RESEARCH

Open Access

On \mathcal{I} -asymptotically lacunary statistical equivalent sequences

Ekrem Savaş*

*Correspondence: ekremsavas@yahoo.com Department of Mathematics, Istanbul Commerce University, Üsküdar, Istanbul, Turkey

Abstract

This paper presents the following definition, which is a natural combination of the definitions for asymptotically equivalent, \mathcal{I} -statistically limit and \mathcal{I} -lacunary statistical convergence. Let θ be a lacunary sequence; the two nonnegative sequences $x = (x_k)$ and $y = (y_k)$ are said to be \mathcal{I} -asymptotically lacunary statistical equivalent of multiple L provided that for every $\epsilon > 0$, and $\delta > 0$,

$$\left\{ r \in \mathbb{N} : \frac{1}{h_r} \left| \left\{ k \in I_r : \left| \frac{x_k}{y_k} - L \right| \ge \varepsilon \right\} \right| \ge \delta \right\} \in \mathcal{I}$$

(denoted by $x \stackrel{S^L_{\theta}(\mathcal{I})}{\sim} y$) and simply \mathcal{I} -asymptotically lacunary statistical equivalent if L = 1.

MSC: Primary 40A99; secondary 40A05

Keywords: asymptotical equivalent; ideal convergence; lacunary sequence; statistical convergence

1 Introduction

In 1993, Marouf [1] presented definitions for asymptotically equivalent sequences and asymptotic regular matrices. In 2003, Patterson [2] extended these concepts by presenting an asymptotically statistical equivalent analog of these definitions and natural regularity conditions for nonnegative summability matrices.

In [3], asymptotically lacunary statistical equivalent, which is a natural combination of the definitions for asymptotically equivalent, statistical convergence and lacunary sequences. Later on, the extension asymptotically lacunary statistical equivalent sequences is presented (see [4]).

Recently, Das, Savaş and Ghosal [5] introduced new notions, namely \mathcal{I} -statistical convergence and \mathcal{I} -lacunary statistical convergence by using ideal.

In this short paper, we shall use asymptotical equivalent and lacunary sequence to introduce the concepts \mathcal{I} -asymptotically statistical equivalent and \mathcal{I} -asymptotically lacunary statistical equivalent. In addition to these definitions, natural inclusion theorems shall also be presented.

First, we introduce some definitions.

© 2013 Savaş; licensee Springer. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

2 Definitions and notations

Definition 2.1 (Marouf [1]) Two nonnegative sequences $x = (x_k)$ and $y = (y_k)$ are said to be *asymptotically equivalent* if

$$\lim_{k} \frac{x_k}{y_k} = 1$$

(denoted by $x \sim y$).

Definition 2.2 (Fridy [6]) The sequence $x = (x_k)$ has *statistic limit L*, denoted by *st*-lim s = L provided that for every $\epsilon > 0$,

$$\lim_{n} \frac{1}{n} \{ \text{the number of } k \le n : |x_k - L| \ge \epsilon \} = 0.$$

The next definition is natural combination of Definitions 2.1 and 2.2.

Definition 2.3 (Patterson [2]) Two nonnegative sequences $x = (x_k)$ and $y = (y_k)$ are said to be asymptotically statistical equivalent of multiple *L* provided that for every $\epsilon > 0$,

$$\lim_{n} \frac{1}{n} \left\{ \text{the number of } k < n : \left| \frac{x_k}{y_k} - L \right| \ge \epsilon \right\} = 0$$

(denoted by $x \stackrel{S_L}{\sim} y$) and simply asymptotically statistical equivalent if L = 1.

By a lacunary $\theta = (k_r)$; r = 0, 1, 2, ..., where $k_0 = 0$, we shall mean an increasing sequence of nonnegative integers with $k_r - k_{r-1}$ as $r \to \infty$. The intervals determined by θ will be denoted by $I_r = (k_{r-1}, k_r]$ and $h_r = k_r - k_{r-1}$. The ratio $\frac{k_r}{k_{r-1}}$ will be denoted by q_r .

Definition 2.4 ([3]) Let θ be a lacunary sequence; the two nonnegative sequences $x = (x_k)$ and $y = (y_k)$ are said to be asymptotically lacunary statistical equivalent of multiple *L* provided that for every $\epsilon > 0$

$$\lim_{r} \frac{1}{h_r} \left| \left\{ k \in I_r : \left| \frac{x_k}{y_k} - L \right| \ge \epsilon \right\} \right| = 0$$

(denoted by $x \stackrel{S_{\theta}^{L}}{\sim} y$) and simply asymptotically lacunary statistical equivalent if L = 1.

More investigations in this direction and more applications of asymptotically statistical equivalent can be found in [7, 8] where many important references can be found.

The following definitions and notions will be needed.

Definition 2.5 ([9]) A nonempty family $\mathcal{I} \subset 2^Y$ of subsets a nonempty set *Y* is said to be an ideal in *Y* if the following conditions hold:

- (i) $A, B \in \mathcal{I}$ implies $A \cup B \in \mathcal{I}$;
- (ii) $A \in \mathcal{I}, B \subset A$ imply $B \in \mathcal{I}$.

Definition 2.6 ([10]) A nonempty family $\mathcal{F} \subset 2^{\mathbb{N}}$ is said to be a filter of \mathbb{N} if the following conditions hold:

(i) $\emptyset \notin \mathcal{F}$; (ii) $A, B \in \mathcal{F}$ implies $A \cap B \in \mathcal{F}$; (iii) $A \in \mathcal{F}, B \subset A$ imply $B \in \mathcal{F}$.

If \mathcal{I} is proper ideal of \mathbb{N} (*i.e.*, $\mathbb{N} \notin \mathcal{I}$), then the family of sets $\mathcal{F}(\mathcal{I}) = \{M \subset \mathbb{N} : \exists A \in \mathcal{I} : M = \mathbb{N} \setminus A\}$ is a filter of \mathbb{N} . It is called the filter associated with the ideal.

Definition 2.7 ([9, 10]) A proper ideal \mathcal{I} is said to be admissible if $\{n\} \in \mathcal{I}$ for each $n \in \mathbb{N}$.

Throughout \mathcal{I} will stand for a proper admissible ideal of \mathbb{N} , and by sequence we always mean sequences of real numbers.

Definition 2.8 ([9]) Let $\mathcal{I} \subset 2^{\mathbb{N}}$ be a proper admissible ideal in \mathbb{N} .

The sequence (x_k) of elements of \mathbb{R} is said to be \mathcal{I} -convergent to $L \in \mathbb{R}$ if for each $\epsilon > 0$ the set $A(\epsilon) = \{n \in \mathbb{N} : |x_n - L| \ge \epsilon\} \in \mathcal{I}$.

Following these results, we introduce two new notions \mathcal{I} -asymptotically lacunary statistical equivalent of multiple L and strong \mathcal{I} -asymptotically lacunary equivalent of multiple L.

The following definitions are given in [5].

Definition 2.9 A sequence $x = (x_k)$ is said to be \mathcal{I} -statistically convergent to L or $S(\mathcal{I})$ convergent to L if, for any $\varepsilon > 0$ and $\delta > 0$,

$$\left\{n\in\mathbb{N}:\frac{1}{n}\left|\left\{k\leq n:|x_k-L|\geq\varepsilon\right\}\right|\geq\delta\right\}\in\mathcal{I}.$$

In this case, we write $x_k \to L(S(\mathcal{I}))$. The class of all \mathcal{I} -statistically convergent sequences will be denoted by $S(\mathcal{I})$.

Definition 2.10 Let θ be a lacunary sequence. A sequence $x = (x_k)$ is said to be \mathcal{I} -lacunary statistically convergent to L or $S_{\theta}(\mathcal{I})$ -convergent to L if, for any $\varepsilon > 0$ and $\delta > 0$,

$$\left\{r \in \mathbb{N} : \frac{1}{h_r} \left| \left\{k \in I_r : |x_k - L| \ge \varepsilon \right\} \right| \ge \delta \right\} \in \mathcal{I}.$$

In this case, we write $x_k \to L(S_\theta(\mathcal{I}))$. The class of all \mathcal{I} -lacunary statistically convergent sequences will be denoted by $S_\theta(\mathcal{I})$.

Definition 2.11 Let θ be a lacunary sequence. A sequence $x = (x_k)$ is said to be strong \mathcal{I} -lacunary convergent to L or $N_{\theta}(\mathcal{I})$ -convergent to L if, for any $\varepsilon > 0$

$$\left\{r \in N : \frac{1}{h_r} \sum_{k \in I_r} |x_k - L| \ge \varepsilon \right\} \in \mathcal{I}.$$

In this case, we write $x_k \to L(N_\theta(\mathcal{I}))$. The class of all strong \mathcal{I} -lacunary statistically convergent sequences will be denoted by $N_\theta(\mathcal{I})$.

3 New definitions

The next definitions are combination of Definitions 2.1, 2.9, 2.10 and 2.11.

Definition 3.1 Two nonnegative sequences $x = (x_k)$ and $y = (y_k)$ are said to be \mathcal{I} -asymptotically statistical equivalent of multiple *L* provided that for every $\epsilon > 0$ and $\delta > 0$,

$$\left\{n \in N : \frac{1}{n} \left| \left\{k \le n : \left|\frac{x_k}{y_k} - L\right| \ge \varepsilon\right\} \right| \ge \delta \right\} \in \mathcal{I}$$

(denoted by $x \stackrel{S^{L}(\mathcal{I})}{\sim} y$) and simply \mathcal{I} -asymptotically statistical equivalent if L = 1.

For $\mathcal{I} = \mathcal{I}_{\text{fin}}$, \mathcal{I} -asymptotically statistical equivalent of multiple *L* coincides with asymptotically statistical equivalent of multiple *L*, which is defined in [3].

Definition 3.2 Let θ be a lacunary sequence; the two nonnegative sequences $x = (x_k)$ and $y = (y_k)$ are said to be \mathcal{I} -asymptotically lacunary statistical equivalent of multiple L provided that for every $\epsilon > 0$ and $\delta > 0$,

$$\left\{r \in \mathbb{N} : \frac{1}{h_r} \left| \left\{ k \in I_r : \left| \frac{x_k}{y_k} - L \right| \ge \varepsilon \right\} \right| \ge \delta \right\} \in \mathcal{I}$$

(denoted by $x \overset{S^L_{\theta}(\mathcal{I})}{\sim} y$) and simply \mathcal{I} -asymptotically lacunary statistical equivalent if L = 1.

For $\mathcal{I} = \mathcal{I}_{\text{fin}}$, \mathcal{I} -asymptotically lacunary statistical equivalent of multiple *L* coincides with asymptotically lacunary statistical equivalent of multiple *L*, which is defined in [3].

Definition 3.3 Let θ be a lacunary sequence; two number sequences $x = (x_k)$ and $y = (y_k)$ are strong \mathcal{I} -asymptotically lacunary equivalent of multiple L provided that

$$\left\{r \in \mathbb{N} : \frac{1}{h_r} \sum_{k \in I_r} \left| \frac{x_k}{y_k} - L \right| \ge \varepsilon \right\} \in \mathcal{I}$$

(denoted by $x \overset{N_{\theta}^{L}(\mathcal{I})}{\sim} y$) and strong simply \mathcal{I} -asymptotically lacunary equivalent if L = 1.

4 Main result

In this section, we state and prove the results of this article.

Theorem 4.1 Let $\theta = \{k_r\}$ be a lacunary sequence then (1) (a) If $x \overset{N_{\theta}^{L}(\mathcal{I})}{\sim} y$ then $x \overset{S_{\theta}^{L}(\mathcal{I})}{\sim} y$, (b) $x \overset{N_{\theta}^{L}(\mathcal{I})}{\sim} y$ is a proper subset of $x \overset{S_{\theta}^{L}(\mathcal{I})}{\sim} y$; (2) If $x, y \in l_{\infty}$ and $x \overset{S_{\theta}^{L}(\mathcal{I})}{\sim} y$ then $x \overset{N_{\theta}^{L}(\mathcal{I})}{\sim} y$; (3) $x \overset{S_{\theta}^{L}(\mathcal{I})}{\sim} y \cap l_{\infty} = x \overset{N_{\theta}^{L}(\mathcal{I})}{\sim} y \cap l_{\infty}$,

where l_{∞} denote the set of bounded sequences.

Proof Part (1a): If
$$\epsilon > 0$$
 and $x \overset{N^L_{\theta}(\mathcal{I})}{\sim} y$ then

$$\sum_{k \in I_r} \left| \frac{x_k}{y_k} - L \right| \ge \sum_{k \in I_r \otimes_l} \left| \frac{x_k}{y_k} - L \right|$$
$$\ge \epsilon \left| \left\{ k \in I_r : \left| \frac{x_k}{y_k} - L \right| \ge \epsilon \right\} \right.$$

and so

$$\frac{1}{\varepsilon h_r} \sum_{k \in I_r} \left| \frac{x_k}{y_k} - L \right| \ge \frac{1}{h_r} \left| \left\{ k \in I_r : \left| \frac{x_k}{y_k} - L \right| \ge \epsilon \right\} \right|.$$

Then, for any $\delta > 0$,

$$\left\{r \in \mathbb{N} : \frac{1}{h_r} \left| \left\{k \in I_r : \left|\frac{x_k}{y_k} - L\right| \ge \epsilon \right\} \right| \ge \delta \right\} \subseteq \left\{r \in N : \frac{1}{h_r} \sum_{k \in I_r} \left|\frac{x_k}{y_k} - L\right| \ge \epsilon \cdot \delta \right\} \in \mathcal{I}.$$

Hence, we have $x \stackrel{S^L_{\theta}(\mathcal{I})}{\sim} y$.

Part (1b): $x \stackrel{N_{\theta}^{L}(\mathcal{I})}{\sim} y \subset x \stackrel{S_{\theta}^{L}(\mathcal{I})}{\sim} y$, let $x = (x_k)$ be defined as follows: x_k to be $1, 2, \dots, [\sqrt{h_r}]$ at the first $[\sqrt{h_r}]$ integers in I_r and zero otherwise. $y_k = 1$ for all k. These two satisfy the following $x \stackrel{S_{\theta}^{L}(\mathcal{I})}{\sim} y$, but the following fails $x \stackrel{N_{\theta}^{L}(\mathcal{I})}{\sim} y$.

Part (2): Suppose $x = (x_k)$ and $y = (y_k)$ are in l_{∞} and $x \stackrel{S^L_{\theta}(\mathcal{I})}{\sim} y$. Then we can assume that

$$\left|\frac{x_k}{y_k} - L\right| \le M$$
 for all k .

Given $\epsilon > 0$, we have

$$\begin{aligned} \frac{1}{h_r} \sum_{k \in I_r} \left| \frac{x_k}{y_k} - L \right| &= \frac{1}{h_r} \sum_{k \in I_r \otimes |\frac{x_k}{y_k} - L| \ge \epsilon} \left| \frac{x_k}{y_k} - L \right| + \frac{1}{h_r} \sum_{k \in I_r \otimes |\frac{x_k}{y_k} - L| < \epsilon} \left| \frac{x_k}{y_k} - L \right| \\ &\leq \frac{M}{h_r} \left| \left\{ k \in I_r : \left| \frac{x_k}{y_k} - L \right| \ge \frac{\epsilon}{2} \right\} \right| + \frac{\epsilon}{2}. \end{aligned}$$

Consequently, we have

$$\left\{r \in \mathbb{N} : \frac{1}{h_r} \sum_{k \in I_r} \left| \frac{x_k}{y_k} - L \right| \ge \varepsilon \right\} \subseteq \left\{r \in \mathbb{N} : \frac{1}{h_r} \left| \left\{k \in I_r : \left| \frac{x_k}{y_k} - L \right| \ge \frac{\varepsilon}{2} \right\} \right| \ge \frac{\varepsilon}{2M} \right\} \in \mathcal{I}.$$

Therefore, $x \stackrel{N_{\theta}^{L}(\mathcal{I})}{\sim} y$. Part (3): Follows from (1) and (2).

Theorem 4.2 Let \mathcal{I} is an ideal and $\theta = \{k_r\}$ is a lacunary sequence with $\liminf q_r > 1$, then

$$x \stackrel{S^{L}(\mathcal{I})}{\sim} y$$
 implies $x \stackrel{S^{L}_{\theta}(\mathcal{I})}{\sim} y$.

Proof Suppose first that $\liminf q_r > 1$, then there exists a $\delta > 0$ such that $q_r \ge 1 + \delta$ for sufficiently large r, which implies

$$\frac{h_r}{k_r} \ge \frac{\delta}{1+\delta}.$$

If $x \stackrel{S^L_{\theta}(\mathcal{I})}{\sim} y$, then for every $\varepsilon > 0$ and for sufficiently large r, we have

$$\frac{1}{k_r} \left| \left\{ k \le k_r : \left| \frac{x_k}{y_k} - L \right| \ge \epsilon \right\} \right| \ge \frac{1}{k_r} \left| \left\{ k \in I_r : \left| \frac{x_k}{y_k} - L \right| \ge \epsilon \right\} \right|$$
$$\ge \frac{\delta}{1+\delta} \frac{1}{h_r} \left| \left\{ k \in I_r : \left| \frac{x_k}{y_k} - L \right| \ge \epsilon \right\} \right|.$$

Then, for any $\delta > 0$, we get

$$\begin{cases} r \in \mathbb{N} : \frac{1}{h_r} \left| \left\{ k \in I_r : \left| \frac{x_k}{y_k} - L \right| \ge \varepsilon \right\} \right| \ge \delta \\ \\ \subseteq \left\{ r \in N : \frac{1}{k_r} \left| \left\{ k \le k_r : \left| \frac{x_k}{y_k} - L \right| \ge \epsilon \right\} \right| \ge \frac{\delta \alpha}{(1+\alpha)} \right\} \in \mathcal{I}. \end{cases}$$

This completes the proof.

For the next result we assume that the lacunary sequence θ satisfies the condition that for any set $C \in F(\mathcal{I})$, $\bigcup \{n : k_{r-1} < n < k_r, r \in C\} \in F(\mathcal{I})$.

Theorem 4.3 Let \mathcal{I} is an ideal and $\theta = (k_r)$ is a lacunary sequence with $\sup q_r < \infty$, then

$$x \overset{S^L_{ heta}(\mathcal{I})}{\sim} y \quad implies \quad x \overset{S^L(\mathcal{I})}{\sim} y.$$

Proof If $\limsup_r q_r < \infty$, then without any loss of generality, we can assume that there exists a $0 < B < \infty$ such that $q_r < B$ for all $r \ge 1$. Suppose that $x \stackrel{S^L_{\theta}}{\sim} y$ and for $\epsilon, \delta, \delta_1 > 0$ define the sets

$$C = \left\{ r \in \mathbb{N} : \frac{1}{h_r} \left| \left\{ k \in I_r : \left| \frac{x_k}{y_k} - L \right| \ge \epsilon \right\} \right| < \delta \right\}$$

and

$$T = \left\{ n \in \mathbb{N} : \frac{1}{n} \left| \left\{ k \le n : \left| \frac{x_k}{y_k} - L \right| \ge \epsilon \right\} \right| < \delta_1 \right\}.$$

It is obvious from our assumption that $C \in F(\mathcal{I})$, the filter associated with the ideal \mathcal{I} . Further observe that

$$A_j = \frac{1}{h_j} \left| \left\{ k \in I_j : \left| \frac{x_k}{y_k} - L \right| \ge \epsilon \right\} \right| < \delta$$

for all $j \in C$. Let $n \in \mathbb{N}$ be such that $k_{r-1} < n < k_r$ for some $r \in C$. Now

$$\begin{split} &\frac{1}{n} \left| \left\{ k \le n : \left| \frac{x_k}{y_k} - L \right| \ge \epsilon \right\} \right| \\ &\le \frac{1}{k_{r-1}} \left| \left\{ k \le k_r : \left| \frac{x_k}{y_k} - L \right| \ge \epsilon \right\} \right| \\ &= \frac{1}{k_{r-1}} \left| \left\{ k \in I_1 : \left| \frac{x_k}{y_k} - L \right| \ge \epsilon \right\} \right| + \dots + \frac{1}{k_{r-1}} \left| \left\{ k \in I_r : \left| \frac{x_k}{y_k} - L \right| \ge \epsilon \right\} \right| \\ &= \frac{k_1}{k_{r-1}} \frac{1}{h_1} \left| \left\{ k \in I_1 : \left| \frac{x_k}{y_k} - L \right| \ge \epsilon \right\} \right| + \frac{k_2 - k_1}{k_{r-1}} \frac{1}{h_2} \left| \left\{ k \in I_2 : \left| \frac{x_k}{y_k} - L \right| \ge \epsilon \right\} \right| + \dots \\ &+ \frac{k_r - k_{r-1}}{k_{r-1}} \frac{1}{h_r} \left| \left\{ k \in I_r : \left| \frac{x_k}{y_k} - L \right| \ge \epsilon \right\} \right| \\ &= \frac{k_1}{k_{r-1}} A_1 + \frac{k_2 - k_1}{k_{r-1}} A_2 + \dots + \frac{k_r - k_{r-1}}{k_{r-1}} A_r \\ &\le \sup_{j \in C} A_j \cdot \frac{k_r}{k_{r-1}} < B\delta. \end{split}$$

Choosing $\delta_1 = \frac{\delta}{B}$ and in view of the fact that $\bigcup \{n : k_{r-1} < n < k_r, r \in C\} \subset T$ where $C \in F(\mathcal{I})$, it follows from our assumption on θ that the set T also belongs to $F(\mathcal{I})$ and this completes the proof of the theorem.

Competing interests

The author declares that they have no competing interests.

Received: 1 February 2013 Accepted: 1 April 2013 Published: 18 April 2013

References

- 1. Marouf, M: Asymptotic equivalence and summability. Int. J. Math. Math. Sci. 16(4), 755-762 (1993)
- 2. Patterson, RF: On asymptotically statistically equivalent sequences. Demonstr. Math. 36(1), 149-153 (2003)
- 3. Patterson, RF, Savaş, E: On asymptotically lacunary statistical equivalent sequences. Thai J. Math. 4(2), 267-272 (2006)
- Savaş, E, Patterson, RF: An extension asymptotically lacunary statistical equivalent sequences. Aligarh Bull. Math. 27(2), 109-113 (2008)
- Das, P, Savaş, E, Ghosal, SK: On generalizations of certain summability methods using ideals. Appl. Math. Lett. 36, 1509-1514 (2011)
- 6. Fridy, JA: On statistical convergence. Analysis 5, 301-313 (1985)
- 7. Li, J: Asymptotic equivalence of sequences and summability. Int. J. Math. Math. Sci. 20(4), 749-758 (1997)
- 8. Patterson, RF: Analogues of some fundamental theorems of summability theory. Int. J. Math. Math. Sci. 23(1), 1-9 (2000)
- 9. Kostyrko, P, Salat, T, Wilczyński, W: I-Convergence. Real Anal. Exch. 26(2), 669-686 (2000)
- 10. Kostyrko, P, Macaj, M, Salat, T, Sleziak, M: I-Convergence and extremal I-limit points. Math. Slovaca 55, 443-464 (2005)

doi:10.1186/1687-1847-2013-111

Cite this article as: Savas: On \mathcal{I} -asymptotically lacunary statistical equivalent sequences. Advances in Difference Equations 2013 2013:111.