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Abstract
In this article, we study the boundary value problems for the fourth-order nonlinear
coupled difference equations

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

�4u(i – 2) = f1(i, v(i)) + e1(i), i ∈ [2, T + 2],

�4v(i – 2) = f2(i,u(i)) + e2(i), i ∈ [2, T + 2],

u(0) = u(1) = v(1) = v(0) = 0,

u(T + 3) = u(T + 4) = v(T + 4) = v(T + 3) = 0.

Throughout our nonlinearity may be singular. We establish the existence of positive
solutions for the fourth-order coupled systems. The proof relies on Schauder’s fixed
point theorem.
MSC: 39A11

Keywords: positive solution; positone and semipositone boundary value problem;
singular difference equation; fixed point theorem

Introduction
In this article, we consider the following boundary value problems of difference equations

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

�u(i – ) = f(i, v(i)) + e(i), i ∈ [,T + ],

�v(i – ) = f(i,u(i)) + e(i), i ∈ [,T + ],

u() = u() = v() = v() = ,

u(T + ) = u(T + ) = v(T + ) = v(T + ) = ,

()

here [,T + ] = {, , . . . ,T + } and u, v, ej : [,T +] → R, fj : [,T +]×R → R+, j = , .
We will let [a,b] denote the discrete integer set [a,b] = {a,a+ , . . . ,b}, C([a,b]) denote set
of continuous function on [a,b] (discrete topology) with norm ‖ · ‖ =maxk∈[a,b] | · |.
Recently, many literature on the boundary value of difference equations have appeared.

We refer the reader to [–] and the references therein, which include work on Agarwal,
Eloe, Erber, O’Regan, Henderson, Merdivenci, Yu, Ma et al., concerning the existence of
positive solutions and the corresponding eigenvalue problems. Recently, the existence of
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positive solutions of fourth-order discrete boundary value problems have been studied by
several authors, for examples, see [–] and the references therein.
The fourth-order boundary value problems of ordinary value problems have important

application in various branches of pure and applied science. As in entrepreneurial network
evolution studies, the research paradigm of ‘U related to V’ was always applied, while U
or V was the measurement of the attitudes of the entrepreneurs who answered the ques-
tionnaire. According to cognitive psychology studies [, ], questionnaire shows the
change of attitude, which is the fourth-order dependent of original signal. So whether this
paradigm will lead to meaningful causal outcome, which is basically depended on differ-
ence equations.
The fourth-order boundary value problems of ordinary value problems have important

application in various branches of pure and applied science. They arise in the mathemati-
cal modeling of viscoelastic and inelastic flows, deformation of beams and plate deflection
theory [–]. For examples, the deformations of an elastic beam can be described by the
boundary value problems of the fourth-order ordinary differential equations. There have
been extensive studies on fourth-order boundary value problems with diverse boundary
conditions via many methods, for example [–] and the references therein.
The remaining part of the article is organized as follows. In Section “Preliminaries”, some

preliminary results will be given. In the remaining sections, by employing a basic applica-
tion of Schauder’s fixed point theorem, we state and prove the existence results for (). Our
view point sheds some new light on problems with weak force potentials and prove that
in some situations weak singularities may stimulate the existence of positive solutions.

Preliminaries
In this section, we state the preliminary information that we need to prove the main re-
sults. From [, ], we have the following lemma.

Lemma  x(i) is a solution of equation
⎧⎨
⎩

�x(i – ) = h(i), i ∈ [,T + ],

x() = x() = x(T + ) = x(T + ) = 
()

if only and if

x(i) =
T+∑
j=

G(i, j)h(j), i ∈ [,T + ], ()

where

G(i, j) =

⎧⎨
⎩

(T+–i)(j–)
 ( i

(T+) –
(T++i)(j–)

(T+) ),  ≤ j ≤ i + ,
i(T+–j)

 ( (T+–i)(T++j)(T+) – T+–j
(T+) ), i +  < s ≤ T + .

()

Lemma  The Green’s function G(i, j) defined by () have properties

Ci(T +  – i)(j – )(T +  – j) ≤ G(i, j) ≤ (j – )(T +  – j),

G(i, j) ≤ i(T +  – i),

where C = 
(T+) .
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For our constructions, we shall consider the Banach space E = C([,T + ]) equipped
with the standard norm ‖x‖ =max≤i≤T+ |x(i)|, x ∈ E. We define a cone P ⊂ E by

P =
{
x ∈ E|x(i)≥ Ci(T +  – i)‖x‖, i ∈ [,T + ]

}
.

Define an operator A(u, v) = (A(u),A(v)) : P × P → E × E by

Au(i) =
T+∑
j=

G(i, j)(f(i, v(i)) + e(i)), i ∈ [,T + ], v ∈ P,

Av(i) =
T+∑
j=

G(i, j)(f(i,u(i)) + e(i)), i ∈ [,T + ],u ∈ P.

()

Notice from () and Lemma  that, for u ∈ P, we have

Au(i) =
T+∑
j=

G(i, j)
(
f
(
i, v(i)

)
+ e(i)

) ≤
T+∑
j=

(j – )(T +  – j)
(
f
(
i, v(i)

)
+ e(i)

)
,

Av(i) =
T+∑
j=

G(i, j)
(
f

(
i,u(i)

)
+ e(i)

) ≤
T+∑
j=

(j – )(T +  – j)
(
f

(
i,u(i)

)
+ e(i)

)
,

then ‖Av‖ ≤ ∑T+
j= (j – )(T +  – j)(f(i, v(i)) + e(i)) and ‖Au‖ ≤ ∑T+

j= (j – )(T +  –
j)(f(i,u(i)) + e(i)).
On the other hand, we have

Au(i) ≥ Ci(T +  – i)
T+∑
j=

(j – )(T +  – j)
(
f
(
i, v(i)

)
+ e(i)

)

≥ Ci(T +  – i)‖Au‖,

Av(i) ≥ Ci(T +  – i)
T+∑
j=

(j – )(T +  – j)
(
f

(
i,u(i)

)
+ e(i)

)

≥ Ci(T +  – i)‖Av‖.

Thus, A(P × P) ⊂ P × P. In addition, standard arguments show that A is completely con-
tinuous.
Now, we define the function γk : E → E by

γk(i) =
T+∑
j=

G(i, j)
i(T +  – i)

ek(j), i ∈ [,T + ],k = , ,

which is the unique solution of

⎧⎨
⎩

�x(i – ) = ek(i), i ∈ [,T + ],

x() = x() = x(T + ) = x(T + ) = .
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Throughout this article, we use the following notations

γk* =min
k,i

γk(i), γ *
k =max

k,i
γk(i).

The case γ1* ≥ 0, γ2* ≥ 0
Theorem  Assume that there exists bk 	 , b̂k 	  and  < αk <  such that

 ≤ b̂k(i)
xαk

≤ fk(i,x)≤ bk(i)
xαk

, for all x > , i ∈ [,T + ],k = , . (H)

If γ* ≥ , γ* ≥ , then there exists a positive solution of ().

Proof A solution of () is just a fixed point of the completely continuous map A(x, y) =
(Ax,Ay) : P × P → P × P, from () we have

(Au)(t) =
T+∑
j=

G(i, j)f
(
i, v(i)

)
+ γ(i),

(Av)(t) =
T+∑
j=

G(i, j)f
(
i,u(i)

)
+ γ(i).

By a direct application of Schauder’s fixed point theorem, the proof is finished if we
prove that Amaps the closed convex set defined as

K =
{
(u, v) ∈ P × P : ri(T +  – i) ≤ u(i) ≤ Ri(T +  – i),

ri(T +  – i) ≤ v(i)≤ Ri(T +  – i), i ∈ [,T + ]
}
,

into itself, where R > r > , R > r >  are positive constants to be fixed properly. For
convenience, we introduce the following notations

βk(i) =
T+∑
j=

G(i, j)
i(T +  – i)

bk(j), β̂k(i) =
T+∑
j=

G(i, j)
i(T +  – i)

b̂k(j), k = , .

Given (u, v) ∈ K , by the nonnegative sign of G and fk , k = , , we have

(Au)(i) = i(T +  – i)
T+∑
j=

G(i, j)
i(T +  – i)

f
(
j, v(j)

)
+ γ(i)

≥ i(T +  – i)
T+∑
j=

G(i, j)
i(T +  – i)

b̂(j)
vα (j)

+ i(T +  – i)γ*

≥ i(T +  – i)
T+∑
j=

G(i, j)
i(T +  – i)

b̂(j)
Rα


≥ i(T +  – i)β̂* · 
Rα

.
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Note for every (u, v) ∈ K

(Au)(i) = i(T +  – i)
T+∑
j=

G(i, j)
i(T +  – i)

f(j, v(j)) + γ(i)

≤ i(T +  – i)
T+∑
j=

G(i, j)
i(T +  – i)

b(j)
vα (j)

+ i(T +  – i)γ *


≤ i(T +  – i)
T+∑
j=

G(i, j)
i(T +  – i)

b(j)
rα

+ i(T +  – i)γ *


≤ i(T +  – i)
(

β*
 · 

rα
+ γ *



)
.

Similarly, by the same strategy, we have

(Av)(i) = i(T +  – i)
T+∑
j=

G(i, j)
i(T +  – i)

f
(
j,u(j)

)
+ γ(i)

≥ i(T +  – i)
T+∑
j=

G(i, j)
i(T +  – i)

b̂(j)
uα (j)

+ i(T +  – i)γ*

≥ i(T +  – i)
T+∑
j=

G(i, j)
i(T +  – i)

b̂(j)
Rα


≥ i(T +  – i)β̂* · 
Rα

,

(Av)(i) = i(T +  – i)
T+∑
j=

G(i, j)
i(T +  – i)

f
(
j,u(j)

)
+ γ(i)

≤ i(T +  – i)
T+∑
j=

G(i, j)
i(T +  – i)

b(j)
uα (j)

+ i(T +  – i)γ *


≤ i(T +  – i)
T+∑
j=

G(i, j)
i(T +  – i)

b(j)
rα

+ i(T +  – i)γ *


≤ i(T +  – i)
(

β*
 · 

rα
+ γ *



)
.

Thus (Au,Av) ∈ K if r, r, R and R are chosen so that

β̂* · 
Rα


≥ r, β*
 · 

rα
+ γ *

 ≤ R,

β̂* · 
Rα


≥ r, β*
 · 

rα
+ γ *

 ≤ R.

Note that β̂i*,βi* >  and taking R = R = R, r = r = r, r = 
R , it is sufficient to find R > 

such that

β̂* · R–α ≥ , β*
 · Rα + γ *

 ≤ R,

http://www.advancesindifferenceequations.com/content/2012/1/97
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β̂* · R–α ≥ , β*
 · Rα + γ *

 ≤ R

and these inequalities hold for R big enough because αi < . The proof is complete. �

The case γ *
1 ≤ 0, γ *

2 ≤ 0
The aim of this section is to show that the presence of a weak singular nonlinearity makes
it possible to find positive solutions if γ *

 ≤ , γ *
 ≤ .

Theorem  Assume that there exist bk , b̂k 	  and  < αk < , such that (H) is satisfied. If
γ *
 ≤ ,γ *

 ≤ , and

γ* ≥
[
αα · β̂*

(β*
)α

] 
–αα

(
 –


αα

)
,

γ* ≥
[
αα · β̂*

(β*
)α

] 
–αα

(
 –


αα

)
,

()

then there exists a positive solution of ().

Proof We follow the same strategy and notation as in the proof of ahead theorem. In this
case, to prove that A : K → K , it is sufficient to find  < r < R,  < r < R such that

β̂*

Rα


+ γ* ≥ r,
β*


rα
≤ R, ()

β̂*

Rα


+ γ* ≥ r,
β*


rα
≤ R. ()

If we fix R =
β*


rα
, R =

β*


rα
, then the first inequality of () holds if r satisfies

β̂*
(
β*

)–αrαα + γ* ≥ r,

or equivalently

γ* ≥ g(r) := r –
β̂*

(β*
)α

rαα .

The function g(r) possesses a minimum at

r :=
[
αα · β̂*

(β*
)α

] 
–αα

.

Taking r = r, then () holds if

γ* ≥ g(r) =
[
αα · β̂*

(β*
)α

] 
–αα

(
 –


αα

)
.

Similarly,

γ* ≥ h(r) := r –
β̂*

(β*
)α

rαα ,

http://www.advancesindifferenceequations.com/content/2012/1/97
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h(r) possesses a minimum at

r :=
[
αα · β̂*

(β*
)α

] 
–αα

,

γ* ≥
[
αα · β̂*

(β*
)α

] 
–αα

(
 –


αα

)
.

Taking r = r, r = r, then the first inequalities in () and () hold if γ* ≥ g(r) and
γ* ≥ g(r), which are just condition (). The second inequalities hold directly from the
choice of R and R, so it remains to prove that R =

β*


rα
> r, R =

β*


rα
> r. This is easily

verified through elementary computations:

R =
β*


rα
=

β*


{[αα · β̂*
(β*

)
α ]


–αα }α

=
β*


[αα · β̂*
(β*

)
α ]

α
–αα

=
(β*

)
+ αα

–αα

(αα · β̂*)
α

–αα

=
(β*

)


–αα

[(αα · β̂*)α ]


–αα

=
[

β*


(αα · β̂*)α

] 
–αα

=
[


(αα)α

· β*


(β̂*)α

] 
–αα

>
[
αα · β̂*

(β*
)α

] 
–αα

= r,

since β̂k* ≤ β*
k , k = , . Similarly, we have R > r. The proof is complete. �

The case γ1* ≥ 0, γ *
2 ≤ 0 (γ *

1 ≤ 0, γ2* ≥ 0)
Theorem  Assume (H) is satisfied. If γ* ≥ , γ *

 ≤  and

γ* ≥ r – β̂* · rαα
(β*

 + γ *
 r

α
 )α

, ()

where  < r < +∞ is a unique positive solution of the equation

r–αα


(
β*
 + γ *

 · rα
)+α = ααβ

*
β̂*,

then there exists a positive solution of ().

Proof In this case,to prove that A : K → K , it is sufficient to find r < R, r < R such that

β̂*

Rα


≥ r,
β*


rα
≤ R. ()

β̂*

Rα


+ γ* ≥ r,
β*


rα
+ γ *

 ≤ R. ()

http://www.advancesindifferenceequations.com/content/2012/1/97
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If we fix R =
β*


rα
, then the first inequality of () holds if r satisfies

β̂*

(β*
)α

· rαα ≥ r,

or equivalently

 < r ≤
[

β̂*

(β*
)α

] 
–αα

. ()

If we chose r >  small enough, then () holds, and R is big enough.
If we fix R =

β*


rα
+ γ *

 then the first inequality of () holds if r satisfies

γ* ≥ r –
β̂*

Rα


= r – β̂* · 

( β*


rα
+ γ *

 )α

= r – β̂* · 

( β*
+γ *

 ·rα
rα

)α

= r – β̂* · rαα
(β*

 + γ *
 · rα )α

,

or equivalently

γ* ≥ f (r) := r – β̂* · rαα
(β*

 + γ *
 · rα )α

.

According to

f ′(r) =  – β̂* · 
(β*

 + γ *
 · rα )α

· [ααrαα–
(
β*
 + γ *

 · rα
)α

– rαα α
(
β*
 + γ *

 · rα
)α–

αγ
*
 r

α–


]

=  –
β̂*ααrαα–
(β*

 + γ *
 · rα )α

[
 –

rα γ *


β*
 + γ *

 · rα

]

=  – ααβ
*
β̂*rαα–

(
β*
 + γ *

 · rα
)––α ,

we have f ′() = –∞, f ′(+∞) = , then there exists r such that f ′(r) = , and

f ′′(r) = –
[
ααβ

*
β̂*(αα – )rαα–

(
β*
 + γ *

 · rα
)––α

+ ααβ
*
β̂*rαα– (– – α)

(
β*
 + γ *

 · rα
)––α

γ *
 αrα–

]
> .

Then the function f (r) possesses a minimum at r, i.e., f (r) =minrε(,+∞) f (r).
Note f ′(r) = , then we have

 – ααβ
*
β̂*rαα–

(
β*
 + γ *

 · rα
)––α = ,

http://www.advancesindifferenceequations.com/content/2012/1/97
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or equivalently,

r–αα


(
β*
 + γ *

 · rα
)+α = ααβ

*
β̂*.

Taking r = r, then the first inequality in () holds if γ* ≥ f (r), which is just condi-
tion (). The second inequality holds directly by the choice of R, and it would remain to
prove that r < R and r < R. These inequalities hold for R big enough and r small
enough. The proof is complete. �

Similarly, we have the following theorem.

Theorem  Assume (H) are satisfied. If γ *
 ≤ , γ* ≥  and

γ* ≥ r – β̂* · rαα
(β*

 + γ *
r

α
 )α

,

where  < r < +∞ is a unique positive solution of the equation

r–αα


(
β*
 + γ *

 · rα
)+α = ααβ

*
β̂*,

then there exists a positive solution of ().

The case γ1* < 0 < γ *
1 , γ2* < 0 < γ *

2

Theorem  Assume (H) is satisfied. If γ* <  < γ *
 , γ* <  < γ *

 and

γ* ≥ r – β̂* · rαα
(β*

 + γ *
r

α
 )α

, ()

γ* ≥ r – β̂* · rαα
(β*

 + γ *
 r

α
)α

, ()

where  < r < +∞ is a unique positive solution of the equation

r–αα


(
β*
 + γ *

 · rα
)+α = ααβ

*
β̂*,

and  < r < +∞ is a unique positive solution of the equation

r–αα


(
β*
 + γ *

 · rα
)+α = ααβ

*
β̂*,

then there exists a positive solution of ().

Proof We follow the same strategy and notation as in the proof of ahead theorem. In this
case, to prove that A : K → K , it is sufficient to find r < R, r < R such that

β̂*

Rα


+ γ* ≥ r,
β*


rα
+ γ *

 ≤ R, ()

β̂*

Rα


+ γ* ≥ r,
β*


rα
+ γ *

 ≤ R. ()

http://www.advancesindifferenceequations.com/content/2012/1/97
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If we fix R =
β*


rα
+ γ *

 , R =
β*


rα
+ γ *

 , then the first inequality of () holds if r satisfies

γ* ≥ g(r) := r – β̂* · rαα
(β*

 + γ *
 · rα )α

.

According to

g ′(r) =  – β̂* · 
(β*

 + γ *
 · rα )α

· [ααrαα–
(
β*
 + γ *

 · rα
)α

– rαα α
(
β*
 + γ *

 · rα
)α–

αγ
*
 r

α–


]

=  –
β̂*ααrαα–
(β*

 + γ *
 · rα )α

[
 –

rα γ *


β*
 + γ *

 · rα

]

=  – ααβ
*
β̂*rαα–

(
β*
 + γ *

 · rα
)––α ,

we have g ′() = –∞, g ′(+∞) = , then there exists r such that g ′(r) = , and

g ′′(r) = –
[
ααβ

*
β̂*(αα – )rαα–

(
β*
 + γ *

 · rα
)––α

+ ααβ
*
β̂*rαα– (– – α)

(
β*
 + γ *

 · rα
)––α

γ *
αrα–

]
> .

Then the function g(r) possesses a minimum at r, i.e., g(r) =minrε(,+∞) g(r).
Note g ′(r) = , then we have

 – ααβ
*
β̂*rαα–

(
β*
 + γ *

 · rα
)––α = ,

or equivalently,

r–αα


(
β*
 + γ *

 · rα
)+α = ααβ

*
β̂*.

Similarly,

γ* ≥ g(r) := r – β̂* · rαα
(β*

 + γ *
 · rα )α

.

g(r) =minrε(,+∞) g(r), and

r–αα


(
β*
 + γ *

 · rα
)+α = ααβ

*
β̂*.

Taking r = r and r = r, then the first inequality in () and () hold if γ* ≥ g(r),
γ* ≥ g(r), which are just condition () and (). The second inequalities hold directly
by the choice of R and R, and it would remain to prove that r < R and r < R. This is
easily verified through elementary computations.

R =
β*


rα
+ γ *



=
β*
 + γ *

 · rα
rα

http://www.advancesindifferenceequations.com/content/2012/1/97
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=
(ααβ

*
β̂*)


+α · r

αα–
+α


rα

=
(
ααβ

*
β̂*

) 
+α · r–

+α
+α

 .

The proof is the same as that in R, R = (ααβ
*
β̂*)


+α · r–

+α
+α

 .
Next, we will prove r < R, r < R, or equivalently,

rr
+α
+α
 <

(
ααβ

*
β̂*

) 
+α ,

rr
+α
+α
 <

(
ααβ

*
β̂*

) 
+α .

Namely,

r+α
 r+α

 < ααβ
*
β̂*, r+α

 r+α
 < ααβ

*
β̂*.

On the other hand,

r–αα


(
β*

)+α ≤ ααβ

*
β̂*.

Then

r ≤ (
αα

(
β*

)–α

β̂*
) 
–αα .

Similarly

r ≤ (
αα

(
β*

)–α

β̂*
) 
–αα .

By () and (),

r+α
 r+α

 ≤ (
αα

(
β*

)–α

β̂*
) +α
–αα

(
αα

(
β*

)–α

β̂*
) +α
–αα .

Now if we can prove

(
αα

(
β*

)–α

β̂*
) +α
–αα

(
αα

(
β*

)–α

β̂*
) +α
–αα < ααβ

*
β̂*

then

r+α
 r+α

 < ααβ
*
β̂*.

In fact,

(αα)
+α+α–
–αα ·

(
β̂*

β*


) +α
–αα ·

(
β̂*

β*


) α(+α)
–αα

< ,

since β̂i* ≤ β*
i , i = , . Similarly,we have r+α

 r+α
 < ααβ

*
β̂*, we omit the details. Now

we can obtain r < R, r < R. The proof is complete. �
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The case γ *
1 ≤ 0, γ2* < 0 < γ *

2 (γ *
2 ≤ 0, γ1* < 0 < γ *

1 )
Theorem  Assume (H) are satisfied. If γ *

 ≤ , γ* <  < γ *
 and

γ* ≥
(
 –


αα

)[
αα

β̂*

(β*
)α

] 
–αα

, ()

γ* ≥ r – β̂* · rαα
(β*

 + γ *
r

α
 )α

, ()

where  < r < +∞ is a unique positive solution of the equation

r–αα


(
β*
 + γ *

 · rα
)+α = ααβ

*
β̂*, ()

then there exists a positive solution of ().

Proof In this case,to prove that A : K → K , it is sufficient to find r < R, r < R such that

β̂*

Rα


+ γ* ≥ r,
β*


rα
≤ R, ()

β̂*

Rα


+ γ* ≥ r,
β*


rα
+ γ *

 ≤ R. ()

If we fix R =
β*


rα
, R =

β*


rα
+ γ *

 , then the first inequality of () holds if r satisfies

γ* ≥ r –
β̂*

Rα


= r –
β̂*

(β*
)α

· rαα , ()

or equivalently

γ* ≥ f (r) := r –
β̂*

(β*
)α

· rαα . ()

Then the function f (r) possesses a minimum at

r =
[
αα · β̂*

(β*
)α

] 
–αα

, ()

i.e., f (r) =minrε(,+∞) f (r).
On the analogy of (), we obtain

γ* ≥ r – β̂* · rαα
(β*

 + γ *
r

α
 )α

, ()

or equivalently,

γ* ≥ h(r) := r – β̂* · rαα
(β*

 + γ *
r

α
 )α

. ()

http://www.advancesindifferenceequations.com/content/2012/1/97
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According to

h′(r) :=  – ααβ
*
β̂*rαα–

(
β*
 + γ *

r
α


)––α , ()

we have h′() = –∞, h′(+∞) = , then there exists r such that h′(r) = , and

h′′(r) = –
[
ααβ

*
β̂*(αα – )rαα–

(
β*
 + γ *

 · rα
)––α

+ ααβ
*
β̂*rαα– (– – α)

(
β*
 + γ *

 · rα
)––α

γ *
αrα–

]
> . ()

Then the function h(r) possesses a minimum at r, i.e., h(r) =minrε(,+∞) f (r).
Note h′(r) = , then we have

 – ααβ
*
β̂*rαα–

(
β*
 + γ *

 · rα
)––α = .

Namely,

r–αα


(
β*
 + γ *

 · rα
)+α = ααβ

*
β̂*.

Taking r = r and r = r then the first inequality in () and () hold if γ* ≥ h(r) and
γ* ≥ h(r) which are just condition () and (). The second inequalities hold directly by
the choice of R and R, so it would remain to prove that R =

β*


rα
> r, R =

β*


rα
+ γ *

 > r.
Now we turn to prove that R > r, R > r.
First,

R =
β*


rα
=

β*


{[αα · β̂*
(β*

)
α ]


–αα }α

=
β*


[αα · β̂*
(β*

)
α ]

α
–αα

=
(β*

)
+ αα

–αα

(αα · β̂*)
α

–αα

=
(β*

)


–αα

[(αα · β̂*)α ]


–αα
=

[
β*


(αα · β̂*)α

] 
–αα

=
[


(αα)α

· β*


(β̂*)α

] 
–αα

>
[
αα · β̂*

(β*
)α

] 
–αα

= r,

since β̂i* ≤ β*
i , i = , .

On the other hand,

R =
β*


rα
+ γ *

 =
β*
 + γ *

 · rα
rα

. ()

By (), we have

β*
 + γ *

 · rα =
(
ααβ

*
β̂*

) 
+α r

αα–
+α

 . ()

http://www.advancesindifferenceequations.com/content/2012/1/97
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Combing () and (),

R =
(
ααβ

*
β̂*

) 
+α r

– +α
+α

 . ()

In what follows, we will verify that R > r. In fact,

(αα)
+α+α
–αα

– ·
(

β̂*

β*


) +α
–αα ·

(
β̂*

β*


) α(+α)
–αα

< ,

since β̂i* ≤ β*
i , i = , . Thus

(
ααβ

*(–α)
 β̂*

) +α
–αα · (ααβ

*(–α)
 β̂*

) +α
–αα < ααβ

*
β̂*. ()

On the other hand,

r–αα
 β

*(+α)
 ≤ ααβ

*
β̂*,

r–αα
 β

*(+α)
 ≤ ααβ

*
β̂*.

Thus one can see easily note that

r ≤ (
ααβ

*(–α)
 β̂*

) 
–αα , ()

r ≤ (
ααβ

*(–α)
 β̂*

) 
–αα . ()

From () and (),

r+α
 r+α

 ≤ (
ααβ

*(–α)
 β̂*

) +α
–αα

(
ααβ

*(–α)
 β̂*

) +α
–αα . ()

Combing () and (),

r+α
 r+α

 < ααβ
*
β̂*.

Therefore,

rr
+α
+α
 <

(
ααβ

*
β̂*

) 
+α .

Recall (), we obtain r < R immediately. The proof is complete. �

Similarly, we have the following theorem.

Theorem  Assume (H) are satisfied. If γ *
 ≤ , γ* <  < γ *

 and

γ* ≥
(
 –


αα

)
·
[
αα

β̂*

(β*
)α

] 
–αα

,

γ* ≥ r – β̂* · rαα
(β*

 + γ *
 r

α
 )α

,
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where  < r < +∞ is a unique positive solution of the equation

r–αα


(
β*
 + γ *

 · rα
)+α = ααβ

*
β̂*,

then there exists a positive solution of ().

The case γ1* ≥ 0, γ2* < 0 < γ *
2 (γ2* ≥ 0, γ1* < 0 < γ *

1 )
Theorem  Assume (H) are satisfied. If γ* ≥ , γ* <  < γ *

 and

γ* ≥ r – β̂* · rαα
(β*

 + γ *
 r

α
)α

,

where  < r < +∞ is a unique positive solution of the equation

r–αα


(
β*
 + γ *

 · rα
)+α = ααβ

*
β̂*,

then there exists a positive T-periodic solution of ().

Proof In this case, to prove that A : K → K , it is sufficient to find r < R, r < R such that

β̂*

Rα


≥ r,
β*


rα
+ γ *

 ≤ R. ()

β̂*

Rα


+ γ* ≥ r,
β*


rα
+ γ *

 ≤ R. ()

If we fix R =
β*


rα
+ γ *

 , R =
β*


rα
+ γ *

 , then the first inequality of () satisfies

β̂* ·
(

β*


rα
+ γ *



)–α

+ γ* ≥ r,

or equivalently

γ* ≥ l(r) := r –
β̂*

(β*
 + γ *

 r
α
 )α

· rαα .

Then the function l(r) possesses a minimum at r, i.e., l(r) =minrε(,+∞) l(r).
Note l′(r) = , then we have

 – ααβ
*
β̂*rαα–

(
β*
 + γ *

 · rα
)––α = .

Therefore,

r–αα


(
β*
 + γ *

 · rα
)+α = ααβ

*
β̂*.

Note that β̂i*,βi* > , i = , . And taking r = r, R =
β*


rα
+ γ *

 , r =

R
, it is sufficient to

find r < R, r < R such that

Rα–
 ≤ β*

 , Rα
 β*

 + γ *
 ≤ R

and these inequalities hold for R big enough because αi < . The proof is completed. �
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Similarly, we have the following theorem.

Theorem  Assume (H) are satisfied. If γ* ≥ , γ* <  < γ *
 and

γ* ≥ r – β̂* · rαα
(β*

 + γ *
r

α
 )α

,

where  < r < +∞ is a unique positive solution of the equation

r–αα


(
β*
 + γ *

 · rα
)+α = ααβ

*
β̂*,

then there exists a positive solution of ().
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