Oscillation criteria for second-order nonlinear neutral dynamic equations with distributed deviating arguments on time scales

Tuncay Candan*

"Correspondence
tcandan@nigde.edu.tr Department of Mathematics, Faculty of Art and Science, Niğde University, Niğde, 51200, Turkey

Abstract

In this article, we establish some new oscillation criteria and give sufficient conditions to ensure that all solutions of nonlinear neutral dynamic equation of the form

$$
\left(r(t)\left((y(t)+p(t) y(\tau(t)))^{\Delta}\right)^{\gamma}\right)^{\Delta}+\int_{a}^{b} f(t, y(\delta(t, \xi))) \Delta \xi=0
$$

are oscillatory on a time scale \mathbb{T}, where $\gamma \geq 1$ is a quotient of odd positive integers.
Keywords: oscillation; dynamic equations; time scales; distributed deviating arguments

1 Introduction

The aim of this article is to develop some oscillation theorems for a second-order nonlinear neutral dynamic equation

$$
\begin{equation*}
\left(r(t)\left((y(t)+p(t) y(\tau(t)))^{\Delta}\right)^{\gamma}\right)^{\Delta}+\int_{a}^{b} f(t, y(\delta(t, \xi))) \Delta \xi=0 \tag{1}
\end{equation*}
$$

on a time scale \mathbb{T}. Throughout this paper, it is assumed that $\gamma \geq 1$ is a quotient of odd positive integers, $0<a<b, \tau(t): \mathbb{T} \rightarrow \mathbb{T}$, is rd-continuous function such that $\tau(t) \leq t$ and $\tau(t) \rightarrow \infty$ as $t \rightarrow \infty, \delta(t, \xi): \mathbb{T} \times[a, b] \rightarrow \mathbb{T}$ is rd-continuous function such that decreasing with respect to $\xi, \delta(t, \xi) \leq t$ for $\xi \in[a, b], \delta(t, \xi) \rightarrow \infty$ as $t \rightarrow \infty, r(t)>0$ and $0 \leq p(t)<1$ are real valued rd-continuous functions defined on $\mathbb{T}, p(t)$ is increasing and
$\left(\mathrm{H}_{1}\right) \int_{t_{0}}^{\infty}\left(\frac{1}{r(t)}\right)^{\frac{1}{r}} \Delta t=\infty$,
$\left(\mathrm{H}_{2}\right) f: \mathbb{T} \times \mathbb{R} \rightarrow \mathbb{R}$ is a continuous function such that $u f(t, u)>0$ for all $u \neq 0$ and there exists a positive function $q(t)$ defined on \mathbb{T} such that $|f(t, u)| \geq q(t)\left|u^{\gamma}\right|$.

A nontrivial function $y(t)$ is said to be a solution of (1) if $y(t)+p(t) y(\tau(t)) \in C_{r d}^{1}\left[t_{y}, \infty\right]$ and $r(t)\left((y(t)+p(t) y(\tau(t)))^{\Delta}\right)^{\gamma} \in C_{r d}^{1}\left[t_{y}, \infty\right]$ for $t_{y} \geq t_{0}$ and $y(t)$ satisfies equation (1) for $t_{y} \geq t_{0}$. A solution of (1), which is nontrivial for all large t, is called oscillatory if it has no last zero. Otherwise, a solution is called nonoscillatory.

[^0]We note that if $\mathbb{T}=\mathbb{R}$, we have $\sigma(t)=t, \mu(t)=0, y^{\Delta}(t)=y^{\prime}(t)$ and, therefore, (1) becomes a second-order neutral differential equation with distributed deviating arguments

$$
\left(r(t)\left((y(t)+p(t) y(\tau(t)))^{\prime}\right)^{\gamma}\right)^{\prime}+\int_{a}^{b} f(t, y(\delta(t, \xi))) d \xi=0
$$

If $\mathbb{T}=\mathbb{N}$, we have $\sigma(t)=t+1, \mu(t)=1, y^{\Delta}(t)=\Delta y(t)=y(t+1)-y(t)$ and therefore (1) becomes a second-order neutral difference equation with distributed deviating arguments

$$
\Delta\left(r(t)(\Delta(y(t)+p(t) y(\tau(t))))^{\gamma}\right)+\sum_{\xi=a}^{b-1} f(t, y(\delta(t, \xi)))=0
$$

and if $\mathbb{T}=h \mathbb{N}, h>0$, we have $\sigma(t)=t+h, \mu(t)=h, y^{\Delta}(t)=\Delta_{h} y(t)=\frac{y(t+h)-y(t)}{h}$ and, therefore, (1) becomes a second-order neutral difference equation with distributed deviating arguments

$$
\Delta_{h}\left(r(t)\left(\Delta_{h}(y(t)+p(t) y(\tau(t)))\right)^{\gamma}\right)+\sum_{k=\frac{a}{h}}^{\frac{b}{h}-1} f(t, y(\delta(t, k h))) h=0 .
$$

In recent years, there has been important research activity about the oscillatory behavior of second-order neutral differential, difference and dynamic equations. For example, Grace and Lalli [1] considered the following second-order neutral delay equation

$$
\left(a(t)(x(t)+p(t) x(t-\tau))^{\prime}\right)^{\prime}+q(t) f(x(t-\tau))=0, \quad t \geq t_{0}
$$

and Graef et al. [2] considered the nonlinear second-order neutral delay equation

$$
(y(t)+p(t) y(\tau(t)))^{\prime \prime}+q(t) f(y(t-\delta))=0, \quad t \geq t_{0} .
$$

Recently, Agarwal et al. [3] considered second-order nonlinear neutral delay dynamic equation

$$
\begin{equation*}
\left(r(t)\left((y(t)+p(t) y(\tau(t)))^{\Delta}\right)^{\gamma}\right)^{\Delta}+f(t, y(t-\delta))=0 . \tag{2}
\end{equation*}
$$

Later, Saker [4] considered (2) but he used different technique to prove his results. In [5] and [6], the authors considered the second order neutral functional dynamic equation of the form

$$
\left(r(t)\left((y(t)+p(t) y(\tau(t)))^{\Delta}\right)^{\gamma}\right)^{\Delta}+f(t, y(\delta(t)))=0
$$

which is more general than (2). For more papers related to oscillation of second-order nonlinear neutral delay dynamic equation on time scales, we refer the reader to [7-10]. For neutral equations with distributed deviating arguments, we refer the reader to the paper by Candan [11]. To the best of our knowledge, [12] is the only paper regarding to
the distributed deviating arguments on time scales. The books [13, 14] gives time scale calculus and some applications.

2 Main results

Throughout the paper, we use the following notations for simplicity:

$$
\begin{equation*}
x(t)=y(t)+p(t) y(\tau(t)), \quad x^{[1]}=r\left(x^{\Delta}\right)^{\gamma}, \quad x^{[2]}=\left(x^{[1]}\right)^{\Delta} \tag{3}
\end{equation*}
$$

and $\theta_{1}(t)=\delta(t, a)$ and $\theta_{2}(t)=\delta(t, b)$.
Theorem 2.1 Assume that $\left(\mathrm{H}_{1}\right)$ and $\left(\mathrm{H}_{2}\right)$ hold. In addition, assume that $r^{\Delta}(t) \geq 0$. Then every solution of (1) oscillates if the inequality

$$
\begin{equation*}
x^{[2]}(t)+A(t) x^{[1]}\left(\theta_{1}(t)\right) \leq 0, \tag{4}
\end{equation*}
$$

where

$$
A(t)=\frac{(b-a) q(t)\left(1-p\left(\theta_{1}(t)\right)\right)^{\gamma}}{r\left(\theta_{1}(t)\right)}\left(\frac{\theta_{2}(t)}{2}\right)^{\gamma}
$$

has no eventually positive solution.

Proof Let $y(t)$ be a nonoscillatory solution of (1), without loss of generality, we assume that $y(t)>0$ for $t \geq t_{0}$, then $y(\tau(t))>0$ and $y(\delta(t, \xi))>0$ for $t \geq t_{1}>t_{0}$ and $b \geq \xi \geq a$. In the case when $y(t)$ is negative, the proof is similar. In view of (1), (H_{2}) and (3)

$$
\begin{equation*}
x^{[2]}(t)+\int_{a}^{b} q(t) y^{\gamma}(\delta(t, \xi)) \triangle \xi \leq 0 \tag{5}
\end{equation*}
$$

for all $t \geq t_{1}$, and we see that $x^{[1]}(t)$ is an eventually decreasing function. We claim that $x^{[1]}(t)>0$ eventually. Assume not then there exists a $t_{2} \geq t_{1}$ such that $x^{[1]}\left(t_{2}\right)=c<0$, then we have $x^{[1]}(t) \leq c$ for $t \geq t_{2}$ and it follows that

$$
\begin{equation*}
x^{\Delta}(t) \leq\left(\frac{c}{r(t)}\right)^{1 / \gamma} . \tag{6}
\end{equation*}
$$

Now integrating (6) from t_{2} to t and using $\left(\mathrm{H}_{1}\right)$, we obtain

$$
x(t) \leq x\left(t_{2}\right)+c^{1 / \gamma} \int_{t_{2}}^{t}\left(\frac{1}{r(s)}\right)^{1 / \gamma} \Delta s \rightarrow-\infty \quad \text { as } t \rightarrow \infty
$$

which contradicts the fact that $x(t)>0$ for all $t \geq t_{0}$. Hence, $x^{[1]}(t)$ is positive. Therefore, one sees that there is a $t_{2} \geq t_{1}$ such that

$$
\begin{equation*}
x(t)>0, \quad x^{\Delta}(t)>0, \quad x^{[1]}(t)>0, \quad x^{[2]}(t)<0, \quad t \geq t_{2} . \tag{7}
\end{equation*}
$$

For $t \geq t_{3} \geq t_{2}$, this implies that

$$
y(t) \geq x(t)-p(t) x(\tau(t)) \geq(1-p(t)) x(t)
$$

then we conclude that

$$
\begin{equation*}
y^{\gamma}(\delta(t, \xi)) \geq(1-p(\delta(t, \xi)))^{\gamma} x^{\gamma}(\delta(t, \xi)), \quad t \geq t_{4} \geq t_{3}, \xi \in[a, b] \tag{8}
\end{equation*}
$$

Multiplying (8) by $q(t)$ and integrating both sides from a to b, we have

$$
\begin{equation*}
\int_{a}^{b} q(t) y^{\gamma}(\delta(t, \xi)) \Delta \xi \geq \int_{a}^{b} q(t)(1-p(\delta(t, \xi)))^{\gamma} x^{\gamma}(\delta(t, \xi)) \Delta \xi \tag{9}
\end{equation*}
$$

Substituting (9) into (5), we obtain

$$
\begin{equation*}
x^{[2]}(t)+\int_{a}^{b} q(t)(1-p(\delta(t, \xi)))^{\gamma} x^{\gamma}(\delta(t, \xi)) \Delta \xi \leq 0 \tag{10}
\end{equation*}
$$

On the other hand, we can verify that $x^{\Delta \Delta}(t) \leq 0$ for $t \geq t_{4}$ and, therefore, we obtain

$$
x(t)=x\left(t_{4}\right)+\int_{t_{4}}^{t} x^{\Delta}(s) \Delta s \geq\left(t-t_{4}\right) x^{\Delta}(t) \geq \frac{t}{2} x^{\Delta}(t), \quad t \geq t_{5} \geq 2 t_{4} .
$$

From the last inequality, it can be easily seen that

$$
x(\delta(t, \xi)) \geq\left(\frac{\delta(t, \xi)}{2}\right) x^{\Delta}(\delta(t, \xi)) \geq\left(\frac{\theta_{2}(t)}{2}\right) x^{\Delta}(\delta(t, \xi)), \quad t \geq t_{6} \geq t_{5}, \xi \in[a, b]
$$

Substituting the last inequality into (10), we have

$$
x^{[2]}(t)+\int_{a}^{b} q(t)(1-p(\delta(t, \xi)))^{\gamma}\left(\frac{\theta_{2}(t)}{2}\right)^{\gamma}\left(x^{\Delta}(\delta(t, \xi))\right)^{\gamma} \Delta \xi \leq 0
$$

and it can be found

$$
x^{[2]}(t)+(b-a) q(t)\left(1-p\left(\theta_{1}(t)\right)\right)^{\gamma}\left(\frac{\theta_{2}(t)}{2}\right)^{\gamma}\left(x^{\Delta}\left(\theta_{1}(t)\right)\right)^{\gamma} \leq 0
$$

or

$$
x^{[2]}(t)+\frac{(b-a) q(t)\left(1-p\left(\theta_{1}(t)\right)\right)^{\gamma}}{r\left(\theta_{1}(t)\right)}\left(\frac{\theta_{2}(t)}{2}\right)^{\gamma} x^{[1]}\left(\theta_{1}(t)\right) \leq 0,
$$

which is the inequality (4). As a consequence of this, we have a contradiction and therefore every solution of (1) oscillates.

Theorem 2.2 Assume that $\left(\mathrm{H}_{1}\right)$ and $\left(\mathrm{H}_{2}\right)$ hold. In addition, assume that $r^{\Delta}(t) \geq 0, \delta(t, \xi)$ is increasing with respect to t and that the inequality

$$
\begin{equation*}
\limsup _{t \rightarrow \infty} \int_{\theta_{1}(t)}^{t} A(s) \Delta s>1 \tag{11}
\end{equation*}
$$

holds. Then every solution of (1) oscillates.

Proof Let $y(t)$ be a nonoscillatory solution of (1). We can proceed as in the proof of Theorem 2.1 to get (4). Integrating (4) from $\theta_{1}(t)$ to t for sufficiently large t, we have

$$
\begin{aligned}
0 & \geq \int_{\theta_{1}(t)}^{t}\left(x^{[2]}(s)+A(s) x^{[1]}\left(\theta_{1}(s)\right)\right) \Delta s \\
& =x^{[1]}(t)-x^{[1]}\left(\theta_{1}(t)\right)+\int_{\theta_{1}(t)}^{t} A(s) x^{[1]}\left(\theta_{1}(s)\right) \Delta s \\
& \geq x^{[1]}(t)-x^{[1]}\left(\theta_{1}(t)\right)+x^{[1]}\left(\theta_{1}(t)\right) \int_{\theta_{1}(t)}^{t} A(s) \Delta s \\
& =x^{[1]}(t)+x^{[1]}\left(\theta_{1}(t)\right)\left(\int_{\theta_{1}(t)}^{t} A(s) \Delta s-1\right)>0 .
\end{aligned}
$$

By making use of (11), we reach to a contradiction therefore the proof is complete.
Theorem 2.3 Assume that $\left(\mathrm{H}_{1}\right)$ and $\left(\mathrm{H}_{2}\right)$ hold. In addition, assume that $r^{\Delta}(t) \geq 0, \delta(t, \xi)$ is increasing with respect to t and there exists a positive rd-continuous Δ-differentiable function $\alpha(t)$ such that

$$
\begin{equation*}
\limsup _{t \rightarrow \infty} \int_{t_{0}}^{t}\left(\alpha(s) Q(s)-\frac{\left(\left(\alpha^{\Delta}(s)\right)_{+}\right)^{2} r\left(\theta_{2}(s)\right)}{4 \gamma\left(\frac{\theta_{2}(s)}{2}\right)^{\gamma-1} \alpha(s)}\right) \Delta s=\infty, \tag{12}
\end{equation*}
$$

where $\left(\alpha^{\Delta}(s)\right)_{+}=\max \left\{0, \alpha^{\Delta}(s)\right\}$ and $Q(s)=(b-a) q(s)\left(1-p\left(\theta_{1}(s)\right)\right)^{\gamma}$. Then every solution of (1) is oscillatory on $\left[t_{0}, \infty\right)$.

Proof Suppose to the contrary that $y(t)$ is nonoscillatory solution of (1). We may assume without loss of generality that $y(t)>0$ for $t \geq t_{0}$, then $y(\tau(t))>0$ and $y(\delta(t, \xi))>0$ for $t \geq t_{1}>t_{0}$ and $b \geq \xi \geq a$. Proceeding as in the proof of Theorem 2.1, we obtain (7) and the inequality (10). Using (7) and Pötzsche's chain rule [15, Theorem 1], we obtain

$$
\begin{align*}
\left(x^{\gamma}(t)\right)^{\Delta} & =\gamma \int_{0}^{1}\left[x(t)+h \mu(t) x^{\Delta}(t)\right]^{\gamma-1} d h x^{\Delta}(t) \\
& \geq \gamma \int_{0}^{1}(x(t))^{\gamma-1} d h x^{\Delta}(t)=\gamma(x(t))^{\gamma-1} x^{\Delta}(t)>0 . \tag{13}
\end{align*}
$$

From (10) and (13), we obtain

$$
\begin{equation*}
x^{[2]}(t) \leq-(b-a) q(t)\left(1-p\left(\theta_{1}(t)\right)\right)^{\gamma} x^{\gamma}\left(\theta_{2}(t)\right)=-Q(t) x^{\gamma}\left(\theta_{2}(t)\right), \quad t \geq t_{4} . \tag{14}
\end{equation*}
$$

Define the function

$$
\begin{equation*}
z(t)=\alpha(t) \frac{x^{[1]}(t)}{x^{\gamma}\left(\theta_{2}(t)\right)}, \quad t \geq t_{4} . \tag{15}
\end{equation*}
$$

It is obvious that $z(t)>0$. Taking the derivative of $z(t)$, we see that

$$
\begin{align*}
z^{\Delta}(t) & =\left(x^{[1]}\right)^{\sigma}(t)\left(\frac{\alpha(t)}{x^{\gamma}\left(\theta_{2}(t)\right)}\right)^{\Delta}+\frac{\alpha(t)}{x^{\gamma}\left(\theta_{2}(t)\right)} x^{[2]}(t) \\
& =\frac{\alpha(t) x^{[2]}(t)}{x^{\gamma}\left(\theta_{2}(t)\right)}+\left(x^{[1]}\right)^{\sigma}(t)\left(\frac{x^{\gamma}\left(\theta_{2}(t)\right) \alpha^{\Delta}(t)-\alpha(t)\left(x^{\gamma}\left(\theta_{2}(t)\right)\right)^{\Delta}}{x^{\gamma}\left(\theta_{2}(t)\right)\left(x^{\sigma}\left(\theta_{2}(t)\right)\right)^{\gamma}}\right) . \tag{16}
\end{align*}
$$

Now using (14) in (16), we obtain

$$
\begin{equation*}
z^{\Delta}(t) \leq-\alpha(t) Q(t)+\frac{\alpha^{\Delta}(t) z^{\sigma}(t)}{\alpha^{\sigma}(t)}-\frac{\alpha(t)\left(x^{[1]}\right)^{\sigma}(t)\left(x^{\gamma}\left(\theta_{2}(t)\right)\right)^{\Delta}}{x^{\gamma}\left(\theta_{2}(t)\right)\left(x^{\sigma}\left(\theta_{2}(t)\right)\right)^{\gamma}} . \tag{17}
\end{equation*}
$$

On the other hand, as in the proof of Theorem 2.1, it can be shown that for sufficiently large $t \geq t_{5}$

$$
x(t) \geq\left(\frac{t}{2}\right) x^{\Delta}(t), \quad t \geq t_{5} \geq 2 t_{4}
$$

and then

$$
\gamma x^{\gamma-1}(t) \geq \gamma\left(\frac{t}{2}\right)^{\gamma-1}\left(x^{\Delta}(t)\right)^{\gamma-1}
$$

or

$$
\begin{equation*}
\gamma x^{\gamma-1}\left(\theta_{2}(t)\right) \geq \gamma\left(\frac{\theta_{2}(t)}{2}\right)^{\gamma-1}\left(x^{\Delta}\left(\theta_{2}(t)\right)\right)^{\gamma-1}, \quad t \geq t_{6} \geq t_{5} . \tag{18}
\end{equation*}
$$

Since $x^{[2]}(t)<0$, we have

$$
\begin{equation*}
x^{[1]}(t)>x^{[1]}(\sigma(t)) . \tag{19}
\end{equation*}
$$

Multiplying (18) by $x^{\Delta}\left(\theta_{2}(t)\right)$ and using (19), it follows that

$$
\begin{align*}
\gamma x^{\gamma-1}\left(\theta_{2}(t)\right) x^{\Delta}\left(\theta_{2}(t)\right) & \geq \gamma\left(\frac{\theta_{2}(t)}{2}\right)^{\gamma-1}\left(x^{\Delta}\left(\theta_{2}(t)\right)\right)^{\gamma} \\
& \geq \gamma\left(\frac{\theta_{2}(t)}{2}\right)^{\gamma-1} \frac{r\left(\theta_{2}(\sigma(t))\right)}{r\left(\theta_{2}(t)\right)}\left(x^{\Delta}\left(\theta_{2}(\sigma(t))\right)\right)^{\gamma} \\
& \geq \gamma\left(\frac{\theta_{2}(t)}{2}\right)^{\gamma-1} \frac{\left(x^{[1]}\right)^{\sigma}\left(\theta_{2}(t)\right)}{r\left(\theta_{2}(t)\right)} . \tag{20}
\end{align*}
$$

From (13), for sufficiently large $t \geq t_{7} \geq t_{6}$, we have

$$
\begin{equation*}
\left(x^{\gamma}\left(\theta_{2}(t)\right)\right)^{\Delta} \geq \gamma x^{\gamma-1}\left(\theta_{2}(t)\right) x^{\Delta}\left(\theta_{2}(t)\right) . \tag{21}
\end{equation*}
$$

From (20) and (21), it follows that

$$
\begin{equation*}
\left(x^{\gamma}\left(\theta_{2}(t)\right)\right)^{\Delta} \geq \gamma\left(\frac{\theta_{2}(t)}{2}\right)^{\gamma-1} \frac{\left(x^{[1]}\right)^{\sigma}\left(\theta_{2}(t)\right)}{r\left(\theta_{2}(t)\right)} . \tag{22}
\end{equation*}
$$

Substituting (22) into (17), we obtain

$$
z^{\Delta}(t) \leq-\alpha(t) Q(t)+\frac{\alpha^{\Delta}(t) z^{\sigma}(t)}{\alpha^{\sigma}(t)}-\frac{\gamma\left(\frac{\theta_{2}(t)}{2}\right)^{\gamma-1} \alpha(t)}{\left(\alpha^{\sigma}(t)\right)^{2} r\left(\theta_{2}(t)\right)}\left(z^{\sigma}(t)\right)^{2} .
$$

Using the fact $u-m u^{2} \leq \frac{1}{4 m}, m>0$, we have

$$
\begin{aligned}
z^{\Delta}(t) & \leq-\alpha(t) Q(t)+\frac{\left(\alpha^{\Delta}(t)\right)_{+}}{\alpha^{\sigma}(t)}\left(z^{\sigma}(t)-\frac{\gamma\left(\frac{\theta_{2}(t)}{2}\right)^{\gamma-1} \alpha(t)}{\left(\left(\alpha^{\Delta}(t)\right)_{+}\right) \alpha^{\sigma}(t) r\left(\theta_{2}(t)\right)}\left(z^{\sigma}(t)\right)^{2}\right) \\
& \leq-\left(\alpha(t) Q(t)-\frac{\left(\left(\alpha^{\Delta}(t)\right)_{+}\right)^{2} r\left(\theta_{2}(t)\right)}{4 \gamma\left(\frac{\theta_{2}(t)}{2}\right)^{\gamma-1} \alpha(t)}\right) .
\end{aligned}
$$

Integrating the last inequality from t_{7} to t, we obtain

$$
-z\left(t_{7}\right)<z(t)-z\left(t_{7}\right) \leq-\int_{t_{7}}^{t}\left(\alpha(s) Q(s)-\frac{\left(\left(\alpha^{\Delta}(s)\right)_{+}\right)^{2} r\left(\theta_{2}(s)\right)}{4 \gamma\left(\frac{\theta_{2}(s)}{2}\right)^{\gamma-1} \alpha(s)}\right) \Delta s
$$

or

$$
z\left(t_{7}\right)>\int_{t_{7}}^{t}\left(\alpha(s) Q(s)-\frac{\left(\left(\alpha^{\Delta}(s)\right)_{+}\right)^{2} r\left(\theta_{2}(s)\right)}{4 \gamma\left(\frac{\theta_{2}(s)}{2}\right)^{\gamma-1} \alpha(s)}\right) \Delta s
$$

which contradicts (12). Therefore, the proof is complete.

Theorem 2.4 Assume that $\left(\mathrm{H}_{1}\right)$ and $\left(\mathrm{H}_{2}\right)$ hold and $\sigma(t) \neq t$ for each $t \in \mathbb{T}$. Let $\alpha(t), \delta(t, \xi)$, and $Q(s)$ be as defined in Theorem 2.3. If

$$
\limsup _{t \rightarrow \infty} \int_{t_{0}}^{t}\left(\alpha(s) Q(s)-\frac{\left(\left(\alpha^{\Delta}(s)\right)_{+}\right)^{2} r\left(\theta_{2}(s)\right)}{2^{3-\gamma}\left(\mu\left(\theta_{2}(s)\right)\right)^{\gamma-1} \alpha(s)}\right) \Delta s=\infty,
$$

then every solution of (1) is oscillatory on $\left[t_{0}, \infty\right)$.

Proof Following the same lines as in the proof of Theorem 2.1, we get (7) and (10). Using the inequality,

$$
x^{\gamma}-y^{\gamma} \geq 2^{1-\gamma}(x-y)^{\gamma}, \quad \gamma \geq 1,
$$

we have

$$
\begin{align*}
\left(x^{\gamma}(t)\right)^{\Delta} & =\frac{x^{\gamma}(\sigma(t))-x^{\gamma}(t)}{\mu(t)} \geq 2^{1-\gamma} \frac{(x(\sigma(t))-x(t))^{\gamma}}{\mu(t)} \\
& =2^{1-\gamma}(\mu(t))^{\gamma-1}\left(\frac{x(\sigma(t))-x(t)}{\mu(t)}\right)^{\gamma}=2^{1-\gamma}(\mu(t))^{\gamma-1}\left(x^{\Delta}(t)\right)^{\gamma} . \tag{23}
\end{align*}
$$

Now setting $z(t)$ by (15), using (17) and (23) we see that

$$
z^{\Delta}(t) \leq-\alpha(t) Q(t)+\frac{\left(\alpha^{\Delta}(t)\right)_{+} z^{\sigma}(t)}{\alpha^{\sigma}(t)}-\frac{2^{1-\gamma}\left(\mu\left(\theta_{2}(t)\right)\right)^{\gamma-1} \alpha(t)}{\left(\alpha^{\sigma}(t)\right)^{2} r\left(\theta_{2}(t)\right)}\left(z^{\sigma}(t)\right)^{2} .
$$

The remaining part of the proof is similar to that of Theorem 2.3, hence it is omitted.

Example 2.5 Consider the following second-order neutral nonlinear dynamic equation

$$
\left(\left(\left(y(t)+\left(\frac{t+a-1}{t+a}\right) y(\tau(t))\right)^{\Delta}\right)^{5 / 3}\right)^{\Delta}+\int_{a}^{b} t^{-1 / 3} y(t-\xi) \Delta \xi=0, \quad t \in \mathbb{T}
$$

where $\gamma=\frac{5}{3}, r(t)=1, p(t)=\left(\frac{t+a-1}{t+a}\right), q(t)=t^{-1 / 3}$. One can verify that the conditions of Theorem 2.3 are satisfied. Note that taking $\alpha(s)=s$, we see that

$$
\begin{aligned}
& \limsup _{t \rightarrow \infty} \int_{t_{0}}^{t}\left(\alpha(s) Q(s)-\frac{\left(\left(\alpha^{\Delta}(s)\right)_{+}\right)^{2} r\left(\theta_{2}(s)\right)}{4 \gamma\left(\frac{\theta_{2}(s)}{2}\right)^{\gamma-1} \alpha(s)}\right) \Delta s \\
& \quad=\limsup _{t \rightarrow \infty} \int_{t_{0}}^{t}\left((b-a) s^{-1}-\frac{1}{\frac{20}{3}\left(\frac{s-b}{2}\right)^{2 / 3} s}\right) \Delta s=\infty .
\end{aligned}
$$

Therefore, (1) is oscillatory.

Competing interests

The author declares that they have no competing interests.
Received: 26 April 2012 Accepted: 3 April 2013 Published: 18 April 2013

References

1. Grace, SR, Lalli, BS: Oscillations of nonlinear second order neutral delay differential equations. Rad. Mat. 3, 77-84 (1987)
2. Graef, JR, Grammatikopoulos, MK, Spikes, PW: Asymptotic properties of solutions of nonlinear neutral delay differential equations of the second order. Rad. Mat. 4(1), 133-149 (1988)
3. Agarwal, RP, O'Regan, D, Saker, SH: Oscillation criteria for second-order nonlinear neutral delay dynamic equations. J. Math. Anal. Appl. 300, 203-217 (2004)
4. Saker, SH: Oscillation of second-order nonlinear neutral delay dynamic equations on time scales. J. Comput. Appl. Math. 187, 123-141 (2006)
5. Saker, SH: Oscillation criteria for a second-order quasilinear neutral functional dynamic equation on time scales. Nonlinear Oscil. 13, 407-428 (2011)
6. Saker, SH, O'Regan, D: New oscillation criteria for second-order neutral functional dynamic equations via the generalized Riccati substitution. Commun. Nonlinear Sci. Numer. Simul. 16(1), 423-434 (2011)
7. Saker, SH: Oscillation of superlinear and sublinear neutral delay dynamic equations. Commun. Appl. Anal. 12(2), 173-187 (2008)
8. Saker, SH, Agarwal, RP, O'Regan, D: Oscillation results for second-order nonlinear neutral delay dynamic equations on time scales. Appl. Anal. 86, 1-17 (2007)
9. Saker, SH, O'Regan, D, Agarwal, RP: Oscillation theorems for second-order nonlinear neutral delay dynamic equations on time scales. Acta Math. Sin. Engl. Ser. 24, 1409-1432 (2008)
10. Saker, SH: Hille and Nehari types oscillation criteria for second-order neutral delay dynamic equations. Dyn. Contin. Discrete Impuls. Syst., Ser. B, Appl. Algorithms 16(3), 349-360 (2009)
11. Candan, T, Dahiya, RS: On the oscillation of certain mixed neutral equations. Appl. Math. Lett. 21(3), 222-226 (2008)
12. Candan, T: Oscillation of second-order nonlinear neutral dynamic equations on time scales with distributed deviating arguments. Comput. Math. Appl. 62(11), 4118-4125 (2011)
13. Bohner, M, Peterson, A: Dynamic Equations on Time Scales: An Introduction with Applications. Birkhäuser, Boston (2001)
14. Bohner, M, Peterson, A: Advances in Dynamic Equations on Time Scales. Birkhäuser, Boston (2003)
15. Pötzsche, C: Chain rule and invariance principle on measure chains. J. Comput. Appl. Math. 141, 249-254 (2002)
[^1]
Submit your manuscript to a SpringerOpen ${ }^{\bullet}$ journal and benefit from:

- Convenient online submission
- Rigorous peer review
- Immediate publication on acceptance
- Open access: articles freely available online

High visibility within the field

- Retaining the copyright to your article

[^0]: © 2013 Candan; licensee Springer. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

[^1]: doi:10.1186/1687-1847-2013-112
 Cite this article as: Candan: Oscillation criteria for second-order nonlinear neutral dynamic equations with distributed deviating arguments on time scales. Advances in Difference Equations 2013 2013:112.

