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Abstract
A predator-prey model with simplified Holling type III response function
incorporating a prey refuge under sparse effect is considered. Through qualitative
analysis of the model, at least two limit cycles exist around the positive equilibrium
point with the result of focus value, the Hopf bifurcation under a prey refuge is
obtained. We also show the influence of prey refuge. Numerical simulations are
carried out to illustrate the feasibility of the obtained results and the dependence of
the dynamic behavior on the prey refuge. Through the results of computer
simulation, it is further shown that under certain conditions the model has three limit
cycles surrounding the positive equilibrium point.
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1 Introduction
The dynamical relationship between predators and their preys is one of the dominant
subjects in ecology and mathematical ecology due to its universal importance, see [–].
Some of the empirical and theoretical work have investigated the effect of prey refuges,
the refuges used by prey have a stabilizing effect on the considered interactions, and prey
extinction can be prevented by the addition of refuges [–].
Huang et al. [] studied the stability analysis of a prey-predator model with Holling type

III response function incorporating a prey refuge:

⎧⎨
⎩

dx
dt = ax – bx – αxy

β+x ,
dy
dt = –cy + kαxy

β+x .
(.)

Motivated by the study of Huang et al. [] and Ji andWu [], we consider the following
predator-prey model with Holling type III response function incorporating a prey refuge
under sparse effect:

⎧⎨
⎩

dx
dt = rx( – x

k ) –
(–m)xy
a+(–m)x ,

dy
dt = y[–d + u(–m)x

a+(–m)x ],
(.)

© 2012 Wang and Pan; licensee Springer. This is an Open Access article distributed under the terms of the Creative Commons
Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction
in any medium, provided the original work is properly cited.

http://www.advancesindifferenceequations.com/content/2012/1/96
mailto:fzwjh@163.com
http://creativecommons.org/licenses/by/2.0


Wang and Pan Advances in Difference Equations 2012, 2012:96 Page 2 of 14
http://www.advancesindifferenceequations.com/content/2012/1/96

where x(t) is the population density of the prey and y(t) is the population density of the
predator at time t; r >  represents the intrinsic growth rate of the prey; k is the carrying
capacity of the prey in the absence of predator and harvesting; m is a constant number of
prey using refuges, which protectsm of prey from predation; the term x/(a+ x) denotes
the functional response of the predator, which is known as Holling type III response func-
tion; u >  is the conversion factor denoting the number of newly born predators for each
captured prey; d >  is the death rate of the predator.
From the point of view of human needs, the exploitation of biological resources and

the harvest of population are commonly practiced in fishery, forestry, and wildlife man-
agement. Concerning the conservation for the long-term benefits of humanity, there is a
wide range of interest in the use of bioeconomicmodeling to gain insight into the scientific
management of renewable resources.
The problem of predator-prey interactions under a prey refuge have been studied by

some authors. For example, Hassel [] showed that adding a large refuge to amodel, which
exhibited divergent oscillations in the absence of a refuge, replaced the oscillatory behavior
with a stable equilibrium. McNair [] obtained that a prey refuge with legitimate entry-
exit dynamics was quite capable of amplifying rather than damping predator-prey oscilla-
tions. McNair [] showed that several kinds of refuges could exert a locally destabilizing
effect and create stable, large-amplitude oscillations which would damp out if no refuge
was present. Even now, prey refuges are widely believed to prevent prey extinction and
damp predator-prey oscillations. For example, Kar [] considered a Lotka-Volterra type
predator-prey system incorporating a constant proportion of prey using refugesm, which
protects m of prey from predation, with Holling type II response function and Holling
type III response function, respectively. Our results indicate that refuge had a stabilizing
effect on prey-predator interactions and the dynamic behavior very much depends on the
prey refuge parameter m, point that increasing the amount of refuge could increase prey
densities and lead to population outbreaks.
This article is organized as follows. Basic properties such as the existence, stability, and

instability of the equilibria of the model and the boundedness of the solutions of the sys-
tem (.) with positive initial values are given in Section . In Section , sufficient condi-
tions for the global stability of the unique positive equilibrium are obtained. Section  is
devoted to deriving the existence of limit cycle. In Section , we study theHopf bifurcation
of system (.). In Section , we analyze the influence of prey refuge and give numerical
stimulations.

2 Basic properties of themodel
LetR+

 = {(x, y)|x≥ , y≥ }. For practical biologicalmeaning, we simply study system (.)
in R+

 . The main aim of this article is to study the existence and non-existence of positive
equilibrium of (.) by the effects of a prey refuge, that is to say, the existence and non-
existence of positive equilibrium of system (.) depend on the constant m ∈ [, ).
We make the following substitution for model (.)

dt =
[
a + ( –m)x

]
dτ .
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Denoting new argument τ with t again, it gives

⎧⎨
⎩

dx
dt = x{r( – x

k )[a + ( –m)x] – ( –m)y},
dy
dt = y[–da + (u – d)( –m)x].

(.)

Solutions of system (.) are discussed as follows:
() If u≤ d, system (.) possesses only two equilibrium points on the region R+

 , they are
the trivial solutionO(, ) and the semi-trivial solution in the absence of predator P(k, );
() If u > d, system (.) admits three equilibrium points on the region R+

 , they are the
trivial solutionO(, ), the semi-trivial solution in the absence of predator P(k, ) and the
unique positive constant solution P(x, y), where

x =


 –m

√
da

u – d
, y = r

[
 –


k( –m)

√
da

u – d

]
ua

(u – d)( –m)
.

For the existence of positive constant solution P(x, y), it is necessary to assume that
 – 

k(–m)

√
da
u–d > , then we derive that  ≤ m <  – 

k

√
da
u–d .

It turns out that the non-constant positive solutions of (.) may exist for some ranges
of the parameterm. From the first equation of system (.), it is easy to derive that

lim sup
t→+∞

x(t)≤ k.

Lemma . The solution (x(t), y(t)) of system (.) with the initial value x() > , y() > 
is positive and bounded for all t ≥ .

Proof We see that dx
dt |x=k = – (–m)ky

a+(–m)k <  with y > , so x = k is a untangent line of sys-
tem (.). And the positive trajectory of system (.) goes through from its right side to its
left side when it meets the line x = k.
Construct Dulac function w(x, y) = y + ux – l, computing w =  along the trajectories of

system (.)

dw
dt

=
dy
dt

+ u
dx
dt

x = –dy + urx
(
 –

x
k

)
= urx

(
 –

x
k

)
– d(l – ux).

If l >  is large enough, we have dw
dt < , where  < x < k. So the line y + ux = l goes

through from its upside to its downside in the region {(x, y)| < x < k,  < y < +∞}. For sys-
tem (.), constructing a Bendixson ring ̂OABC including P(x, y). Define OA, AB, BC
as the lengths of lines L = y = , L = x– k = , L = y+ ux– l, respectively. The boundary
line of the Bendixson ring ̂OABC’s is J . So, the orbits of system (.) enter into the interior
of the Bendixson ring when it meets the boundary line J .
If the initial value p which is in the first quadrant is not in the ̂OABC, we can construct

a curve Jp in the same way, denoting p ∈ Jp. Thus the positive trajectory L+p which is pass
through p goes through into the interior of Jp at the end. Note that the point P(x, y) is
the unique equilibrium point in the Bendixson ring ̂OABC. Through the Limit collection
theory, we know that the trajectory L+p goes through into the interior of the Bendixson
ring ̂OABC at the end. Therefore, all of the solutions (x(t), y(t)) of system (.) with the
initial value x() > , y() >  are positive and bounded. This completes the proof. �
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Lemma . () O(, ) is a stable node point;
() if u≤ d holds, P(k, ) is a stable focus or a stable node;
() if u > d holds, then P(k, ) is a stable focus or a stable node for  – 

k

√
da
u–d <m < ;

P(k, ) is a stable node point for  ≤ m <  – 
k

√
da
u–d ; P(k, ) is a stable node point for

m = – 
k

√
da
u–d . P(x, y) is an unstable focus or an unstable node for  ≤m < – u+d

dk

√
da
u–d ;

P(x, y) is a stable focus or a stable node for  – u+d
dk

√
da
u–d <m <  – 

k

√
da
u–d ; P(x, y) is a

center or a focus for m =  – u+d
dk

√
da
u–d .

Proof The Jacobian matrix of system (.) is given by

J(x, y)

=
(
r[ax – a

k x
 + ( –m)x – (–m)

k x] – ( –m)xy –( –m)x
(u – d)( –m)xy –da + (u – d)( –m)x

)
.

() Since det J(, ) = , O(, ) is a higher-order singular point. We make a transforma-
tion dτ = – 

da dt. Substituting this into (.), then replacing τ with t gives

⎧⎨
⎩

dx
dt = – r

d x
 + r

dk x
 – r(–m)

da x + r(–m)
dak x + (–m)

da xy ≡ P(x, y),
dy
dt = y – (u–d)(–m)

da xy = y +Q(x, y).
(.)

From y + Q(x, y) = , we can solve that y = ϕ(x) ≡ . Furthermore, we can derive that
P(x,ϕ(x)) = – r

d x
 + r

dk x
 – r(–m)

da x + r(–m)
dak x, so we have �n = – r

d �= , n = . According
to Zhang et al. [], we can derive that O(, ) is a stable node point.
() The Jacobian matrix of system (.) for the equilibrium point P(k, ) is given by

J(k, ) =

(
r[–ak – ( –m)k] –( –m)k

 –da + (u – d)( –m)k

)
.

If u ≤ d, the eigenvalues of matrix r[–ak – ( – m)k] and –da + (u – d)( – m)k are
negative, hence P(k, ) is a stable focus or a stable node.
() If u > d, according to (), we know that if –da + (u – d)( –m)k < , namely  –


k

√
da
u–d <m < , then p = det J(k, ) > , hence P(k, ) is a stable focus or a stable node; if

–da+(u–d)(–m)k > , namely  ≤ m < – 
k

√
da
u–d , then det J(k, ) < , hence P(k, ) is

a saddle point. Ifm = – 
k

√
da
u–d , then det J(k, ) = , thus P(k, ) is a higher-order singular

point. In this situation P(k, ) and point P(x, y) are the same point. So P(k, ) is a stable
node point.
As det J(x, y) = (u – d)( –m)xy > ,

P = –r
[
ax + ( –m)x –

a
k
x –

( –m)

k
x

]
+ ( –m)xy

= –r
[
–
a
k
x + ( –m)x –

( –m)

k
x

]

= –rx

[
( –m)

√
da

u – d
–
au + da
k(u – d)

]
,
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if ( – m)
√

da
u–d – au+da

k(u–d) > , namely  ≤ m <  – u+d
dk

√
da
u–d , we derive that P < , then

P(x, y) is an unstable focus or an unstable node; if ( –m)
√

da
u–d – au+da

k(u–d) < , namely

 – u+d
dk

√
da
u–d <m <  – 

k

√
da
u–d , we derive that P > , then P(x, y) is a stable focus or a

stable node; if ( –m)
√

da
u–d – au+da

k(u–d) = , namely P = , then we can derive that P(x, y)
is a center or a focus. The proof is completed. �

FromLemma., if P = –rx [(–m)
√

da
u–d –

au+da
k(u–d) ] =  holds, namelym = – u+d

dk

√
da
u–d ,

P(x, y) is a center focus. We can make further conclusions:

Lemma . () if C >  holds, P(x, y) is a stable fine focus with order one;
() if C <  holds, P(x, y) is an unstable fine focus with order one;
() if C =  and C >  hold, P(x, y) is a stable fine focus with second-order;
() if C =  and C <  hold, P(x, y) is an unstable fine focus with second-order, where

C = �
 (G + F + I + DE – EG – D –HG) and

C =
�



(
M –



EDN – EF –



ED – ED +




EHG –



EHD

–


EDH + EG + DE – GE

+ EDH – EGH – EFH +


EGH

+


GF –




EDG –


DF + FN + FH –



DL –



DGF +



EGD

+ D – GD –


ENG +



GL + DG – DN + DH – GH

)
.

Proof First use the coordinate translation, that is translation the origin of coordinates into
the point P(x, y). Then we assume

x = x – x, y = y – y, dt = ( –m)x dt.

Replacing x, y, t with x, y, t, respectively, it gives

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

dx
dt = –y – 

x
xy + r

(–m)x
[a + x ( –m) – ax+(–m)x

k – ( –m)y]x

– 
x
xy + r

(–m)x
[x( –m) – a+(–m)x

k ]x + r
x
[ – x

k ]x – r
kx

x,
dy
dt =

(u–d)y
x

x + (u–d)y
x

x + (u–d)
x

xy + u–d
x

xy.

(.)

We denote A =
√

(u–d)y
x

>  and make the following transformations u = x, v = 
Ay, dτ =

–Adt, and replacing u, v, τ with x, y, t, respectively, we have

⎧⎨
⎩

dx
dt = y +Dxy – Ex +Nxy – Fx – Lx +Mx = y +

∑
j= Pj(x, y)≡ P̂(x, y),

dy
dt = –x –Gx –Hxy – Ixy = –x +

∑
j=Qj(x, y) ≡ Q̂(x, y),

(.)
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where

D =

x
, E =

r
A( –m)x

[
a + x ( –m) –

ax + ( –m)x
k

– ( –m)y
]
,

N =

x

, F =
r

A( –m)x

[
x( –m) –

a + ( –m)x
k

]
,

L =
r

Ax

[
 –

x
k

]
, M =

r
Akx

, G =
(u – d)y
Ax

,

H =
(u – d)
Ax

, I =
u – d
Ax

.

It is obvious that D = N and HD = I . Then we make use of the method Poincare to
calculate the focus value.
Construct a form progression F(x, y) = x + y +

∑∞
k= Fk(x, y), where Fk(x, y) is the kth

homogeneous multinomials with x and y.
Considering dF

dt |(.) = ∂F
∂t · P̂(x, y) + ∂F

∂t Q̂(x, y) = , we can obtain that three multinomials
and four multinomials of F(x, y) are equal to zero separately.
Noting that xP(x, y) + yQ(x, y) = –H(x, y) we can obtain

H = Ex + (G – D)xy + Hxy.

Let F(x, y) = ax + axy + axy + ay, then we can obtain the following form:

y
∂F
∂x

– x
∂F
∂y

= y
(
ax + axy + ay

)
– x

(
ax + axy + ay

)
= –ax + (a – a)xy + (a – a)xy + ay.

From y ∂F
∂x – x ∂F

∂y =H, we can derive that

–ax + (a – a)xy + (a – a)xy + ay = Ex + (G – D)xy + Hxy.

Through the comparison method of correlates, we can obtain that

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

a = G–D
 ,

a = –E,

a = ,

a = –H+E
 ,

then F(x, y) = G–D
 x – Exy – H+E

 y and

–H = xP + yQ +
∂F
∂x

· P +
∂F
∂y

·Q

= (EG + D – G – F)x + (HG + EG – I – DE)xy

+
(
N + GD + E + EH – D)xy + (

H + EH
)
xy.

http://www.advancesindifferenceequations.com/content/2012/1/96
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Let x = r cos θ , y = r sin θ , then we can derive that

C =
∫ �


H(cos θ , sin θ )dθ =

�


(G + F + I + DE – EG – D –HG).

Hence, then point O(, ) of system (.) is an unstable fine focus with order one when
C > . But considering the time change dτ = –Adt, P(x, y) is a stable fine focus with
order one. And P(x, y) is an unstable fine focus with order one when C < . If C = ,
namely G + F + I + DE – EG – D –HG = , we denote

F(x, y) = bx + bxy + bxy + bxy + by.

By substituting F(x, y) = bx + bxy + bxy + bxy + by into y ∂F
∂x – x ∂F

∂y =H,

by – bx + (b – b)xy + (b – b)xy + (b – b)xy

= (G + F – EG – D)x + (I + DE – HG – EG)xy

+
(
D – N – GD – E – EH

)
xy –

(
H + EH

)
xy.

Through the comparison method of correlates, we can obtain that

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

b = 
D

 – 
N – 

GD – E – 
EH – 

H
,

b = EG + D – G – F = 
 (I + DE – HG – EG),

b = –H – EH ,

b = ,

b = ,

then we have

F(x, y) =
(


D –



N –



GD – E –



EH –



H

)
x

+ (EG + D – G – F)xy –
(
H + EH

)
xy.

Also

–H = xP + yQ + P
∂F
∂x

+Q
∂F
∂y

+ P
∂F
∂x

+Q
∂F
∂y

=
(
–L – GF + DF – DE + NE + GDE + E + EH + EH)x
+

(
GN – DN + EF + EI + D – GD – ED – EHD – HD

– EG – DE + GE + GH + EGH – DH + GH + FH
)
xy

+
(
–EN + EGD + D – GD – FD + EH + EH

+ H)xy + (
HI + EI – DH – DEH

)
xy.

http://www.advancesindifferenceequations.com/content/2012/1/96
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Noting F(x, y) = dx + dxy + dxy + dxy + dxy + dy into y ∂F
∂x – x ∂F

∂y = H,
through the comparison method of correlates, we can obtain that

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

d = –
GN – 

DN – EF + EI + 
GN + 

E
D + 

HI +

E

G + 
DE

– 
EG – 

GH
 – 

EGH + 
 I –


GH – 

FH ,

d = –L – GF + DF – EN + GDE + E + EH + EH,

d = HI + EI,

d = –
 EN + 

 EGD + N – GD + 
FD + 

 EH
 + 

 E
H + 

H


– 
L –


GF + 

 E
,

d = ,

d = –
EN + 

EGD + 
 N – 

GD + 
FD + 

EH


+ 
E

H + 
H

 – 
L –


GF + 

E
.

(.)

Substituting (.) into

–H = xP + yQ + P
∂F
∂x

+Q
∂F
∂y

+ P
∂F
∂x

+Q
∂F
∂y

+ P
∂F
∂x

+Q
∂F
∂y

,

we can derive that

C =
�



(
M –



EDN – EF –



ED – ED +




EHG –



EHD

–


EDH + EG + DE – GE + EDH – EGH – EFH

+


EGH +



GF –




EDG –


DF + FN + FH –



DL

–


DGF +



EGD + D – GD –



ENG +



GL + DG

– DN + DH – GH
)
.

Hence point O(, ) of system (.) is an unstable fine focus with second-order when
C > . But considering the time change dτ = –Adt, we know that P(x, y) is a stable fine
focus with second-order. And P(x, y) is an unstable fine focus with second-order when
C < . The proof is completed. �

Remark If C =  holds, P(x, y) is possible a fine focus with third-order.

3 Global stability of the unique positive equilibrium
Theorem . Suppose that –

√
a
k ≤ m <  holds and there is no close orbit around system

(.) in the first quadrant. Assume that:

(H) d < u≤ 
d;

(H) u > 
d and u �= d,  –

√
a
k ≤ m <  – 

k

√
da
u–d ;

(H) u = d,  –
√
a
k <m <  –

√
a
k .

http://www.advancesindifferenceequations.com/content/2012/1/96
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Then the equilibrium P(k, ) of system (.) is globally asymptotically stable on the first
quadrant, if (H) holds. And the positive equilibrium P(x, y) of system (.) is globally
asymptotically stable, if one of (H) and (H) holds.

Proof By Lemmas . and ., the solution (x(t), y(t)) of system (.) with the initial values
x() > , y() >  is unanimous bounded for all t ≥  and the point P(x, y) is globally
asymptotically stable, we should proof that the system (.) is not exist limit cycle if  –√

a
k ≤ m <  holds.
Define a Dulac function B(x, y) = x–y–, then from system (.), we have

D =
∂(BP)

∂x
+

∂(BQ)
∂y

=
r
y

[
–
a
k
–
( –m)

k
x + ( –m)x

]

≤ r
y

[
–
a
k
–
( –m)

k

(
k


)

+ ( –m)
(
k


)]

≤ r
y

[
–
a
k
+
( –m)k



]
.

Hence if m ≥  –
√
a
k and D <  for all x ≥ , system (.) does not exist any close orbit.

Then we can obtain that if  – 
k

√
ad
u–d ≤  –

√
a
k holds, namely d < u ≤ 

d, the positive
equilibrium P(x, y) does not exist and P(k, ) of system (.) is globally asymptotically
stable; if u > 

d and u �= d, then  –
√
a
k >  – u+d

k

√
a

d(u–d) or if u = d, then  –
√
a
k =  –

u+d
k

√
a

d(u–d) . So the positive equilibrium P(x, y) of system (.) is globally asymptotically
stable, if one of (H) and (H) holds. The proof is completed. �

4 Existence of limit cycle
Theorem . Suppose that  ≤ m <  – u+d

k

√
a

d(u–d) . Then system (.) exists at least one
limit cycle in the first quadrant.

Proof In the proof of Lemma ., we can obtain the boundary line J of the Bendixson ring
B = {(x, y)| < x < k,  < y < l – ux}. Let J be the outer boundary of system (.). Due to the
Lemma ., we know that there exists an unique unstable singular point P(x, y) in the
Bendixson ring B. By Poincare-Bendixson theorem, system (.) exists at least one limit
cycle in the first quadrant. This completes the proof. �

5 Hopf bifurcation
By the study of Lou et al. [] and the Lemma . we have the following theorem:

Theorem . () If C >  and  < – u+d
d · 

k

√
da
u–d –m 
  hold, then system (.) exists a

limit cycle around the small neighborhood of P(x, y). Further if the limit cycle is unique,
then it is stable.
() If C <  and  <m– (– u+d

d · 
k

√
da
u–d ) 
  hold, then system (.) exists a limit cycle

around the small neighborhood of P(x, y). Further if the limit cycle is unique, then it is
unstable.
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() If C < ,  < δ 
 ,  < δ < δ 
  and  < C < δ,–δ < P <  hold, then system (.)
exists at least two limit cycles around the small neighborhood of P(x, y).
By selecting the suitable values of the parameters, we can obtain these two limit cycle.
() If C > ,  < δ 
 ,  < δ < δ 
  and–δ < C < ,  < P < δ hold, then system (.)

exists at least two limit cycles around the small neighborhood of P(x, y). By selecting the
suitable values of the parameters, we can obtain these two limit cycle.

6 The effect of prey refuge and harvesting efforts and examples
6.1 The influence of prey refuge onmodel (1.2)
By the variable transformation dt = a + ( –m)x dτ , the positive equilibrium P(x, y)
of system (.) takes the form x = 

–m

√
da
u–d , and y = r[ – 

k(–m)

√
da
u–d ]

ua
(u–d)(–m) , where

 < x < k.
For x < k, we have 

–m

√
da
u–d < k, namely  <m <  – 

k

√
da
u–d . Then we obtain

dx
dm

=


( –m)

√
da

u – d
> . (.)

The above inequality shows that x is a strictly increasing function with respect to the
parameterm and that the increasing of the prey refuge increases the density of the prey.
One could see that y is also a continuous differential function of the parameterm. Sim-

ple computation shows that

dy
dm

= r
ua

(u – d)( –m)

[
 –


k( –m)

√
da

u – d

]
. (.)

We discuss (.) in the following two cases.
Case : Assume that the inequality  – 

k

√
da
u–d <m <  – 

k

√
da
u–d holds, then dy

dm <  for
all m > , thus y is a strictly decreasing function with respect to the parameter m. That
is, increasing the amount of prey refuge can decrease the density of the predator. In this
case, y reaches the maximum value r[ – 

k

√
da
u–d ]

ua
u–d atm = .

Case : Assume that the inequality  <m <  – 
k

√
da
u–d holds, then dy

dm >  for allm > ,
thus y is a strictly increasing function of parameter m. That is, increase the amount of
prey refuge can increase the density the predator. This analysis shows that increasing the
amount of prey refuge can increase the density of the predator due to the predator still
has enough food for predation withm being small.

6.2 Example and simulations
Example  Let r = ., k = , a = , d = , u =  in system (.). By simple computation,
we have

 –
√
a
k

=  –


= .,  –


k

√
da

u – d
=  –

√



= .,

 –
u + d
d

· 
k

√
da

u – d
=  –

√



= .,


d =



< , u >



d.
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Figure 1 P2(x1,y1) is globally asymptotically stable withm = 0.49.

Figure 2 P2(x1,y1) is globally asymptotically stable withm = 0.43.

We known that  –
√
a
k <m <  – 

k

√
da
u–d , if we take m = . and m = . separately. By

Theorem ., system (.) admits a globally asymptotically stable equilibrium P(x, y) in
the region R+

 , which is shown in Figures  and .

If we take m = . and m = . separately, by Theorem ., system (.) admits one
and two limit cycles surrounding equilibrium P(x, y), which is shown in Figures  and .

Example  Let r = ., k = , a = 
 , d = , u =  in the system (.). By simple compu-

tation, we have

 –
√
a
k

=  –
√



= .,
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Figure 3 There is a stable limit cycle surrounding P2(x1,y1) withm = 0.134.

Figure 4 There are two limit cycles surrounding P2(x1,y1) withm = 0.113.

 –

k

√
da

u – d
=  –

√



= .,

 –
u + d
d

· 
k

√
da

u – d
=  –

√



= ..

If we take m = ., by Theorem ., system (.) admits three limit cycles surrounding
equilibrium P(x, y), which is shown in Figure .

Figures , , , , and  show the dependence of the dynamic behavior of system (.) on
the prey refugem. Figures , , , and  show that whenm is small enough, there are three
or two limit cycles surrounding the unique positive equilibrium, when m is large there
is a stable limit cycle surrounding the unique positive equilibrium and when m is large
enough, the limit cycle is broken and both the prey and predator population converge to

http://www.advancesindifferenceequations.com/content/2012/1/96
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Figure 5 There are three limit cycles surrounding P2(x1,y1) withm = 0.065.

their equilibrium values, respectively, which means that if we change the value of m, it
is possible to prevent the cyclic behavior of the predator-prey system and to drive it to a
required stable state.

7 Conclusion
This article considers a predator-prey model with Holling type III response function in-
corporating a prey refuge under sparse effect. We give the complete qualitative analysis
of the instability and global stability properties of the equilibria and the existence of limit
cycles for the model. Our results, examples, and simulations indicate that dynamic behav-
ior of the model very much depends on the prey refuge parameter m and increasing the
amount of refuge could increase prey densities and lead to population outbreaks.
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