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1 Introduction
The study of fractional calculus (differentiation and integration of arbitrary order) has

emerged as an important and popular field of research. It is mainly due to the exten-

sive application of fractional differential equations in many engineering and scientific

disciplines such as physics, chemistry, biology, economics, control theory, signal and

image processing, biophysics, blood flow phenomena, aerodynamics, fitting of experi-

mental data, etc., [1-7]. Fractional derivatives are also regarded as an excellent tool for

the description of memory and hereditary properties of various materials and processes

[8]. Owing to these characteristics of fractional derivatives, fractional-order models are

considered to be more realistic and practical than the classical integer-order models, in

which such effects are not taken into account. A variety of results on initial and

boundary value problems of fractional differential equations, ranging from the theoreti-

cal aspects of existence and uniqueness of solutions to the analytic and numerical

methods for finding solutions, have appeared in the literature, for instance, see [9-20]

and references therein.

Differential inclusions arise in the mathematical modeling of certain problems in

economics, optimal control, etc., and are widely studied by many authors, see [21-23]

and the references therein. For some recent development on differential inclusions of

fractional order, we refer the reader to the references [24-29].

In this article, we discuss the existence and dimension of the set for the mild solu-

tions of the following inclusion problem{
cDqx(t) ∈ Ax(t) + F(t, x(t)), t ∈ [0,T], 0 < q ≤ 1, T > 0,

x(0) + g(x) = x0, x0 ∈ Rn,
(1)
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where cDq denotes the Caputo fractional derivative of order q, A is a sectorial opera-

tor on ℝn, g: C([0, T ], ℝn) ® ℝn, and F: [0, T ] × ℝn ® P (ℝn), where P(ℝn) is the

family of all nonempty subsets of ℝn.

2 Background material
Let us recall some basic definitions on multi-valued maps (for details, see [30,31]).

Let (X, d) be a metric space. Define P(X) = {Y ⊆ X: Y ≠ Ø}, Pcl(X) = {Y Î P (X): Y is

closed}, Pb(X) = {Y Î P (X): Y is bounded}, Pb, cl(X) = {Y Î P (X): Y is closed and

bounded} and Pcp(X) = {Y Î P (X): Y is compact}:

Consider H: P(X) × P (X) ® ℝ ∪ {∞} given by

H(A,B) = max
{
sup
a∈A

d(a,B), sup
b∈B

d(b,A)
}
,

where d(a, B) = infbÎB d(a, b). H is the (generalized) Pompeiu-Hausdorff functional. It

is known that (Pb, cl(X), H) is a metric space and (Pcl(X), H) is a generalized metric

space (see [30]).

A multivalued operator Ω: X ® Pcl(X) is called a k-contraction if there exists 0 < k

<1 such that

H(�(x),�(y)) ≤ kd(x, y)for each x, y ∈ X.

Let C be a subset of X. A multi-valued map Ω: C ® P (X) is called upper semi-con-

tinuous (u.s.c.) if {x Î C: Ω(x) ⊂ V} is open in C whenever V ⊂ X is open. Ω is called

lower semi-continuous (l.s.c.) if the set {y Î C: Ω(y) ∩ V ≠ Ø} is open for any open set

V ⊂ X. Ω is called continuous if it is both l.s.c. and u.s.c. It is known that Ω: X ® Pcp
(X) is continuous on X if and only if Ω is continuous on X with respect to Hausdorff

metric. Also, if Ω: X ® Pcp(X) is a k-contraction, then Ω is continuous with respect to

Hausdorff metric. Ω is said to be completely continuous if Ω(B ) is relatively compact

for every B ∈ Pb(C). A mapping f: C ® X is called a selection of Ω if f(x) Î Ω(x) for

every x Î C. We say that the mapping Ω has a fixed point if there is x Î X such that

x Î Ω(x). The fixed points set of the multivalued operator F will be denoted by Fix

(Ω). A multivalued map Ω: [0, T ] ® Pcl(ℝ
n) is said to be measurable if for every y Î

ℝn, the function

t �→ d(y,�(t)) = inf{||y − z|| : z ∈ �(t)}

is measurable.

Let ℭ([0, T], ℝn]) denotes the Banach space of continuous functions from [0, T ] into

ℝn with the norm ǀǀxǀǀ∞ = suptÎ[0, T] ǀǀx(t)ǀǀ. Let L
1([0, T ], ℝn) be the Banach space

of measurable functions x: [0, T ] ® ℝn which are Lebesgue integrable and normed by

||x||L1 =
T∫
0

||x(t)||dt . Let C be a nonempty subset of a Banach space X: = (X, ǀǀ.ǀǀ).

Define Pc, cl(C) = {Y Î P (C): Y is convex and closed}, and Pc, cp(C) = {Y Î P (C): Y is

compact and convex}.

Let us recall some definitions on fractional calculus. For more details, we refer to

[1,4].

Definition 2.1. For at least n-times continuously differentiable function g: [0, ∞) ®
ℝ, the Caputo derivative of fractional order q is defined as
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cDqg(t) =
1

�(n − q)

t∫
0

(t − s)n−q−1g(n)(s)ds, n − 1 < q < n, n = [q] + 1, q > 0,

where [q] denotes the integer part of the real number q and Γ denotes the gamma

function.

Definition 2.2. The Riemann-Liouville fractional integral of order q for a continuous

function g is defined as

Iqg(t) =
1

�(q)

t∫
0

g(s)

(t − s)1−q ds, q > 0,

provided the right-hand side is pointwise defined on (0, ∞).

3 Main results
Definition 3.1. Let A: D ⊆ ℝn ® ℝn be a closed linear operator. A is said to be a sec-

torial operator of type (M, θ, μ) if there exist 0 < θ < π/2, M >0, μ Î ℝ such that the

resolvent of A exists outside the sector

μ + Sθ = {μ + λ : λ ∈ C, Arg(−λ)| < θ}

with

||(λI − A)−1|| ≤ M

|λ − μ| , λ /∈ μ + Sθ .

To define mild solutions for (1), we consider the Cauchy problem{
cDqx(t) = Ax(t) + σ (t), t ∈ [0,T], 0 < q ≤ 1, T > 0,

x(0) + g(x) = x0, x0 ∈ Rn,
(2)

where s: [0, T ] ® ℝn.

The following lemma is discussed in [32]. However, for the sake of completeness, we

outline its proof here.

Lemma 3.2. Let A be a sectorial operator of type (M, θ, μ). If s satisfies a uniform

Hölder condition with exponent b Î (0, 1], then the unique solution of the Cauchy

problem (2) is given by

x(t) = Sq(t)(x0 − g(x)) +

t∫
0

Tq(t − s)σ (s)ds, (3)

where

Sq(t) =
1
2π i

∫
P

eλtλq−1R(λq,A)dλ, Tq(t) =
1
2π i

∫
P

eλtR(λq,A)dλ,

where P is a suitable path such that lq ∉ μ + Sθ for l Î P and R(lq, A) = (lqI - A)-1.
Proof. Taking inverse Laplace transform of (2), we get

λq(Lx)(λ) − λq−1(x0 − g(x)) = A(Lx)(λ) + (Lσ )(λ),
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which implies that

(Lx)(λ) = λq−1(λqI − A)−1(x0 − g(x)) + (λqI − A)−1(Lσ )(λ). (4)

By taking inverse Laplace transform of (4), we obtain (3). This completes the proof.

It has been shown in [32] that

sup
t∈[0,T]

||Sq(t)|| = M̃S, ||Tq|| ≤ tq−1M̃T , (5)

with M̃S = supt∈[0,T]||Sq(t)||L(Rn) , and M̃T = supt∈[0,T]Ceμt(1 + t1−q) , where L(ℝn) is

the Banach space of bounded linear operators from ℝn into ℝn equipped with natural

topology and C, μ are appropriate constants (for more details see Equation (3.1) in

[32]).

Remark 3.3. The definition of the mild solution used in [33] is not appropriate as it

does not correspond to the classical case due to the failure of the Leibniz product rule

for the Caputo fractional derivative. For more details, see [32].

Definition 3.4. A function x Î ℭ([0, T], ℝn]) is a mild solution of the problem (1) if

there exists a function f Î L,1([0, T], ℝn) such that f(t) Î F (t, x(t)) a.e. on [0, T ] and

x(t) = Sq(t)(x0 − g(x)) +
t∫
0
Tq(t − s)f (s)ds.

Let Sx0 ([0, α]) denotes the set of all solutions of (1) on the interval [0, a], where 0

< a ≤ T.

To prove the existence of solutions for (1), we need the following lemma due to

Nadler and Covitz [34].

Lemma 3.5. Let (X, d) be a complete metric space. If Ω: X ® Pcl(X) is a k-contrac-

tion, then Fix(Ω) ≠ ∅.

Theorem 3.6. Assume that

(A1) F: [0, T] × ℝn ® Pcp(ℝ
n) is such that F (., x): [0, T ] ® Pc, cp(ℝ

n) is measurable

for each x Î ℝn;

(A2) H(F(t, x), F(t, x̄)) ≤ κ1(t)||x − x̄|| for almost all t Î [0, T ] and x, x̄ ∈ Rnwith �1

Î ℭ([0,T],ℝ+) and ǀǀF (t, x)ǀǀ = sup{ǀǀvǀǀ: v Î F (t, x)} ≤ �1(t) for almost all t Î [0,

T ] and x Î ℝn;

(A3) g: ℭ([0, T], ℝ
n)®ℝn is continuous and ǀǀg(x) - g(y)ǀǀ ≤ �2ǀǀx - yǀǀ∞ for all x,

yÎℭ([0, T], ℝn) with some �2 >0.

Then the Cauchy problem (1) has at least one solution on [0, T ] if

(M̃Sκ2 + M̃T(Tq / q)||κ1||∞) < 1

(M̃S and M̃T are given by (5)).

Proof. For each y Î ℭ([0, T], ℝn), define the set of selections of F by

SF,y := {v ∈ L1([0,T],Rn) : v(t) ∈ F(t, y(t)) for a.e. t ∈ [0,T]}.

Observe that by the assumptions (A1) and (A2), F(t, x(t)) is measurable and has a

measurable selection v(t) (see [[35], Theorem III.6]). Also �1Î ℭ([0, T], ℝ+) and

||v(t)|| ≤ ||F(t, x(t))|| ≤ κ1(t).
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Thus the set SF, x is nonempty for each x Î ℭ([0, T], ℝn). Let us define an operator Ω by

�(x) =
{
h ∈ C([0,T],Rn) : h(t) = Sq(t)(x0 − g(x)) +

t∫
0
Tq(t − s)f (s)ds, f ∈ SF,x

}
,

and show that it satisfies the conditions of Lemma 3.5. As a first step, we show that

Ω(x)ÎPcl (ℭ([0, T], ℝ
n)) for each x Î ℭ([0, T], ℝn). Let {un}n≥0 Î Ω(x) be such that un

® u (n ® ∞) in ℭ([0, T], ℝn). Then u Î ℭ([0, T], ℝn) and there exists vn Î SF, x such

that, for each t Î [0, T],

un(t) = Sq(t)(x0 − g(x)) +
t∫
0
Tq(t − s)vn(s)ds

As F has compact values, we pass to a subsequence to obtain that vn converges to v

in ℭ([0, T], ℝn). Thus, v Î SF, x and for each t Î [0, T],

un(t) → u(t) = v(t).

Hence u Î Ω(x).

Next we show that there exists a g Î (0, 1) such that

H(�(x),�(x̄)) ≤ γ ‖x − x̄‖∞ for each x, x̄ ∈ C([0,T],Rn).

Let x, x̄ ∈ C([0,T],Rn) and h1 Î Ω(x). Then there exists v1(t) Î SF,x such that, for

each t Î [0, T],

h1(t) = Sq(t) (x0 − g(x)) +
t∫
0
Tq(t − s)v1(s)ds.

By (A2), we have

H(F(t, x), F(t, x̄)) ≤ κ1(t)||x(t) − x̄(t)||.

So, there exists w ∈ F(t, x̄(t)) such that

||v1(t) − w|| ≤ κ1(t)||x(t) − x̄(t)||, t ∈ [0, T].

Define V: [0, T ] ® P (ℝn) by

V(t) = {w ∈ Rn : ||v1(t) − w|| ≤ κ1(t)||x(t) − x̄(t)||)}

Since the nonempty closed valued operator V(t) ∩ F(t, x̄(t)) is measurable [[35], Pro-

position III.4], there exists a function v2(t) which is a measurable selection for

V(t) ∩ F(t, x̄(t)) . So v2(t) ∈ F(t, x̄(t)) and for each t Î [0, T ], we have∥∥v1(t) − v2(t)
∥∥ ≤ κ1(t)

∥∥x(t) − x̄(t)
∥∥ . For each t Î [0, T ], let us define

h2(t) = Sq(t) (x0 − g(x)) +

t∫
0

Tq(t − s)v2(s)ds.

Thus

||h1(t) − h2(t)|| ≤ ||Sq(t)||||g(x) − g(x̄))|| +
t∫

0

∥∥Tq(s − t)
∥∥ ∥∥v1(s) − v2(s)

∥∥ ds.
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In view of (5), it follows that

||h1 − h2||∞ ≤ M̃Sκ2||x − x̄||∞ + M̃T(Tq/q)||κ1||∞||x − x̄||∞
= (M̃Sκ2 + M̃T(Tq/q)||κ1||∞)||x − x̄||∞.

Analogously, interchanging the roles of x and x̄ , we obtain

H(�(x), �(x̄)) ≤ γ ||x − x̄||∞for each x, x̄ ∈ C([0, T], Rn),

where γ = (M̃Sκ2 + M̃T(Tq/q)||κ1||∞) < 1 . Since Ω is a contraction, it follows by

Lemma 3.5 that Ω has a fixed point x which is a solution of (1). This completes the

proof.

Lemma 3.7. Let F: [0, T ] × ℝn ® Pc, cp(ℝ
n) satisfy (A1), (A2), and (A3) and suppose

that Ω: ℭ([0, T ], ℝn) ® P (ℭ([0, T ], ℝn)) is defined by

�(x) =

{
h ∈ C([0, T], Rn) : h(t) = x0 − g(x) +

t∫
0

(t − s)q−1

�(q)
f (s)ds, f ∈ SF,x

}
.

Then Ω(x)ÎPc, cp (ℭ([0, T], ℝn)) for each x Î ℭ([0, T], ℝn).

Proof. First we show that Ω(x) is convex for each x Î ([0, T ], ℝn). For that, let h1,

h2 Î Ω(x). Then there exist f1, f2 Î SF, x such that for each t Î [0, T ], we have

hi(t) = Sq(t)(x0 − g(x)) +
t∫
0
Tq(t − s)fi(s)ds, i = 1, 2.

Let 0 ≤ l ≤1. Then, for each t Î [0, T ], we have

[λh1 + (1 − λ)h2](t)

= Sq(t)(x0 − g(x)) +

t∫
0

Tq(t − s)[λf1(s) + (1 − λ)f2(s)]ds.

Since SF, x is convex (F has convex values), therefore it follows that lh1+(1-l)h2 Î
Ω(x). Next, we show that Ω maps bounded sets into bounded sets in ℭ([0, T], ℝn). For

a positive number r, let Br = {x Î ℭ([0, T], ℝn):ǀǀxǀǀ∞≤r} be a bounded set in ℭ([0, T],

ℝn). Then, for each h Î Ω(x), x ÎBr, there exists f Î SF, x such that

h(t) = Sq(t)(x0 − g(x)) +

t∫
0

Tq(t − s)f (s)ds

and in view of (H1), we have

||h(t)|| ≤ |Sq(t)|(||x0|| + sup
x∈Br

||g(x)||) +
t∫

0

|Tq(t − s)|||f (s)||ds

≤ |Sq(t)|(||x0|| + sup
x∈Br

||g(x)||) +
T∫

0

|Tq(t − s)|κ1(s)ds.
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Thus,

||h||∞ ≤ |Sq(t)|(||x0|| + sup
x∈Br

||g(x)||) +
T∫
0

|Tq(t − s)|κ1(s)ds.

Now we show that Ω maps bounded sets into equicontinuous sets in ℭ([0, T], ℝn).

Let t’, t’’ Î [0, T] with t’ <t’’ and x Î Br, where Br is a bounded set in ℭ([0, T], ℝn).

For each h Î Ω(x), we obtain

||h(t′′) − h(t′)||

≤ ||(Sq(t′′) − Sq(t′))(x0 − g(x))|| + ||
t′′∫

0

Tq(t′′ − s)f (s)ds −
t′∫

0

Tq(t′ − s)f (s)ds||

≤ ||(Sq(t′′) − Sq(t′))(x0 − g(x))|| + ||
t′∫

0

[Tq(t′′ − s) − Tq(t′ − s)]κ1(s)ds||

+ ||
t′′∫

t′

Tq(t′′ − s)κ1(s)ds||.

Obviously the right-hand side of the above inequality tends to zero independently of

x ∈ Br′ as t’’ - t’ ® 0. By the Arzela-Ascoli Theorem, Ω:ℭ([0, T], ℝn)®P(ℭ([0, T], ℝn))

is completely continuous. As in Theorem 3.6, Ω is closed-valued. Consequently, Ω(x)

ÎPc,cp(ℭ([0, T], ℝ
n)) for each x Î ℭ([0, T], ℝn).

For 0 < a ·≤ T, let us consider the operator

�(x) =
{
h ∈ C([0, α], Rn) : h(t) = Sq(t) (x0 − g(x)) +

t∫
0
Tq(t − s)f (s)ds, f ∈ SF,x

}
.

It is well-known that Fix(�) = Sx0([0,α]) and, in view of Theorem 3.6, it is none-

mpty for each 0 <a ≤ T.

The following results are useful in the sequel.

Lemma 3.8 (Dzedzej and Gelman [36]) Let F: [0, a] ® Pc, cp(ℝ
n) be a measurable

map such that the Lebesgue measure μ of the set {t: dim F(t) < 1} is zero. Then there

are arbitrarily many linearly independent measurable selections x1(·), x2(·), . . . , xm(·) of

F .

Lemma 3.9. (Dzedzej and Gelman [36]) (see also, [29,37] for general versions) Let C

be a nonempty closed convex subset of a Banach space X. Suppose that Ω: C ® Pc, cp
(C) is a k-contraction. If f: C ® C is a continuous selection of Ω, then Fix(f) is

nonempty.

Lemma 3.10. (Michael’s selection theorem) [38] Let C be a metric space, X be a

Banach space and Ω: C ® Pc, cl(C) a lower semicontinuous map. Then there exists a

continuous selection f: C ® X of Ω.

Lemma 3.11. (Saint Raymond [39]) Let K be a compact metric space with dim K <n,

X a Banach space and Ω: K ® Pc, cp(X) a lower semicontinuous map such that 0 Î
Ω(x) and dim Ω(x) ≥ n for every x Î K. Then there exists a continuous selection f of

Ω such that f(x) ≠ 0 for each x Î K.

Theorem 3.12. Let F: [0, a] × ℝn ® Pc, cp(ℝ
n) satisfy (A1), (A2), and (A3) and sup-

pose that the Lebesgue measure μ of the set {t: dim F (t, x) <1 for some x Î ℝn} is
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zero. Then for each a, 0 < α < min

⎧⎪⎪⎨⎪⎪⎩
(
(1 − M̃Sκ2)q

M̃T‖κ1‖∞

)1
q
, T

⎫⎪⎪⎬⎪⎪⎭ , the set Sx0 ([0,α]) of

solutions of (1) has an infinite dimension for any x0.

Proof. Define the operator Ω by

�(x) =

⎧⎨⎩h ∈ C([0, α], Rn) : h(t) = Sq(t)(x0 − g(x)) +

t∫
0

Tq(t − s)f (s)ds, f ∈ SF,x

⎫⎬⎭ .

Then by Lemma 3.7, Ω(x)ÎPc, cp(ℭ([0,a]), ℝn)) for each x Î ℭ([0, a], ℝn) and as in

the proof of Theorem 3.6, it is a contraction if (M̃Sκ2 + M̃T(αq/q)||κ1||∞) < 1 or

α <

(
(1−M̃Sκ2)q
M̃T‖κ1‖∞

)1
q . We shall show that dim Ω(x) ≥ m for any x Î ℭ([0,a], ℝn) and

arbitrary m Î N. Consider G(t) = F (t, x(t)). By Lemma 3.8, there exist linearly inde-

pendent measurable selections x1(.), x2(.), . . . , xm(.) of G. Set

yi(t) = Sq(t)(x0 − g(x)) +

t∫
0

Tq(t − s)xi(s)ds ∈ �(x) . Assume that
∑m

i=1
aiyi(t) = 0 a.e.

in [0, a]. Taking Caputo derivatives a.e. in [0, a], we have
∑m

i=1
aixi(t) = 0 a.e. in [0,

a] and hence ai = 0 for all i. As a result, yi(.) are linearly independent. Thus Ω(x) con-

tains an m-dimensional simplex. So dim Ω(x) ≥ m. As in Theorem 3.6, Fix(Ω) is none-

mpty. Since Ω is condensing with respect to the Hausdorff measure of

noncompactness c [40] and Fix(Ω) ⊂ Ω(Fix(Ω)), we have

X (Fix(�)) ≤ X (�(Fix(�))).

This implies that Fix(Ω) is compact. Consider the map I - Ω: Fix(Ω) ® Pc, cp(ℝ
n),

where I is the identity operator. Assume that dim Fix(Ω) < n. Then, by Lemma 3.11,

there is a continuous selection g of I - Ω such that g(x) ≠ 0 for each x Î Fix(Ω). This

implies that there exists a continuous selection h of F: Fix(F) ® Pc, cp(ℝ
n) without

fixed points. Define T: ℝn ® Pc, cp(ℝ
n) by

T(x) =
{

�(x), x ∈ Rn\ Fix (�)
h(x), x ∈ Fix (�).

Since T is lower semicontinuous, Michael’s selection result (Lemma 3.10) guarantees

that T admits a continuous selection f: ℝn ® ℝn. Thus f: ℝn ® ℝn is a continuous

selection of Ω with no fixed points and f = h on Fix(Ω), which contradicts Lemma 3.9.

Consequently, Fix(�) = Sx0([0, α]) is infinite dimensional.

Recall that a metric space X is an AR-space if, whenever it is nonempty closed subset

of another metric space Y , then there exists a continuous retraction r: Y ® X, r(x) = x

for x Î X. In particular, it is contractible (and hence connected).

Lemma 3.13. [41] Let C be a nonempty closed convex subset of a Banach space X

and Ω: C ® Pc, cp(C) a contraction. Then Fix(Ω) is a nonempty AR-space.

Theorem 3.12 together with Lemma 4.13 yields the following result.

Agarwal et al. Advances in Difference Equations 2012, 2012:74
http://www.advancesindifferenceequations.com/content/2012/1/74

Page 8 of 10



Corollary 3.14. Let F: [0, a] × ℝn ® Pc, cp(ℝ
n) satisfy (A1), (A2), and (A3) and sup-

pose that the Lebesgue measure μ of the set {t: dim F (t, x) <1 for some x Î ℝn} is

zero. Then for each α, 0 < α < min

⎧⎪⎨⎪⎩
(

(1−M̃Sκ2)q
M̃T‖κ1‖∞

)1
q ,T

⎫⎪⎬⎪⎭ , the set Sx0 ([0, α]) of solu-

tions of (1) is an infinite dimensional AR-space.
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