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Abstract
In this paper, we introduce the extended 2D Bernoulli polynomials by

tα

(et – 1)α
cxt+yt

j
=

∞∑
n=0

B(α,j)n (x, y, c)
tn

n!

and the extended 2D Euler polynomials by

2α

(et + 1)α
cxt+yt

j
=

∞∑
n=0

E(α,j)n (x, y, c)
tn

n!
,

where c > 1. By using the concepts of the monomiality principle and factorization
method, we obtain the differential, integro-differential and partial differential
equations for these polynomials. Note that the above mentioned differential
equations for the extended 2D Bernoulli polynomials reduce to the results obtained
in (Bretti and Ricci in Taiwanese J. Math. 8(3): 415–428, 2004), in the special case c = e,
α = 1. On the other hand, all the results for the second family are believed to be new,
even in the case c = e, α = 1. Finally, we give some open problems related with the
extensions of the above mentioned polynomials.
MSC: Primary 11B68; secondary 33C05
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1 Introduction
A polynomial set {Pn(x)}∞n= is quasi-monomial if and only if there exist two operators P̂
and M̂, independent of n, such that

P̂
(
Pn(x)

)
= nPn–(x) and M̂

(
Pn(x)

)
= Pn+(x).

Here, M̂ and P̂ play the role of multiplicative and derivative operators, respectively. Owing
to the fact that every polynomial set is quasi-monomial [], by using themonomiality prin-
ciple, new results were obtained for Hermite, Laguerre, Legendre and Appell polynomials
in [–].
In this paper, we consider Appell polynomials. Before proceeding, we recall some basic

definitions and properties of the polynomial families that we discuss throughout the paper.
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The celebrated Appell polynomials can be defined by the following generating relation:

GA(x, t) = A(t)ext =
∞∑
n=

Rn(x)
tn

n!
, ()

where

A(t) =
∞∑
k=

Rk
tk

k!
, A() �= 

is an analytic function at t =  and Rk := Rk(). Assuming that

A′(t)
A(t)

=
∞∑
n=

αn
tn

n!

it is easy to see that for any A(t) the derivatives of Rn(x) satisfy

R′
n(x) = nRn–(x).

Letting �n := 
nDx, where Dx := d

dx , it is straightforward that

(�� · · ·�n–�n)Rn(x) = R(x).

On the other hand, it is shown in [] that, if

�n := (x + α) +
n–∑
k=

αn–k

(n – k)!
Dn–k

x

then �n(Rn(x)) = Rn+(x). Hence, we have the following relation:

(�n+�n)Rn(x) = Rn(x). ()

Since �n and �n are differential realizations, equation () gives the differential equation
that is satisfied by Appell polynomials []. In [], M.X. He and Paolo E. Ricci obtained the
differential equations of the Appell polynomials via the factorization method. Moreover,
they found differential equations satisfied by Bernoulli and Euler polynomials as a spe-
cial case. Afterward, Da-Qian Lu found differential equations for generalized Bernoulli
polynomials in [].
Bernoulli polynomials are defined by the following generating relation:

G(x, t) =
t

et – 
ext =

∞∑
n=

Bn(x)
tn

n!
; |t| < π

and Bernoulli numbers Bn := Bn() can be obtained by the generating relation

t
et – 

=
∞∑
n=

Bn
tn

n!
.
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Particularly,

B = , B =
–

, B =




()

and Bk+ =  for (k = , , . . .). Bernoulli numbers play an important role in many mathe-
matical formulas. For instance,
• MacLaurin expansion of the trigonometric and hyperbolic tangent and cotangent
functions,

• the sums of powers of natural numbers,
• the residual term of the Euler-Maclaurin quadrature formula [].
Bernoulli polynomials, first studied by Euler [], are employed in the integral representa-

tion of differentiable periodic functions, and play an important role in the approximation
of such functions by means of polynomials [].
First, the three Bernoulli polynomials are

B(x) = , B(x) = x –


, B(x) = x – x +



. ()

The following properties are straightforward:

Bn() = Bn() = Bn, n �= ,

Bn(x) =
n∑

k=

(
n
k

)
Bkxn–k ,

B′
n(x) = nBn–(x).

Taking A(t) = 
et+ in (), we meet with the well-known Euler polynomials. More precisely,

the Euler polynomials are defined via the generating relation

GE(x, t) =
ext

et + 
=

∞∑
n=

En(x)
tn

n!
, |t| < π .

On the other hand, the Euler numbers En are defined by the following relation:


et + e–t

=
∞∑
n=

En
tn

n!
.

Moreover,

En

(



)
= –nEn

and (see in [, ])

ek = –

k

k∑
h=

(
k
h

)
Ek–h.

Note that some extensions of these and related polynomials were given in [–].
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Recently, Gabriella Bretti and Paolo E. Ricci defined the two-dimensional Bernoulli poly-
nomials B(j)

n (x, y) (j ∈N := {, , , . . .}) via the generating relation

G(j)(x, y; t) =
t

et – 
ext+yt

j
=

∞∑
n=

B(j)
n (x, y)

tn

n!
, |t| < π . ()

The two-dimensional Euler polynomials E(j)
n (x, y) are defined as

G(j)(x, y; t) =


et + 
ext+yt

j
=

∞∑
n=

E(j)
n (x, y)

tn

n!
, |t| < π . ()

They obtained explicit forms of the polynomials B(j)
n (x, y) by means of Hermite-Kampé de

Fériet (or Gould-Hopper) polynomials H (j)
n (x, y), where these polynomials are defined by

ext+yt
j
=

∞∑
n=

H (j)
n (x, y)

tn

n!
.

Furthermore, Gabriella Bretti and Paolo E. Ricci gave a recurrence relation, shift operators,
differential, integro-differential and partial differential equations for two-dimensional
Bernoulli polynomials in []. We gather these results in the following theorem:

Theorem  [] Gabriella Bretti and Paolo E. Ricci For n ∈ N, the recurrence relation of
the D Bernoulli polynomials is given by

B(j)
 (x, y) = ,

B(j)
n+(x, y) =

–
n + 

n–∑
k=

(
n + 
k

)
Bn–k+B

(j)
k (x, y) +

(
x –




)
B(j)
n (x, y) ()

+ jy
n!

(n – j + )!
B(j)
n–j+(x, y).

Shift operators are given by

L–n :=

n
Dx,

L+n :=
(
x –




)
–

n–∑
k=

Bn–k+

(n – k + )!
Dn–k

x + jyDj–
x ,

L–
n :=


n
D–(j–)

x Dy,

L+
n :=

(
x –




)
+ jyD–(j–)

x Dj–
y –

n–∑
k=

Bn–k+

(n – k + )!
D–(j–)(n–k)

x Dn–k
y .

Differential, integro-differential and partial differential equations are
[
Bn

n!
Dn

x + · · · + Bj+

(j + )!
Dj+

x +
(
Bj

j!
– jy

)
Dj

x

+
Bj–

(j – )!
Dj–

x + · · · +
(


– x

)
Dx + n

]
B(j)
n (x, y) = , ()
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[(
x –




)
Dy + jD–(j–)

x Dj–
y + jyD–(j–)

x Dj
y

–
n–∑
k=

Bn–k+

(n – k + )!
D–(j–)(n–k)

x Dn–k+
y – (n + )Dj–

x

]
B(j)
n (x, y) = , ()

[(
x –




)
D(j–)(n–)

x Dy + (j – )(n – )D(j–)(n–)–
x Dy + jD(j–)(n–j)

x
(
Dj–

y + yDj
y
)

–
n–∑
k=

Bn–k+

(n – k + )!
D(j–)(k–)

x Dn–k+
y – (n + )D(j–)n

x

]
B(j)
n (x, y) = , n≥ j ()

respectively.

From here and throughout the paper,

Dx :=
d
dx

, Dy :=
d
dy

, D–
x f (x) :=

∫ x


f (ξ )dξ .

Note that Gabriella Bretti and Paolo E. Ricci investigated the case j =  separately.
In this paper, we consider the D extension of the Bernoulli and Euler polynomials. To

obtain the explicit forms of them, we take into consideration of the extended Hermite-
Kampé de Fériet (or Gould-Hopper) polynomials. Let us define the extended Hermite-
Kampé de Fériet (or Gould-Hopper) polynomials by the following generating relation:

cxt+yt
j
=

∞∑
n=

P(j,c)
n (x, y)

tn

n!
, c > . ()

It is clear that P(j,c)
n (x, y) is explicitly given by

P(j,c)
n (x, y) = n!

[ nj ]∑
s=

xn–jsys

(n – js)!s!
(ln c)n+s–js, ()

where j ≥  is an integer. Note that c = e, gives P(j,c)
n (x, y) =H (j)

n (x, y) where

H (j)
n (x, y) = n!

[ nj ]∑
s=

xn–jsys

(n – js)!s!

are Hermite-Kampé de Fériet (or Gould-Hopper) polynomials.
It is meaningful to mention that the polynomials P(j,c)

n (x, y) are very important in solving
the generalized heat equation:

(ln c)–j
∂ j

∂xj
F(x, y, c) =

∂

∂y
F(x, y, c),

F(x, , c) = xn(ln c)n. ()

http://www.advancesindifferenceequations.com/content/2013/1/107


Yılmaz and Özarslan Advances in Difference Equations 2013, 2013:107 Page 6 of 16
http://www.advancesindifferenceequations.com/content/2013/1/107

Moreover, other generalizations which include P(j,c)
n (x, y) polynomials can be defined by

c(xt+xt
+···+xrtr ) =

∞∑
n=

P(c,r)
n (x, . . . ,xr)

tn

n!
. ()

Gabriella Bretti and Paolo E. Ricci gave the explicit form of D Bernoulli polynomials by

B(α,j)
n (x, y) =

n∑
h=

(
n
h

)
Bn–hH

(j)
h (x, y).

On the other hand, generalized Bernoulli and Euler polynomials were defined by H. M.
Srivastava, Mridula Garg and Sangeeta Choudhary in [] as follows.
Let a,b, c ∈R

+ (a �= b) and n ∈ N. Then the generalized Bernoulli polynomials B(α)
n (x;λ;

a;b; c) of order α ∈ C are defined by the following generating relation:

(
t

λbt – at

)α

cxt =
∞∑
n=

B(α)
n (x;λ;a,b, c)

tn

n!

(∣∣∣∣t ln
(
b
a

)
+ lnλ

∣∣∣∣ < π ; α := ;x ∈R

)
.

()

Let a,b, c ∈R
+ (a �= b) and n ∈N. Then the generalized Euler polynomials E(α)

n (x;λ;a;b; c)
of order α ∈C are defined by the following generating relation:

(


λbt + at

)α

cxt =
∞∑
n=

E(α)
n (x;λ;a,b, c)

tn

n!

(∣∣∣∣t ln
(
b
a

)
+ lnλ

∣∣∣∣ < π ; α := ;x ∈R

)
. ()

These definitions motivate us to consider the following extended D Bernoulli and Euler
polynomials:

Definition  The extended D Bernoulli polynomials of order α is defined as

tα

(et – )α
cxt+yt

j
=

∞∑
n=

B(α,j)
n (x, y, c)

tn

n!
, ()

where (j ∈N := {, , , . . .}) and c > .

In the case c = e in (), we call the polynomials B(α,j)
n (x, y) := B(α,j)

n (x, y, e), as the general-
ized D Bernoulli polynomials. Note that the generalized Bernoulli numbers are defined
by

(
t

et – 

)α

=
∞∑
n=

B(α)
n

tn

n!
. ()

Definition  The extended D Euler polynomials of order α is defined as

α

(et + )α
cxt+yt

j
=

∞∑
n=

E(α,j)
n (x, y, c)

tn

n!
, ()

where (j ∈N := {, , , . . .}) and c > .
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Note that in the case c = e in (), we call the polynomials E(α,j)
n (x, y) := E(α,j)

n (x, y, e), as the
generalized D Euler polynomials.
In the following section, we obtain the explicit forms of the D extension of Bernoulli

polynomials, by means of Hermite-Kampé de Fériet (or Gould Hopper) polynomials and
Bernoulli numbers. Moreover, we obtain differential, integro-differential, partial differ-
ential equations and shift operators for the extended D Bernoulli polynomials by us-
ing the factorization method, introduced in []. We list the results for the extended D
Bernoulli polynomials. In Section , we deal with finding the recurrence relation, differen-
tial, integro-differential and partial differential equations for the extended D Euler poly-
nomials. Finally, in Section , we present some open problems that will be investigated in
the future.

2 2D extension of generalized Bernoulli polynomials and their differential
equations

We begin by the following theorem that gives the explicit form of extended D Bernoulli
polynomials via Hermite-Kampé de Fériet (or Gould Hopper) polynomials:

Theorem  The relationship between P(j,c)
n (x, y) and B(α,j)

n (x, y, c) is given by

B(α,j)
n (x, y, c) =

n∑
k=

(
n
k

)
P(j,c)
k (x, y)Bα

n–k , c > , ()

where Bk denotes the Bernoulli numbers.

Proof Since

∞∑
n=

B(α,j)
n (x, y, c)

tn

n!
=

tα

(et – )α
cxt+yt

j

the result is obtained by using () and () and then applying the Cauchy product of the
series. �

Corollary  For α = , c = e, we obtain Theorem . of [].

In the following theorem, the recurrence relation, shift operators and differential,
integro-differential, partial differential equations are obtained for extended D Bernoulli
polynomials.

Theorem  The extended D Bernoulli polynomials satisfy the following recurrence rela-
tion:

B(α,j)
 (x, y, c) = , B(α,j)

–k (x, y, c) := ,

B(α,j)
n+ (x, y, c) =

(
x ln c –

α



)
B(α,j)
n (x, y, c) + yj

n!
(n – j + )!

(ln c)B(α,j)
n–j+(x, y, c) ()

–
α

n + 

n–∑
k=

(
n + 
k

)
B(α,j)
k (x, y, c)Bn+–k ,

where Bn denotes the Bernoulli numbers and n ∈N .

http://www.advancesindifferenceequations.com/content/2013/1/107
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Shift operators are given by

L–n :=


n ln c
Dx,

L+n := x ln c –
α


+ yj(ln c)(–j)D(j–)

x

– α

n–∑
k=

Bn+–k

(n +  – k)!
(ln c)(k–n)Dn–k

x ,

L–
n :=

(ln c)j–

n
D–j

x Dy,

L+
n :=

(
x ln c –

α



)
+ yj(ln c)(j–)(j–)+D–(j–)

x Dj–
y

– α

n–∑
k=

Bn+–k

(n +  – k)!
(ln c)(n–k)(j–)D–(j–)(n–k)

x Dn–k
y ,

where n≥ , j ≥  is an integer and c > .
The differential, integro-differential and partial differential equations for the extended

D Bernoulli polynomials are given by

[(
x –

α

 ln c

)
Dx + yj(ln c)–jDj

x

– α

n–∑
k=

Bn+–k

(n +  – k)!
(ln c)k–n–Dn+–k

x – n

]
B(a,j)
n (x, y, c) = , ()

[(
x ln c –

α



)
Dy + j(ln c)(j–)(j–)+D–(j–)

x Dj–
y + yj(ln c)(j–)(j–)+D–(j–)

x Dj
y

– α

n–∑
k=

Bn+–k

(n +  – k)!
(ln c)(j–)(n–k)D–(j–)(n–k)

x Dn–k+
y

– (n + )(ln c)–jDj–
x

]
B(a,j)
n (x, y, c) = , ()

[(
x ln c –

α



)
D(j–)(n–)

x Dy + (j – )(n – )D(j–)(n–)–
x Dy

+ j(ln c)(j–)(j–)+D(j–)(n–j)
x Dj–

y ( + yDy)

– α

n–∑
k=

Bn+–k

(n +  – k)!
(ln c)(j–)(n–k)D(j–)(k–)

x Dn–k+
y – (n + )(ln c)–jDn(j–)

x

]

× B(a,j)
n (x, y, c) = , n≥ j, ()

respectively.

Note that the partial differential equation () does not contain anti-derivatives for n≥ j.

http://www.advancesindifferenceequations.com/content/2013/1/107
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Proof Taking derivative on both sides of the generating relation

tα

(et – )α
cxt+yt

j
=

∞∑
n=

B(α,j)
n (x, y, c)

tn

n!

with respect to t, then using some series manipulations and (), we get the recurrence
relation

B(α,j)
n+ (x, y, c) =

(
x ln c –

α



)
B(α,j)
n (x, y, c) + yj

n!
(n – j + )!

(ln c)B(α,j)
n–j+(x, y, c)

–
α

n + 

n–∑
k=

(
n + 
k

)
B(α,j)
k (x, y, c)Bn+–k .

Differentiating generating equation () with respect to x and equating coefficients of tn,
we obtain

DxB(α,j)
n (x, y, c) = n ln cB(α,j)

n– (x, y, c).

Hence, the operator L–n :=


n ln cDx satisfies the following relation:

L–nB
(α,j)
n (x, y, c) = B(α,j)

n– (x, y, c).

Since, we have the relations

B(α,j)
k (x, y, c) =

[
L–k+L

–
k+ · · ·L–n

]
B(α,j)
n (x, y, c)

=
k!
n!
(ln c)k–nDn–k

x B(α,j)
n (x, y, c), ()

B(α,j)
n–j+(x, y, c) =

[
L–n–j+L

–
n–j+ · · ·L–n

]
B(α,j)
n (x, y, c)

=
(n – j + )!

n!
(ln c)–jDj–

x B(α,j)
n (x, y, c), ()

writing () and () in the recurrence relation, we get L+n

L+n := x ln c –
α


+ yj(ln c)(–j)D(j–)

x – α

n–∑
k=

Bn+–k

(n +  – k)!
(ln c)(k–n)Dn–k

x .

By applying the factorization method (see [, ]),

L–n+L
+
nB

(α,j)
n (x, y, c) = B(α,j)

n (x, y, c)

we get differential equation

[(
x –

α

 ln c

)
Dx + yj(ln c)–jDj

x

– α

n–∑
k=

Bn+–k

(n +  – k)!
(ln c)k–n–Dn+–k

x – n

]
B(a,j)
n (x, y, c) = .

http://www.advancesindifferenceequations.com/content/2013/1/107
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To obtain the integro-differential equation

[(
x ln c –

α



)
Dy + j(ln c)(j–)(j–)+D–(j–)

x Dj–
y + yj(ln c)(j–)(j–)+D–(j–)

x Dj
y

– α

n–∑
k=

Bn+–k

(n +  – k)!
(ln c)(j–)(n–k)D–(j–)(n–k)

x Dn–k+
y – (n + )(ln c)–jDj–

x

]

× B(a,j)
n (x, y, c) = ,

we take derivative with respect to y in the generating relation () to obtain

(ln c)B(a,j)
n–j (x, y, c)n(n – ) · · · (n – j + ) =

∂B(a,j)
n (x, y, c)

∂y
.

From this fact, we write L–
n as follows:

L–
n :=

(ln c)j–

n
D–j

x Dy.

By using this lowering operator in (), we get

L+
n :=

(
x ln c –

α



)
+ yj(ln c)(j–)(j–)+D–(j–)

x Dj–
y

– α

n–∑
k=

Bn+–k

(n +  – k)!
(ln c)(n–k)(j–)D–(j–)(n–k)

x Dn–k
y .

Using the factorization relation

L–
n+L+

nB
(α,j)
n (x, y, c) = B(α,j)

n (x, y, c),

we get the integro-differential equation ().
Differentiating both sides of () with respect to x, (j – )(n – ) times, we obtain the

partial differential equation

[(
x ln c –

α



)
D(j–)(n–)

x Dy + (j – )(n – )D(j–)(n–)–
x Dy

+ j(ln c)(j–)(j–)+D(j–)(n–j)
x Dj–

y ( + yDy)

– α

n–∑
k=

Bn+–k

(n +  – k)!
(ln c)(j–)(n–k)D(j–)(k–)

x Dn–k+
y – (n + )(ln c)–jDn(j–)

x

]

× B(a,j)
n (x, y, c) = . �

Since the case c = e reduces to the generalized D Bernoulli polynomials, it is important
to state this result for this case.

http://www.advancesindifferenceequations.com/content/2013/1/107
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Corollary  For the generalized D Bernoulli polynomials, the recurrence relation is given
by

B(α,j)
n+ (x, y) =

(
x –

α



)
B(α,j)
n (x, y) + yj

n!
(n – j + )!

B(α,j)
n–j+(x, y)

–
α

n + 

n–∑
k=

(
n + 
k

)
B(α,j)
k (x, y)Bn+–k . ()

Shift operators are given by

L–n :=

n
Dx,

L+n := x –
α


+ yjD(j–)

x – α

n–∑
k=

Bn+–k

(n +  – k)!
Dn–k

x ,

L–
n :=


n
D–j

x Dy,

L+
n :=

(
x –

α



)
+ yjD–(j–)

x Dj–
y

– α

n–∑
k=

Bn+–k

(n +  – k)!
D–(j–)(n–k)

x Dn–k
y .

Differential, integro-differential and partial differential equations are

[(
x –

α



)
Dx + yjDj

x

– α

n–∑
k=

Bn+–k

(n +  – k)!
Dn+–k

x – n

]
B(a,j)
n (x, y) = , ()

[(
x –

α



)
Dy + jD–(j–)

x Dj–
y + yjD–(j–)

x Dj
y

– α

n–∑
k=

Bn+–k

(n +  – k)!
D–(j–)(n–k)

x Dn–k+
y – (n + )Dj–

x

]
B(a,j)
n (x, y) = , ()

[(
x –

α



)
D(j–)(n–)

x Dy + (j – )(n – )D(j–)(n–)–
x Dy

+ jD(j–)(n–j)
x Dj–

y ( + yDy)

– α

n–∑
k=

Bn+–k

(n +  – k)!
D(j–)(k–)

x Dn–k+
y – (n + )Dn(j–)

x

]
B(a,j)
n (x, y) = , n ≥ j. ()

Remark  Taking α =  in the above Corollary, one can get Theorem . of [].

The differential equation of one variable Bernoulli polynomials was obtained in []. On
the other hand, the differential equation of the generalized Bernoulli polynomials was
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given in []. For this reason, and for the sake of completeness, we list the recurrence rela-
tion, shift operators, differential equations for the two dimensional generalized Bernoulli
polynomials in the case c = e, α = , j =  in the following corollary. (Note that the following
corollary was recorded in [].)

Corollary  Recurrence relation of the D Bernoulli polynomials is written as

B()
 (x, y) = ,

B()
n+(x, y) =

(
x –




)
B()
n (x, y)

+ nyB()
n–(x, y) –


n + 

n–∑
k=

(
n + 
k

)
B()
k (x, y)Bn+–k .

Shift operators are given by

L–n :=

n
Dx,

L+n := x –


+ yDx –

n–∑
k=

Bn–k+

(n – k + )!
Dn–k

x ,

L–
n :=


n
D–

x Dy,

L+
n :=

(
x –




)
+ yD–

x Dy –
n–∑
k=

Bn–k+

(n – k + )!
D–(n–k)

x Dn–k
y .

Differential equation is

[(
x –




)
Dx + yD

x –
n–∑
k=

Bn+–k

(n +  – k)!
Dn+–k

x – n

]
B()
n (x, y) = ,

integro-differential equation is given by

[(
x –




)
Dy + D–

x Dy + yD–
x D

y

–
n–∑
k=

Bn+–k

(n +  – k)!
D–(n–k)

x Dn–k+
y – (n + )Dx

]
B()
n (x, y) = ,

partial differential equation is written as

[(
x –




)
D(n–)

x Dy + (n – )D(n–)
x Dy + D(n–)

x Dy( + yDy)

–
n–∑
k=

Bn+–k

(n +  – k)!
D(k–)

x Dn–k+
y – (n + )Dn

x

]
B()
n (x, y) = , n≥ .
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3 Euler polynomials
In this section, we study the Euler polynomials and the equations satisfied by extended
D Euler polynomials. Since the extended D Euler differential equations have not been
studied before, the results are new even in the cases c = e, α = . The proof is very similar
as in the previous section, therefore, we only exhibit the results.

Theorem  The recurrence relation of the extended D Euler polynomials is given by

E(α,j)
n+ (x, y, c) =

(
x ln c –

α



)
E(α,j)
n (x, y, c) + yjE(α,j)

n–j+(x, y, c)
n!

(n – j + )!
(ln c)

+
α



n–∑
k=

(
n
k

)
en–kE

(α,j)
k (x, y, c). ()

Shift operators are given by

L–n :=


n ln c
Dx,

L+n := x ln c –
α


+ yj(ln c)–jDj–

x +
α



n–∑
k=

en–k
(n – k)!

(ln c)k–nDn–k
x ,

L–
n :=

(ln c)j–

n
D–j

x Dy,

L+
n :=

(
x ln c –

α



)
+ yj(ln c)(j–)(j–)+D–(j–)

x Dj–
y

+
α



n–∑
k=

en–k
(n – k)!

(ln c)(n–k)(j–)D–(n–k)(j–)
x Dn–k

y .

Differential, integro-differential and partial differential equations are as follows, respec-
tively:

[(
x –

α

 ln c

)
Dx + yj(ln c)–jDj

x

+
α



n–∑
k=

en–k
(n – k)!

(ln c)k–n–Dn–k+
x – n

]
E(α,j)
n (x, y, c) = , ()

[(
x ln c –

α



)
Dy + (ln c)(j–)(j–)+jD–(j–)

x Dj–
y + yj(ln c)(j–)(j–)+D–(j–)

x Dj
y

+
α



n–∑
k=

en–k
(n – k)!

(ln c)(j–)(n–k)D–(j–)(n–k)
x Dn–k+

y – (n + )(ln c)–jDj–
x

]

× E(α,j)
n (x, y, c) = , ()[(

x ln c –
α



)
D(j–)(n–)

x Dy + (j – )(n – )D(j–)(n–)–
x Dy

+ (ln c)(j–)(j–)+jD(j–)(n–j)
x

(
Dj–

y + yDj
y
)
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+
α



n–∑
k=

en–k
(n – k)!

(ln c)(j–)(n–k)D(j–)(k–)
x Dn+–k

y – (n + )(ln c)–jD(j–)n
x

]

× E(α,j)
n (x, y, c) = , n≥ j. ()

Since the case c = e reduces to the generalized D Euler polynomials, we thus have the
following corollary.

Corollary  For the generalized D Euler polynomials, we have the recurrence:

E(α,j)
n+ (x, y) =

(
x –

α



)
E(α,j)
n (x, y) + yjE(α,j)

n–j+(x, y)
n!

(n – j + )!

+
α



n–∑
k=

(
n
k

)
en–kE

(α,j)
k (x, y).

Shift operators:

L–n :=

n
Dx,

L+n := x –
α


+ yjDj–

x +
α



n–∑
k=

en–k
(n – k)!

Dn–k
x ,

L–
n :=


n
D–j

x Dy,

L+
n :=

(
x –

α



)
+ yjD–(j–)

x Dj–
y +

α



n–∑
k=

en–k
(n – k)!

D–(n–k)(j–)
x Dn–k

y .

Differential, integro-differential and partial differential equations:

[(
x –

α



)
Dx + yjDj

x

+
α



n–∑
k=

en–k
(n – k)!

Dn–k+
x – n

]
E(α,j)
n (x, y) = ,

[(
x –

α



)
Dy + jD–(j–)

x Dj–
y + yjD–(j–)

x Dj
y

+
α



n–∑
k=

en–k
(n – k)!

D–(j–)(n–k)
x Dn–k+

y – (n + )Dj–
x

]
E(α,j)
n (x, y) = ,

[(
x –




)
D(j–)(n–)

x Dy + (j – )(n – )D(j–)(n–)–
x Dy + jD(j–)(n–j)

x Dj–
y ( + yDy)

+
α



n–∑
k=

en–k
(n – k)!

D(j–)(k–)
x Dn–k+

y – (n + )D(j–)n
x

]
E(α,j)
n (x, y) = ; n ≥ j.

Note that as it is noticed before, even the case α =  has not been studied before. The
interested reader can obtain this case as a consequence of the above corollary.
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4 Concluding remarks
As it ismentioned in the Introduction section, generalized Bernoulli polynomialsB(α)

n (x;λ;
a;b; c) and generalized Euler polynomials E(α)

n (x;λ;a;b; c) of order α ∈C were constructed
by the following generating relations, respectively []:

tα

(λbt – at)α
cxt =

∞∑
n=

B(α)
n (x;λ;a,b, c)

tn

n!
,

α

(λbt + at)α
cxt =

∞∑
n=

E(α)
n (x;λ;a,b, c)

tn

n!
,

where a,b, c ∈ R
+ (a �= b) n ∈ N. Using factorization method, differential equations can

be obtained for these polynomials.
On the other hand, introducing the two variable polynomial families

tα

(λbt – at)α
cxt+yt

j
=

∞∑
n=

B(α,j)
n (x, y;λ;a,b, c)

tn

n!
,

and

α

(λbt + at)α
cxt+yt

j
=

∞∑
n=

E(α,j)
n (x, j;λ;a,b, c)

tn

n!
,

where a,b, c ∈R+ (a �= b) n ∈N, following the lines of proof given in Section , the differ-
ential, integro-differential and partial differential equations can be given for these families.
Future works are left to the interested readers.
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