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Abstract
The operator Js,b(f ) was introduced in (Srivastava and Attiya in Integral Transforms
Spec. Funct. 18(3-4): 207-216, 2007), which makes a connection between Geometric
Function Theory and Analytic Number Theory. In this paper, we use the techniques of
differential subordination to investigate some classes of admissible functions
associated with the generalized Srivastava-Attiya operator in the open unit disc
U = {z ∈C : |z| < 1}.
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1 Introduction
Let A(p) denote the class of functions f (z) of the form

f (z) = zp +
∞∑
k=

ak+pzk+p, (.)

which are analytic in the open unit disc U = {z ∈C : |z| < }. Also, let A = A().
We begin by recalling that a general Hurwitz-Lerch Zeta function �(z, s,b) defined by

(cf., e.g., [, p. et seq.])

�(z, s,b) =
∞∑
k=

zk

(k + b)s
(.)

(b ∈ C\Z–
 , Z–

 = Z– ∪ {} = {,–,–, . . .}, s ∈C when z ∈U, Re(s) >  when |z| = ), which
contains important functions of the Analytic Number Theory.
Several properties of �(z, s,b) can be found in many papers, for example, Choi et al. [],

Ferreira and López [], Gupta et al. [] and Luo and Srivastava []. See, also Kutbi and
Attiya [, ], Srivastava and Attiya [] and Owa and Attiya [].
Srivastava and Attiya [] introduced the operator Js,b(f ) (f ∈ A), which makes a connec-

tion between Geometric Function Theory and Analytic Number Theory, defined by

Js,b(f )(z) =Gs,b(z) ∗ f (z)
(
z ∈U; f ∈ A;b ∈C\Z–

; s ∈C
)
, (.)
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where

Gs,b(z) = ( + b)s
[
�(z, s,b) – b–s

]
(.)

and ∗ denotes the Hadamard product (or convolution).
Furthermore, Srivastava and Attiya [] showed that

Js,b(f )(z) = z +
∞∑
k=

(
 + b
k + b

)s

akzk (f ∈ A). (.)

As special cases of Js,b(f ) (f ∈ A), Srivastava and Attiya [] introduced the following iden-
tities:

J,b(f )(z) = f (z),

J,(f )(z) = A(f )(z),

J,(f )(z) = L(f )(z),

J,γ (f )(z) = Lγ (f )(z) (γ real; γ > –),

and

Jσ ,(f )(z) = Iσ (f )(z) (σ real; σ > ),

where the operators A(f ) and L(f ) are the integral operators introduced earlier by Alexan-
der [] and Libera [], respectively, Lγ (f ) is the generalized Bernardi operator, Lγ (f )
(γ ∈ N = {, , . . .}) introduced by Bernardi [] and Iσ (f ) is the Jung-Kim-Srivastava in-
tegral operator introduced by Jung et al. [].
Moreover, in [], Srivastava and Attiya defined the operator Js,b(f ) (f ∈ A) for b ∈C\Z–,

by using the following relationship:

Js,(f )(z) = lim
b→

Js,b(f )(z). (.)

Some applications of the operator Js,b(f ) to certain classes inGeometric Function Theory
can be found in [–] and [].
Liu [] defined the generalized Srivastava-Attiya operator as follows:

Jps,b(f )(z) = zp +
∞∑
k=

(
 + b

k +  + b

)s

ak+pzk+p

(
z ∈U; f ∈ A(p);b ∈C\Z–

; s ∈C
)
. (.)

Now, we define the function Gs,b,t by

Gs,b,t =  + z(t + b)s�(z, s,  + t + b)
(
z ∈U;b ∈C\Z–

; s ∈C; t ∈R
)
, (.)
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we denote by

J t
s,b(f ) : A(p) −→ A(p), (.)

the operator defined by

J t
s,b(f )(z) = zpGs,b,t ∗ f (z)
(
z ∈U; f ∈ A(p);b ∈C\Z–

; s ∈C; t ∈R
)
, (.)

where ∗ denotes the convolution or Hadamard product.
We note that

J t
s,b(f )(z) = zp +

∞∑
k=

(
t + b

k + t + b

)s

ak+pzk+p (z ∈U) (.)

and

J 
s,b(f ) = Jps,b(f ). (.)

Moreover, let D be the set of analytic functions q(z) and injective on Ū\E(q), where

E(q) =
{
ζ ∈ ∂U : lim

z→ζ
q(z) = ∞

}

and q′(z) �=  for ζ ∈ ∂U\E(q). Further, let Da = {q(z) ∈D : q() = a}.
In our investigations, we need the following definitions and theorem.

Definition . Let f (z) and F(z) be analytic functions. The function f (z) is said to be sub-
ordinate to F(z), written f (z) ≺ F(z), if there exists a function w(z) analytic in U, with
w() =  and |w(z)| ≤ , and such that f (z) = F(w(z)). If F(z) is univalent, then f (z) ≺ F(z)
if and only if f () = F() and f (U)⊂ F(U).

Definition . Let� :C×U →C be analytic in domainD, and let h(z) be univalent inU.
If p(z) is analytic in U with (p(z), zp′(z)) ∈ D when z ∈ U, then we say that p(z) satisfies a
first-order differential subordination if:

�
(
p(z), zp′(z); z

) ≺ h(z) (z ∈U). (.)

The univalent function q(z) is called dominant of the differential subordination (.), if
p(z) ≺ q(z) for all p(z) satisfies (.), if q̃(z) ≺ q(z) for all dominant of (.), then we say
that q̃(z) is the best dominant of (.).

Definition . [, p.] Let � be a set in C, q ∈ D and n ∈ N = {, , . . .}. The class of
admissible function �n[�,q] consists of those functions ψ : C × U → C that satisfy the
admissibility condition ψ(r, s, τ ; z) /∈ � whenever r = q(ζ ), s = kζq′(ζ ), and

Re

(
τ

s
+ 

)
≥ kRe

(
ζq′′(ζ )
q′(ζ )

+ 
) (

z ∈U; ζ ∈ Ū\E(q);k ≥ n
)
.

We write �[�,q] as �[�,q].
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In particular, when q(z) = M(Mz+a)
M+āz with M >  and |a| <M, then q(U) = UM := {w : |w| <

M}, q() = a, E(q) =  and q ∈ D. In this case, we set �n[�,M,a] := �n[�,q] and in the
special case when the set � =UM , the class is simply denoted by �n[M,a].

Theorem . [, p.] Let � ∈ �n[�,q] with q() = a. If the analytic function p(z) = a +∑∞
k=n ak zk satisfies

�
(
p(z), zp′(z), zp′′(z); z

) ∈ � (z ∈U),

then p(z) ≺ q(z).

2 Some subordination results withJ t
s,b

Definition . Let � be a set in C and q(z) ∈ D ∩ Ap. The class of admissible functions
�[�,q] consists of those functions φ :C ×U →C that satisfy the admissibility condition:

φ(u, v,w; z) /∈ �,

whenever

u = q(ς ), v =
kςq′(ς ) + (t + b – p)q(ς )

t + b
,

Re

(
(t + b)w – (t + b – p)u
(t + b)v – (t + b – p)u

– (t + b – p)
)

≥ kRe
(

ςq′′(ς )
q′(ς )

+ 
)
,

where z ∈ U, ζ ∈ ∂U\E(q) and k ≥ p.

Theorem . Let φ ∈ �[�,q]. If f (z) ∈ Ap satisfies

{
φ
(
J t
s+,b(z),J t

s,b(z),J t
s–,b(z); z

)} ⊂ � (z ∈ U), (.)

then

J t
s+,b ≺ q(z). (.)

Proof Let us define the analytic function p(z) as

p(z) = J t
s+,bf (z) (z ∈U). (.)

Using the definition of J t
s,b, we can prove that

z
(
J t
s+,bf (z)

)′ = (t + b)J t
s,bf (z) – (t + b – p)J t

s+,bf (z), (.)

then we get

J t
s,bf (z) =

zp′(z) + (t + b – p)p(z)
(t + b)

, (.)

http://www.advancesindifferenceequations.com/content/2013/1/105
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which implies

J t
s–,bf (z) =

zp′′(z) + ((t + b – p) + )zp′(z) + (t + b – p)p(z)
(t + b)

. (.)

Let us define the parameters u, v and w as

u = r, v =
s + (t + b – p)r

(t + b)
and w =

τ + ((t + b – p) + )s + (t + b – p)r
(t + b)

. (.)

Now, we define the transformation

ψ :C ×U →C,

ψ(r, s, τ , z) = φ(u, v,w; z), (.)

by using the relations (.), (.), (.) and (.), we have

ψ
(
p(z), zp′(z), zp′′(z); z

)
= φ

(
J t
s+,bf (z),J t

s,b(z),J t
s–,b(z); z

)
. (.)

Therefore, we can rewrite (.) as

ψ
(
p(z), zp′(z), zp′′(z); z

) ∈ �.

Then the proof is completed by showing that the admissibility condition for φ ∈ �[�,q]
is equivalent to the admissibility condition for � as given in Definition ..
Since

τ

s
+  =

(t + b)w – (t + b – p)u
(t + b)v – (t + b – p)u

– (t + b – p). (.)

Therefore, ψ ∈ �[�,q]. Also, by Theorem ., p(z) ≺ q(z). �

If � �=C is a simply connected domain, then � = h(U) for some conformal mapping h(z)
of U onto �. In this case the class �[h(U),q] is written as �[h,q].
The following theorem is a direct consequence of Theorem ..

Theorem . Let φ ∈ �[h,q]. If f (z) ∈ A(p) satisfies the following subordination relation:

φ
(
J t
s+,b(z),J t

s,b(z),J t
s–,b(z); z

) ≺ h(z) (z ∈U), (.)

then

J t
s+,b ≺ q(z).

The next corollary is an extension of Theorem . to the case where the behavior of q(z)
on ∂U is not known.
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Corollary . Let� ⊂C and let q(z) be univalent inU, q() = . Let φ ∈ �[�,qρ] for some
ρ ∈ (, ) where qρ(z) = q(ρz). If f (z) ∈ A(p) satisfies

φ
(
J t
s+,b(z),J t

s,b(z),J t
s–,b(z); z

) ∈ � (z ∈U),

then

J t
s+,b ≺ q(z).

Proof By using Theorem ., we have J t
s+,b ≺ qρ(z). Then we obtain the result from

qρ(z) ≺ q(z). �

Theorem . Let h(z) and q(z) be univalent in U, with q() =  and set qρ(z) = q(ρz) and
hρ(z) = h(ρz). Let φ :C ×U→C satisfy one of the following conditions:

() φ ∈ �[h,qρ] for some ρ ∈ (, ), or
() there exists ρ ∈ (, ) such that φ ∈ �[hρ ,qρ] for all ρ ∈ (ρ, ).
Then

J t
s+,bf (z) ≺ q(z)

(
f (z) ∈ A(p)

)
.

Proof The proof is similar to the proof of [, Theorem .d, p.], therefore, we omit-
ted it. �

Theorem . Let h(z) be univalent inU. Let φ :C ×U→C. Suppose that the differential
equation

φ

(
q(z),

zq′(z) + (t + b – p)q(z)
(t + b)

,

zq′′(z) + ((t + b – p) + )zq′(z) + (t + b – p)q(z)
(t + b)

; z
)
= h(z), (.)

has a solution q(z) with q() =  and satisfies one of the following conditions:
() q(z) ∈D and φ ∈ �[h,q],
() q(z) is univalent in U and φ ∈ �[h,qρ] for some ρ ∈ (, ), or
() q(z) is univalent in U and there exists ρ ∈ (, ) such that φ ∈ �[hρ ,qρ] for all

ρ ∈ (ρ, ).
Then

J t
s+,bf (z) ≺ q(z)

(
f (z) ∈ A(p)

)
, (.)

and q(z) is the best dominant.

Proof Following the same proof in [, Theorem .e, p.], we deduce fromTheorems .
and . that q(z) is a dominant of (.). Since q(z) satisfies (.), it is also a solution
of (.) and, therefore, q(z) will be dominated by all dominants. Hence, q(z) is the best
dominant. �

http://www.advancesindifferenceequations.com/content/2013/1/105
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In the case q(z) = Mz, M >  and in view of the Definition ., the class of admissible
functions �[�,q] denoted by �[�,M] is defined below.

Definition . Let � be a set in C andM > . The class of admissible functions �[�,M]
consists of those functions φ :C ×U →C that satisfy the admissibility condition

φ

(
Meiθ ,

k + t + b – p
t + b

Meiθ ,
L + ((t + b – p + )k + (t + b – p))Meiθ

(t + b)
; z

)
/∈ �, (.)

where z ∈ U, and Re(Le–iθ ) ≥ (k – )kM for all real θ and k ≥ p.

Corollary . Let φ ∈ �[�,M]. If f (z) ∈ A(p) satisfies

φ
(
J t
s+,b(z),J t

s,b(z),J t
s–,b(z); z

) ∈ � (z ∈U), (.)

then

∣∣J t
s+,b(z)

∣∣ <M.

In the case � = q(U) = {ω : |w| <M}, for simplification, we denote by �[M] to the class
�[�,M].

Corollary . Let φ ∈ �[M]. If f (z) ∈ A(p) satisfies

∣∣φ(
J t
s+,b(z),J t

s,b(z),J t
s–,b(z); z

)∣∣ <M (z ∈U), (.)

then

∣∣J t
s+,b(z)

∣∣ <M.

Corollary . Let M >  and Re(b) > p – t. If f (z) ∈ A(p) satisfies

∣∣(t + b – p)J t
s+,b(z) + (t + b)J t

s,b(z) – (t + b)J t
s–,b(z)

∣∣
<

[
p(p – ) + (p – )

(
t – p +Re(b)

)]
, (.)

then

∣∣J t
s+,b(z)

∣∣ <M.

Proof In Corollary ., taking φ(u, v,w; z) = (t + b– p)u– (t + b)v– (t + b)w and � = h(U)
where h(z) = [p(p – ) + (p – )(t – p +Re(b))]Mz.
Since

∣∣∣∣φ
(
Meiθ ,

k + t + b – p
t + b

Meiθ ,
L + ((t + b – p + )k + (t + b – p))Meiθ

(t + b)
; z

)∣∣∣∣
=

∣∣(t + b – p)Meiθ – (k + t + b – p)Meiθ

http://www.advancesindifferenceequations.com/content/2013/1/105
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–
[
L +

(
(t + b – p + )k + (t + b – p)

)
Meiθ

]∣∣
=

∣∣L + (k – )(t + b – p)Meiθ
∣∣

≥ Re
(
Le–iθ

)
+ (k – )MRe(t + b – p)

≥ k(k – )M + (k – )M
(
t – p +Re(b)

)
≥ [

p(p – ) + (p – )
(
t – p +Re(b)

)]
M.

Therefore, φ ∈ �[�,M] satisfies the admissible condition (.). Then we have the theo-
rem by Corollary .. �

Definition . Let � be a set in C and q(z) ∈ D ∩ A. The class of admissible functions
�[�,M] consists of those functions: C ×U →C that satisfy the admissibility condition

φ(u, v,w; z) /∈ �,

whenever

u = q(ς ), v =
kςq′(ς ) + (t + b – )q(ς )

t + b
,

Re

(
(t + b)w – (t + b – )u
(t + b)v – (t + b – )u

– (t + b – )
)

≥ kRe
(

ςq′′(ς )
q′(ς )

+ 
)
,

where z ∈ U, ζ ∈ ∂U\E(q) and k ≥ .

Theorem . Let φ ∈ �[�,q]. If f (z) ∈ Ap satisfies

{
φ

(J t
s+,b(z)
zp–

,
J t
s,b(z)
zp–

,
J t
s–,b(z)
zp–

; z
)}

⊂ � (z ∈U), (.)

then

J t
s+,b

zp–
≺ q(z).

Proof Let us define the analytic function p(z) as

p(z) =
J t
s+,bf (z)
zp–

(z ∈ U). (.)

By using (.), we have

J t
s,bf (z)
zp–

=
zp′(z) + (t + b – )p(z)

(t + b)
, (.)

which implies

J t
s–,bf (z)
zp–

=
zp′′(z) + ((t + b) – )zp′(z) + (t + b – )p(z)

(t + b)
. (.)

http://www.advancesindifferenceequations.com/content/2013/1/105
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Define the parameters u, v and w as

u = r, v =
s + (t + b – )r

(t + b)
and w =

τ + ((t + b) – )s + (t + b – )r
(t + b)

, (.)

now, we define the transformation

ψ :C ×U →C,

ψ(r, s, τ ; z) = φ(u, v,w; z), (.)

by using the relations (.), (.), (.) and (.), we have

ψ
(
p(z), zp′(z), zp′′(z); z

)
= φ

(
J t
s+,bf (z),J t

s,b(z),J t
s–,b(z); z

)
. (.)

Therefore, we can rewrite (.) as

ψ
(
p(z), zp′(z), zp′′(z); z

) ∈ �.

Then the proof is completed by showing that the admissibility condition for φ ∈ �[�,q]
is equivalent to the admissibility condition for � as given in Definition ..
Since

τ

s
+  =

(t + b)w – (t + b – )u
(t + b)v – (t + b – )u

– (t + b – ). (.)

Therefore, ψ ∈ �[�,q]. Also, by Theorem ., p(z) ≺ q(z). �

If � �=C is a simply connected domain, then � = h(U) for some conformal mapping h(z)
of U onto �. In this case, the class �[h(U),q] is written as �[h,q].
In the particular case q(z) = Mz, M > , the class of admissible functions �[�,q] is

denoted by �[�,M].
The following theorem is a direct consequence of Theorem ..

Theorem . Let φ ∈ �[h,q]. If f (z) ∈ A(p) satisfies the subordination relation

φ

(J t
s+,b(z)
zp–

,
J t
s,b(z)
zp–

,
J t
s–,b(z)
zp–

; z
)

≺ h(z) (z ∈U), (.)

then

J t
s+,b

zp–
≺ q(z).

Definition . Let � be a set in C andM > . The class of admissible functions �[�,M]
consists of those functions φ :C ×U →C that satisfy the admissibility condition

φ

(
Meiθ ,

k + t + b – 
t + b

Meiθ ,
L + ((t + b – )k + (t + b – ))Meiθ

(t + b)
; z

)
/∈ �, (.)

where z ∈ U and Re(Le–iθ ) ≥ (k – )kM for all real θ and k ≥ .

http://www.advancesindifferenceequations.com/content/2013/1/105
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Corollary . Let φ ∈ �[�,M]. If f (z) ∈ A(p) satisfies

φ

(J t
s+,b(z)
zp–

,
J t
s,b(z)
zp–

,
J t
s–,b(z)
zp–

; z
)

∈ � (z ∈U), (.)

then

∣∣∣∣J
t
s+,b(z)
zp–

∣∣∣∣ <M.

In the case � = q(U) = {ω : |w| <M}, for simplification we denote by �[M] to the class
�[�,M].

Corollary . Let φ ∈ �[M]. If f (z) ∈ A(p) satisfies

∣∣∣∣φ
(J t

s+,b(z)
zp–

,
J t
s,b(z)
zp–

,
J t
s–,b(z)
zp–

; z
)∣∣∣∣ <M (z ∈ U), (.)

then

∣∣∣∣J
t
s+,b(z)
zp–

∣∣∣∣ <M.

Corollary . If f (z) ∈ A(p) and |J
t
s,b(z)
zp– | <M. Then

∣∣∣∣J
t
s+n,b(z)
zp–

∣∣∣∣ <M (n ∈ Z, z ∈U). (.)

Proof Putting φ(u, v,w; z) = v, in Corollary ., we have

∣∣∣∣J
t
s,b(z)
zp–

∣∣∣∣ <M ⇒
∣∣∣∣J

t
s+,b(z)
zp–

∣∣∣∣ <M.

Therefore, the result is obtained by induction. �

Corollary . Let M >  and Re(b) >  – t. If f (z) ∈ A(p) satisfies

∣∣∣∣(t + b – )
J t
s+,b(z)
zp–

+ (t + b)
J t
s,b(z)
zp–

– (t + b)
J t
s–,b(z)
zp–

∣∣∣∣
<M

(
t –  +Re(b)

)
, (.)

then

∣∣∣∣J
t
s+,b(z)
zp–

∣∣∣∣ <M.

Proof In Corollary ., taking φ(u, v,w; z) = (t + b– )u– (t + b)v– (t + b)w and � = h(U)
where h(z) = [(t –  +Re(b))]Mz.
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Since
∣∣∣∣φ

(
Meiθ ,

k + t + b – 
t + b

Meiθ ,
L + ((t + b – )k + (t + b – ))Meiθ

(t + b)
; z

)∣∣∣∣
=

∣∣(t + b – )Meiθ – (k + t + b – )Meiθ –
[
L +

(
(t + b – )k + (t + b – )

)
Meiθ

]∣∣
=

∣∣L + (k – )(t + b – )Meiθ
∣∣

≥ Re
(
Le–iθ

)
+ (k – )MRe(t + b – )

≥ k(k – )M + (k – )M
(
t –  +Re(b)

)
≥ M

(
t –  +Re(b)

)
.

Therefore, φ ∈ �[�,M] satisfies the admissible condition (.). Then we have the theo-
rem by Corollary .. �

Definition . Let � be a set in C and q(z) ∈ D ∩ Ap. The class of admissible functions
�[�,q] consists of those functions φ :C×U →C that satisfy the admissibility condition

φ(u, v,w; z) /∈ �,

whenever

u = q(ς ), v = q(ς ) +
kςq′(ς )

(t + b)q(ς )
(
q(ς ) �= 

)
,

Re

(
(t + b)v(w – v) – (t + b)(v – u)(u – v)

(v – u)

)
≥ kRe

(
ςq′′(ς )
q′(ς )

+ 
)
,

where z ∈ U, ζ ∈ ∂U\E(q) and k ≥ .

(
z ∈U; ζ ∈ ∂U\E(q) ; k ≥ 

)
.

Theorem . Let φ ∈ �[�,q] and J t
s+,b(z) �= . If f (z) ∈ Ap satisfies

{
φ

( J t
s,b(z)

J t
s+,b(z)

,
J t
s–,b(z)
J t
s,b(z)

,
J t
s–,b(z)

J t
s–,b(z)

; z
)}

⊂ � (z ∈U), (.)

then

J t
s,b(z)

J t
s+,b(z)

≺ q(z). (.)

Proof Let us define the analytic function p(z) as

p(z) =
J t
s,b(z)

J t
s+,b(z)

(z ∈U). (.)

Using (.) and (.), we get

J t
s–,b(z)
J t
s,b(z)

= p(z) +


(t + b)
zp′(z)
p(z)

, (.)

http://www.advancesindifferenceequations.com/content/2013/1/105
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which implies

J t
s–,b(z)

J t
s–,b(z)

= p(z) +


(t + b)

{
zp′(z)
p(z)

+
(t + b)zp′(z) + zp′′(z)

p(z) + zp′(z)
p(z) – ( zp

′(z)
p(z) )



(t + b)p(z) + zp′(z)
p(z)

}
. (.)

Let us define the parameters u, v and w as

u = r, v = r +


(t + b)
s
r

and

w = r +


(t + b)

{
s
r
+
(t + b)s + τ

r +
s
r – ( sr )



(t + b)r + s
r

}
. (.)

Now, we define the transformation

ψ :C ×U →C

ψ(r, s, τ ; z) = φ(u, v,w; z), (.)

by using the relations (.), (.), (.) and (.), we have

ψ
(
p(z), zp′(z), zp′′(z); z

)
= φ

( J t
s,b(z)

J t
s+,b(z)

,
J t
s–,b(z)
J t
s,b(z)

,
J t
s–,b(z)

J t
s–,b(z)

; z
)
. (.)

Therefore, we can rewrite (.) as

ψ
(
p(z), zp′(z), zp′′(z); z

) ∈ �.

Then the proof is completed by showing that the admissibility condition for φ ∈ �[�,q]
is equivalent to the admissibility condition for � as given in Definition ..
Since

τ

s
+  =

(t + b)v(w – v) – (t + b)(v – u)(u – v)
(v – u)

.

Therefore, ψ ∈ �[�,q]. Also, by Theorem ., p(z) ≺ q(z). �

If � �=C is a simply connected domain, then � = h(U) for some conformal mapping h(z)
of U onto �. In this case the class �[h(U),q] is written as �[h,q].
In the particular case q(z) =  +Mz, M > , the class of admissible functions �[�,q] is

denoted by �[�,M].
The following theorem is a direct consequence of Theorem ..

Theorem . Let φ ∈ �[h,q]. If f (z) ∈ A(p) satisfies the subordination relation

φ

( J t
s,b(z)

J t
s+,b(z)

,
J t
s–,b(z)
J t
s,b(z)

,
J t
s–,b(z)

J t
s–,b(z)

; z
)

≺ h(z) (z ∈U), (.)

then

J t
s,b(z)

J t
s+,b(z)

≺ q(z).
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Definition . Let � be a set inC andM > . The class of admissible functions �[�,M]
consists of those functions φ :C ×U →C that satisfy the admissibility condition

φ

(
 +Meiθ ,  +

(
 +

k
(t + b)( +Meiθ )

)
Meiθ ,  +

(
 +

k
(t + b)( +Meiθ )

)
Meiθ

+
(M + e–iθ )[Le–iθ + (t + b + )kM + (t + b)kMeiθ ] – kM

(t + b)(M + e–iθ )[(t + b)e–iθ + ((t + b) + k)M + (t + b)Meiθ ]
; z

)

∈ �, (.)

where z ∈ U and Re(Le–iθ ) ≥ (k – )kM for all real θ and k ≥ .

Corollary . Let φ ∈ �[�,M]. If f (z) ∈ A(p) satisfies

φ

( J t
s,b(z)

J t
s+,b(z)

,
J t
s–,b(z)
J t
s,b(z)

,
J t
s–,b(z)

J t
s–,b(z)

; z
)

∈ � (z ∈U),

then

∣∣∣∣ J t
s,b(z)

J t
s+,b(z)

∣∣∣∣ <  +M.

In the case � = q(U) = {ω : |ω – | < M}, for simplification, we denote by �[M] to the
class �[�,M].

Corollary . Let φ ∈ �[M]. If f (z) ∈ A(p) satisfies

∣∣∣∣φ
( J t

s,b(z)
J t
s+,b(z)

,
J t
s–,b(z)
J t
s,b(z)

,
J t
s–,b(z)

J t
s–,b(z)

; z
)
– 

∣∣∣∣ <M (z ∈U),

then

∣∣∣∣ J t
s,b(z)

J t
s+,b(z)

– 
∣∣∣∣ <M.

Corollary . Let M > . If f (z) ∈ A(p) satisfies

∣∣∣∣J
t
s–,b(z)
J t
s,b(z)

–
J t
s,b(z)

J t
s+,b(z)

∣∣∣∣
<

M
( +M)( + |b|) ,

then

∣∣∣∣ J t
s,b(z)

J t
s+,b(z)

– 
∣∣∣∣ <M.

Proof In Corollary ., taking φ(u, v,w; z) = u – v and � = h(U) where h(z) = Mz
(+M)(+|b|) .
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Since

∣∣φ(u, v,w; z)∣∣ =
∣∣∣∣
(

k
(t + b)( +Meiθ )

)
Meiθ

∣∣∣∣
=

∣∣∣∣
(

k
(t + b)( +Meiθ )

)∣∣∣∣M

>
M

( +M)( + |b|) .

Therefore, φ ∈ �[�,M] satisfies the admissible condition (.). Then we have the the-
orem by Corollary .. �
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