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Abstract
In this article, we establish some new oscillation criteria and give sufficient conditions
to ensure that all solutions of nonlinear neutral dynamic equation of the form

(r(t)((y(t) + p(t)y(τ (t)))�
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are oscillatory on a time scale T, where γ ≥ 1 is a quotient of odd positive integers.
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1 Introduction
The aim of this article is to develop some oscillation theorems for a second-order nonlin-
ear neutral dynamic equation
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(
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(
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on a time scale T. Throughout this paper, it is assumed that γ ≥  is a quotient of odd
positive integers,  < a < b, τ (t) : T → T, is rd-continuous function such that τ (t) ≤ t and
τ (t) → ∞ as t → ∞, δ(t, ξ ) : T× [a,b]→ T is rd-continuous function such that decreasing
with respect to ξ , δ(t, ξ ) ≤ t for ξ ∈ [a,b], δ(t, ξ ) → ∞ as t → ∞, r(t) >  and  ≤ p(t) < 
are real valued rd-continuous functions defined on T, p(t) is increasing and

(H)
∫ ∞
t
( 
r(t) )


γ �t = ∞,

(H) f : T × R → R is a continuous function such that uf (t,u) >  for all u �=  and there
exists a positive function q(t) defined on T such that |f (t,u)| ≥ q(t)|uγ |.

Anontrivial function y(t) is said to be a solution of () if y(t)+p(t)y(τ (t)) ∈ C
rd[ty,∞] and

r(t)((y(t) + p(t)y(τ (t)))�)γ ∈ C
rd[ty,∞] for ty ≥ t and y(t) satisfies equation () for ty ≥ t.

A solution of (), which is nontrivial for all large t, is called oscillatory if it has no last zero.
Otherwise, a solution is called nonoscillatory.
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We note that if T =R, we have σ (t) = t, μ(t) = , y�(t) = y′(t) and, therefore, () becomes
a second-order neutral differential equation with distributed deviating arguments
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dξ = .

If T = N, we have σ (t) = t + , μ(t) = , y�(t) = �y(t) = y(t + ) – y(t) and therefore
() becomes a second-order neutral difference equation with distributed deviating argu-
ments
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and if T = hN, h > , we have σ (t) = t + h, μ(t) = h, y�(t) = �hy(t) = y(t+h)–y(t)
h and, there-

fore, () becomes a second-order neutral difference equation with distributed deviating
arguments
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In recent years, there has been important research activity about the oscillatory be-
havior of second-order neutral differential, difference and dynamic equations. For ex-
ample, Grace and Lalli [] considered the following second-order neutral delay equa-
tion

(
a(t)

(
x(t) + p(t)x(t – τ )

)′)′ + q(t)f
(
x(t – τ )

)
= , t ≥ t

and Graef et al. [] considered the nonlinear second-order neutral delay equation

(
y(t) + p(t)y

(
τ (t)

))′′ + q(t)f
(
y(t – δ)

)
= , t ≥ t.

Recently, Agarwal et al. [] considered second-order nonlinear neutral delay dynamic
equation

(
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y(t) + p(t)y
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))�)γ )� + f
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= . ()

Later, Saker [] considered () but he used different technique to prove his results. In []
and [], the authors considered the second order neutral functional dynamic equation of
the form

(
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))�)γ )� + f
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(
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= ,

which is more general than (). For more papers related to oscillation of second-order
nonlinear neutral delay dynamic equation on time scales, we refer the reader to [–].
For neutral equations with distributed deviating arguments, we refer the reader to the
paper by Candan []. To the best of our knowledge, [] is the only paper regarding to
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the distributed deviating arguments on time scales. The books [, ] gives time scale
calculus and some applications.

2 Main results
Throughout the paper, we use the following notations for simplicity:

x(t) = y(t) + p(t)y
(
τ (t)

)
, x[] = r

(
x�)γ , x[] =

(
x[]

)� ()

and θ(t) = δ(t,a) and θ(t) = δ(t,b).

Theorem . Assume that (H) and (H) hold. In addition, assume that r�(t) ≥ . Then
every solution of () oscillates if the inequality

x[](t) +A(t)x[]
(
θ(t)

) ≤ , ()

where

A(t) =
(b – a)q(t)( – p(θ(t)))γ

r(θ(t))

(
θ(t)


)γ

has no eventually positive solution.

Proof Let y(t) be a nonoscillatory solution of (), without loss of generality, we assume
that y(t) >  for t ≥ t, then y(τ (t)) >  and y(δ(t, ξ )) >  for t ≥ t > t and b ≥ ξ ≥ a. In the
case when y(t) is negative, the proof is similar. In view of (), (H) and ()

x[](t) +
∫ b

a
q(t)yγ

(
δ(t, ξ )

)�ξ ≤  ()

for all t ≥ t, and we see that x[](t) is an eventually decreasing function. We claim that
x[](t) >  eventually. Assume not then there exists a t ≥ t such that x[](t) = c < , then
we have x[](t)≤ c for t ≥ t and it follows that

x�(t)≤
(

c
r(t)

)/γ

. ()

Now integrating () from t to t and using (H), we obtain

x(t)≤ x(t) + c/γ
∫ t

t

(

r(s)

)/γ

�s→ –∞ as t → ∞

which contradicts the fact that x(t) >  for all t ≥ t. Hence, x[](t) is positive. Therefore,
one sees that there is a t ≥ t such that

x(t) > , x�(t) > , x[](t) > , x[](t) < , t ≥ t. ()

For t ≥ t ≥ t, this implies that

y(t) ≥ x(t) – p(t)x
(
τ (t)

) ≥ (
 – p(t)

)
x(t)
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then we conclude that

yγ
(
δ(t, ξ )

) ≥ (
 – p

(
δ(t, ξ )

))γ xγ
(
δ(t, ξ )

)
, t ≥ t ≥ t, ξ ∈ [a,b]. ()

Multiplying () by q(t) and integrating both sides from a to b, we have

∫ b

a
q(t)yγ

(
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)�ξ ≥
∫ b

a
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Substituting () into (), we obtain
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∫ b

a
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(
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(
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))γ xγ
(
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On the other hand, we can verify that x��(t)≤  for t ≥ t and, therefore, we obtain

x(t) = x(t) +
∫ t

t
x�(s)�s ≥ (t – t)x�(t)≥ t


x�(t), t ≥ t ≥ t.

From the last inequality, it can be easily seen that

x
(
δ(t, ξ )

) ≥
(

δ(t, ξ )


)
x�(

δ(t, ξ )
) ≥

(
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)
x�(

δ(t, ξ )
)
, t ≥ t ≥ t, ξ ∈ [a,b].

Substituting the last inequality into (), we have
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δ(t, ξ )
))γ �ξ ≤ 

and it can be found

x[](t) + (b – a)q(t)
(
 – p

(
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))γ

(
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)γ (
x�(

θ(t)
))γ ≤ ,

or

x[](t) +
(b – a)q(t)( – p(θ(t)))γ

r(θ(t))

(
θ(t)


)γ

x[]
(
θ(t)

) ≤ ,

which is the inequality (). As a consequence of this, we have a contradiction and therefore
every solution of () oscillates. �

Theorem . Assume that (H) and (H) hold. In addition, assume that r�(t) ≥ , δ(t, ξ )
is increasing with respect to t and that the inequality

lim sup
t→∞

∫ t

θ(t)
A(s)�s >  ()

holds. Then every solution of () oscillates.
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Proof Let y(t) be a nonoscillatory solution of (). We can proceed as in the proof of The-
orem . to get (). Integrating () from θ(t) to t for sufficiently large t, we have

 ≥
∫ t

θ(t)

(
x[](s) +A(s)x[]

(
θ(s)

))�s

= x[](t) – x[]
(
θ(t)

)
+

∫ t

θ(t)
A(s)x[]

(
θ(s)

)�s

≥ x[](t) – x[]
(
θ(t)

)
+ x[]

(
θ(t)

)∫ t

θ(t)
A(s)�s

= x[](t) + x[]
(
θ(t)

)(∫ t

θ(t)
A(s)�s – 

)
> .

By making use of (), we reach to a contradiction therefore the proof is complete. �

Theorem . Assume that (H) and (H) hold. In addition, assume that r�(t) ≥ , δ(t, ξ )
is increasing with respect to t and there exists a positive rd-continuous �-differentiable
function α(t) such that

lim sup
t→∞

∫ t

t

(
α(s)Q(s) –

((α�(s))+)r(θ(s))
γ ( θ(s)

 )γ–α(s)

)
�s = ∞, ()

where (α�(s))+ =max{,α�(s)} and Q(s) = (b – a)q(s)( – p(θ(s)))γ . Then every solution of
() is oscillatory on [t,∞).

Proof Suppose to the contrary that y(t) is nonoscillatory solution of (). We may assume
without loss of generality that y(t) >  for t ≥ t, then y(τ (t)) >  and y(δ(t, ξ )) >  for
t ≥ t > t and b≥ ξ ≥ a. Proceeding as in the proof of Theorem ., we obtain () and the
inequality (). Using () and Pötzsche’s chain rule [, Theorem ], we obtain

(
xγ (t)

)� = γ

∫ 



[
x(t) + hμ(t)x�(t)

]γ– dhx�(t)

≥ γ

∫ 



(
x(t)

)γ– dhx�(t) = γ
(
x(t)

)γ–x�(t) > . ()

From () and (), we obtain

x[](t) ≤ –(b – a)q(t)
(
 – p

(
θ(t)

))γ xγ
(
θ(t)

)
= –Q(t)xγ

(
θ(t)

)
, t ≥ t. ()

Define the function

z(t) = α(t)
x[](t)

xγ (θ(t))
, t ≥ t. ()

It is obvious that z(t) > . Taking the derivative of z(t), we see that

z�(t) =
(
x[]

)σ (t)
(

α(t)
xγ (θ(t))

)�
+

α(t)
xγ (θ(t))

x[](t)

=
α(t)x[](t)
xγ (θ(t))

+
(
x[]

)σ (t)
(
xγ (θ(t))α�(t) – α(t)(xγ (θ(t)))�

xγ (θ(t))(xσ (θ(t)))γ

)
. ()
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Now using () in (), we obtain

z�(t) ≤ –α(t)Q(t) +
α�(t)zσ (t)

ασ (t)
–

α(t)(x[])σ (t)(xγ (θ(t)))�

xγ (θ(t))(xσ (θ(t)))γ
. ()

On the other hand, as in the proof of Theorem ., it can be shown that for sufficiently
large t ≥ t

x(t)≥
(
t


)
x�(t), t ≥ t ≥ t

and then

γ xγ–(t) ≥ γ

(
t


)γ–(
x�(t)

)γ–

or

γ xγ–(θ(t)) ≥ γ

(
θ(t)


)γ–(
x�(

θ(t)
))γ–, t ≥ t ≥ t. ()

Since x[](t) < , we have

x[](t) > x[]
(
σ (t)

)
. ()

Multiplying () by x�(θ(t)) and using (), it follows that

γ xγ–(θ(t))x�(
θ(t)

) ≥ γ

(
θ(t)


)γ–(
x�(

θ(t)
))γ

≥ γ

(
θ(t)


)γ– r(θ(σ (t)))
r(θ(t))

(
x�(

θ
(
σ (t)

)))γ

≥ γ

(
θ(t)


)γ– (x[])σ (θ(t))
r(θ(t))

. ()

From (), for sufficiently large t ≥ t ≥ t, we have

(
xγ

(
θ(t)

))� ≥ γ xγ–(θ(t))x�(
θ(t)

)
. ()

From () and (), it follows that

(
xγ

(
θ(t)

))� ≥ γ

(
θ(t)


)γ– (x[])σ (θ(t))
r(θ(t))

. ()

Substituting () into (), we obtain

z�(t) ≤ –α(t)Q(t) +
α�(t)zσ (t)

ασ (t)
–

γ ( θ(t)
 )γ–α(t)

(ασ (t))r(θ(t))
(
zσ (t)

).
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Using the fact u –mu ≤ 
m ,m > , we have

z�(t) ≤ –α(t)Q(t) +
(α�(t))+
ασ (t)

(
zσ (t) –

γ ( θ(t)
 )γ–α(t)

((α�(t))+)ασ (t)r(θ(t))
(
zσ (t)

))

≤ –
(

α(t)Q(t) –
((α�(t))+)r(θ(t))
γ ( θ(t)

 )γ–α(t)

)
.

Integrating the last inequality from t to t, we obtain

–z(t) < z(t) – z(t) ≤ –
∫ t

t

(
α(s)Q(s) –

((α�(s))+)r(θ(s))
γ ( θ(s)

 )γ–α(s)

)
�s

or

z(t) >
∫ t

t

(
α(s)Q(s) –

((α�(s))+)r(θ(s))
γ ( θ(s)

 )γ–α(s)

)
�s

which contradicts (). Therefore, the proof is complete. �

Theorem . Assume that (H) and (H) hold and σ (t) �= t for each t ∈ T. Let α(t), δ(t, ξ ),
and Q(s) be as defined in Theorem .. If

lim sup
t→∞

∫ t

t

(
α(s)Q(s) –

((α�(s))+)r(θ(s))
–γ (μ(θ(s)))γ–α(s)

)
�s = ∞,

then every solution of () is oscillatory on [t,∞).

Proof Following the same lines as in the proof of Theorem ., we get () and (). Using
the inequality,

xγ – yγ ≥ –γ (x – y)γ , γ ≥ ,

we have

(
xγ (t)

)� =
xγ (σ (t)) – xγ (t)

μ(t)
≥ –γ (x(σ (t)) – x(t))γ

μ(t)

= –γ
(
μ(t)

)γ–
(
x(σ (t)) – x(t)

μ(t)

)γ

= –γ
(
μ(t)

)γ–(x�(t)
)γ . ()

Now setting z(t) by (), using () and () we see that

z�(t) ≤ –α(t)Q(t) +
(α�(t))+zσ (t)

ασ (t)
–
–γ (μ(θ(t)))γ–α(t)

(ασ (t))r(θ(t))
(
zσ (t)

).

The remaining part of the proof is similar to that of Theorem ., hence it is omitted. �

Example . Consider the following second-order neutral nonlinear dynamic equation

(((
y(t) +

(
t + a – 
t + a

)
y
(
τ (t)

))�)/)�
+

∫ b

a
t–/y(t – ξ )�ξ = , t ∈ T

http://www.advancesindifferenceequations.com/content/2013/1/112


Candan Advances in Difference Equations 2013, 2013:112 Page 8 of 8
http://www.advancesindifferenceequations.com/content/2013/1/112

where γ = 
 , r(t) = , p(t) = ( t+a–t+a ), q(t) = t–/. One can verify that the conditions of The-

orem . are satisfied. Note that taking α(s) = s, we see that

lim sup
t→∞

∫ t

t

(
α(s)Q(s) –

((α�(s))+)r(θ(s))
γ ( θ(s)

 )γ–α(s)

)
�s

= lim sup
t→∞

∫ t

t

(
(b – a)s– –



 (

s–b
 )/s

)
�s = ∞.

Therefore, () is oscillatory.
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