⎛
⎝ m∑

i=1

f (ai) −
∑m

i=1 f
(
mai +

∑m
j=1,j�=i aj

)
+ f (

∑m
i=1 ai)

2m
, t

⎞
⎠ ≥ N′(ϕ(a1, . . . , am), t) (3:2)

and

N(f (a2) − af (a) − f (a)a, s) ≥ N′(ϕ(a, . . . , a), s) (3:3)

for all a, b Î A and all t, s >0. Then there exists a unique Jordan derivation d: A ®
A such that

N(f (a) − d(a), t) ≥ N′ (ϕ(a, 0, . . . , a), (m − α)t
)

(3:4)

where a Î A and t >0.

Proof. Proceeding as in the proof of Theorem 2.2, we find that there exists an addi-

tive function d: A ® A satisfying (3.4). Now we only need to show that d satisfies d

(a2) = ad(a) + d(a)a for all a Î A. The inequalities (3.1) and (3.4) imply that

N(f (mna)−d(mna), t) ≥ N′
(

ϕ(mna, 0, . . . , 0)
m − α

, t
)

≥ N′
(

ϕ(a, 0, . . . , 0),
(m − α)t

αn

)

for all a Î A and all t >0. Thus

N(m−nf (mna) − m−nd(mna), m−nt) ≥ N′
(

ϕ(a, 0, . . . , 0),
(m − α)t

αn

)

for all a Î A and all t >0. By the additivity of d it is easy to see that

N(m−nf (mna) − d(a), t) ≥ N′
(

ϕ(a, 0, . . . , 0),
mn(m − α)t

αn

)
(3:5)

for all a Î A and all t >0. Letting n to infinity in (3.5) and using (N5), we get

d(a) = N − lim
n→∞m−nf (mna) and d(a2) = N − lim

n→∞m−2nf (m2na2) (3:6)

for all a Î A. Using (3.1) and (3.3), we get

N
(
f (m2na2) − (mna)f (mna) − f (mna)(mna), s

) ≥ N′(ϕ(mna, 0, . . . , 0), s)

≥ N′
(
ϕ(a, 0, . . . , 0),

s
αn

) (3:7)

for all a Î A and all s >0. Let g: A × A ® A be a function defined by g(a, a) = f(a2) -

af(a) - f(a)a for all a Î A. Hence, (3.7) implies that

N − lim
n→∞m−ng(mna, mna) = 0, and N − lim

n→∞m−2ng(mna, mna) = 0 (3:8)
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for all a Î A. Since (A, N) is a fuzzy Banach algebra, applying (3.6) and (3.8), we get

d(a2) = N − lim
n→∞m−2nf (m2na2)

= N − lim
n→∞

[
am−nf (mna) +m−nf (mna)a +m−2ng(mna, mna)

]
= a

(
N − lim

n→∞m−nf (mna)
)
+
(
N − lim

n→∞m−nf (mna)
)
a +N − lim

n→∞m−2ng(mna, mna)

= ad(a) + d(a)a.

for all a Î A. To prove the uniqueness property of d, assume that d’ is another Jor-

dan derivation satisfying (3.4). Since both d and d’ are additive we deduce that

N(d(a) − d′(a), t) = N(d(mna) − d′(mna), mnt) ≥ N′
(

ϕ(mna, 0, . . . , 0),
mn(m − α)t

2

)

≥ N′
(

ϕ(a, 0, . . . , 0),
mn(m − α)t

2αn

)

for all a Î A and all t >0. Letting n to infinity in the above inequality, we get N(d(a)

- d’(a), t) = 1 for all a Î A and all t >0. Hence d(a) = d’(a) for all a Î A. □
Corollary 3.2. Suppose (A, N) and (B, N) are two fuzzy Banach algebras and (C, N’)

be a fuzzy normed space. If f: A ® B is a mapping such that

N

⎛
⎝ m∑

i=1

f (ai) −
∑m

i=1 f
(
mai +

∑m
j=1,j�=i aj

)
+ f (

∑m
i=1 ai)

2m
, t

⎞
⎠ ≥ N′

(
θ

n∑
i=1

‖ai‖r , t
)

(3:9)

and

N(f (a2) − f (a)2, s) ≥ N′(nθ‖a‖r , s) (3:10)

for all a1, . . . , an, a Î A and all t, s >0. Then there exists a unique Jordan homo-

morphism h: A ® B such that

N(f (a) − h(a), t) ≥ N′
(

θ‖a‖r , (m
2 − 1)t
m

)
(3:11)

where a Î A and t >0.

Proof. Letting ϕ(a1, . . . , an) = θ
∑n

i=1 ‖ai‖r and α = 1
m . Applying Theorem 3.1, we

get the desired results. □

4. Conclusion
We establish the generalized Hyers-Ulam stability of Jordan homomorphisms and Jor-

dan derivations on fuzzy Banach algebras. We show that every approximately Jordan

homomorphism (Jordan derivation) is near to an exact Jordan homomorphism (Jordan

derivation).
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