## RESEARCH

#### Advances in Difference Equations a SpringerOpen Journal

### **Open Access**

# Oscillation criteria for second-order nonlinear neutral dynamic equations with distributed deviating arguments on time scales

Tuncay Candan\*

\*Correspondence: tcandan@nigde.edu.tr Department of Mathematics, Faculty of Art and Science, Niğde University, Niğde, 51200, Turkey

#### Abstract

In this article, we establish some new oscillation criteria and give sufficient conditions to ensure that all solutions of nonlinear neutral dynamic equation of the form

$$(r(t)((y(t)+p(t)y(\tau(t)))^{\Delta})^{\gamma})^{\Delta}+\int_a^b f(t,y(\delta(t,\xi)))\Delta\xi=0$$

are oscillatory on a time scale  $\mathbb{T}$ , where  $\gamma \geq 1$  is a quotient of odd positive integers.

**Keywords:** oscillation; dynamic equations; time scales; distributed deviating arguments

#### **1** Introduction

The aim of this article is to develop some oscillation theorems for a second-order nonlinear neutral dynamic equation

$$\left(r(t)\left(\left(y(t)+p(t)y(\tau(t))\right)^{\Delta}\right)^{\gamma}\right)^{\Delta}+\int_{a}^{b}f\left(t,y(\delta(t,\xi))\right)\Delta\xi=0$$
(1)

on a time scale  $\mathbb{T}$ . Throughout this paper, it is assumed that  $\gamma \ge 1$  is a quotient of odd positive integers, 0 < a < b,  $\tau(t) : \mathbb{T} \to \mathbb{T}$ , is rd-continuous function such that  $\tau(t) \le t$  and  $\tau(t) \to \infty$  as  $t \to \infty$ ,  $\delta(t,\xi) : \mathbb{T} \times [a,b] \to \mathbb{T}$  is rd-continuous function such that decreasing with respect to  $\xi$ ,  $\delta(t,\xi) \le t$  for  $\xi \in [a,b]$ ,  $\delta(t,\xi) \to \infty$  as  $t \to \infty$ , r(t) > 0 and  $0 \le p(t) < 1$  are real valued rd-continuous functions defined on  $\mathbb{T}$ , p(t) is increasing and

- (H<sub>1</sub>)  $\int_{t_0}^{\infty} \left(\frac{1}{r(t)}\right)^{\frac{1}{\gamma}} \Delta t = \infty$ ,
- (H<sub>2</sub>)  $f : \mathbb{T} \times \mathbb{R} \to \mathbb{R}$  is a continuous function such that uf(t, u) > 0 for all  $u \neq 0$  and there exists a positive function q(t) defined on  $\mathbb{T}$  such that  $|f(t, u)| \ge q(t)|u^{\gamma}|$ .

A nontrivial function y(t) is said to be a solution of (1) if  $y(t) + p(t)y(\tau(t)) \in C^1_{rd}[t_y, \infty]$  and  $r(t)((y(t) + p(t)y(\tau(t)))^{\Delta})^{\gamma} \in C^1_{rd}[t_y, \infty]$  for  $t_y \ge t_0$  and y(t) satisfies equation (1) for  $t_y \ge t_0$ . A solution of (1), which is nontrivial for all large t, is called oscillatory if it has no last zero. Otherwise, a solution is called nonoscillatory.

© 2013 Candan; licensee Springer. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.



We note that if  $\mathbb{T} = \mathbb{R}$ , we have  $\sigma(t) = t$ ,  $\mu(t) = 0$ ,  $y^{\triangle}(t) = y'(t)$  and, therefore, (1) becomes a second-order neutral differential equation with distributed deviating arguments

$$\big(r(t)\big(\big(y(t)+p(t)y\big(\tau(t)\big)\big)'\big)^{\gamma}\big)'+\int_a^b f\big(t,y\big(\delta(t,\xi)\big)\big)\,d\xi=0.$$

If  $\mathbb{T} = \mathbb{N}$ , we have  $\sigma(t) = t + 1$ ,  $\mu(t) = 1$ ,  $y^{\triangle}(t) = \triangle y(t) = y(t + 1) - y(t)$  and therefore (1) becomes a second-order neutral difference equation with distributed deviating arguments

$$\bigtriangleup \left( r(t) \left( \bigtriangleup \left( y(t) + p(t) y(\tau(t)) \right) \right)^{\gamma} \right) + \sum_{\xi=a}^{b-1} f\left( t, y(\delta(t,\xi)) \right) = 0$$

and if  $\mathbb{T} = h\mathbb{N}$ , h > 0, we have  $\sigma(t) = t + h$ ,  $\mu(t) = h$ ,  $y^{\triangle}(t) = \Delta_h y(t) = \frac{y(t+h)-y(t)}{h}$  and, therefore, (1) becomes a second-order neutral difference equation with distributed deviating arguments

In recent years, there has been important research activity about the oscillatory behavior of second-order neutral differential, difference and dynamic equations. For example, Grace and Lalli [1] considered the following second-order neutral delay equation

$$(a(t)(x(t) + p(t)x(t - \tau))')' + q(t)f(x(t - \tau)) = 0, \quad t \ge t_0$$

and Graef et al. [2] considered the nonlinear second-order neutral delay equation

$$\left(y(t)+p(t)y(\tau(t))\right)''+q(t)f\left(y(t-\delta)\right)=0, \quad t\geq t_0.$$

Recently, Agarwal et al. [3] considered second-order nonlinear neutral delay dynamic equation

$$\left(r(t)\left(\left(y(t)+p(t)y(\tau(t))\right)^{\Delta}\right)^{\gamma}\right)^{\Delta}+f\left(t,y(t-\delta)\right)=0.$$
(2)

Later, Saker [4] considered (2) but he used different technique to prove his results. In [5] and [6], the authors considered the second order neutral functional dynamic equation of the form

$$\left(r(t)\big(\big(y(t)+p(t)y\big(\tau(t)\big)\big)^{\bigtriangleup}\big)^{\gamma}\big)^{\bigtriangleup}+f\big(t,y\big(\delta(t)\big)\big)=0,$$

which is more general than (2). For more papers related to oscillation of second-order nonlinear neutral delay dynamic equation on time scales, we refer the reader to [7-10]. For neutral equations with distributed deviating arguments, we refer the reader to the paper by Candan [11]. To the best of our knowledge, [12] is the only paper regarding to

the distributed deviating arguments on time scales. The books [13, 14] gives time scale calculus and some applications.

#### 2 Main results

Throughout the paper, we use the following notations for simplicity:

$$x(t) = y(t) + p(t)y(\tau(t)), \qquad x^{[1]} = r(x^{\Delta})^{\gamma}, \qquad x^{[2]} = (x^{[1]})^{\Delta}$$
(3)

and  $\theta_1(t) = \delta(t, a)$  and  $\theta_2(t) = \delta(t, b)$ .

**Theorem 2.1** Assume that  $(H_1)$  and  $(H_2)$  hold. In addition, assume that  $r^{\Delta}(t) \ge 0$ . Then every solution of (1) oscillates if the inequality

$$x^{[2]}(t) + A(t)x^{[1]}(\theta_1(t)) \le 0, \tag{4}$$

where

$$A(t) = \frac{(b-a)q(t)(1-p(\theta_1(t)))^{\gamma}}{r(\theta_1(t))} \left(\frac{\theta_2(t)}{2}\right)^{\gamma}$$

has no eventually positive solution.

*Proof* Let y(t) be a nonoscillatory solution of (1), without loss of generality, we assume that y(t) > 0 for  $t \ge t_0$ , then  $y(\tau(t)) > 0$  and  $y(\delta(t,\xi)) > 0$  for  $t \ge t_1 > t_0$  and  $b \ge \xi \ge a$ . In the case when y(t) is negative, the proof is similar. In view of (1), (H<sub>2</sub>) and (3)

$$x^{[2]}(t) + \int_{a}^{b} q(t) y^{\gamma} \left(\delta(t,\xi)\right) \Delta \xi \leq 0$$
<sup>(5)</sup>

for all  $t \ge t_1$ , and we see that  $x^{[1]}(t)$  is an eventually decreasing function. We claim that  $x^{[1]}(t) > 0$  eventually. Assume not then there exists a  $t_2 \ge t_1$  such that  $x^{[1]}(t_2) = c < 0$ , then we have  $x^{[1]}(t) \le c$  for  $t \ge t_2$  and it follows that

$$x^{\Delta}(t) \le \left(\frac{c}{r(t)}\right)^{1/\gamma}.$$
(6)

Now integrating (6) from  $t_2$  to t and using (H<sub>1</sub>), we obtain

$$x(t) \le x(t_2) + c^{1/\gamma} \int_{t_2}^t \left(\frac{1}{r(s)}\right)^{1/\gamma} \Delta s \to -\infty \quad \text{as } t \to \infty$$

which contradicts the fact that x(t) > 0 for all  $t \ge t_0$ . Hence,  $x^{[1]}(t)$  is positive. Therefore, one sees that there is a  $t_2 \ge t_1$  such that

$$x(t) > 0, \qquad x^{\Delta}(t) > 0, \qquad x^{[1]}(t) > 0, \qquad x^{[2]}(t) < 0, \quad t \ge t_2.$$
 (7)

For  $t \ge t_3 \ge t_2$ , this implies that

$$y(t) \ge x(t) - p(t)x(\tau(t)) \ge (1 - p(t))x(t)$$

then we conclude that

$$y^{\gamma}\left(\delta(t,\xi)\right) \ge \left(1 - p\left(\delta(t,\xi)\right)\right)^{\gamma} x^{\gamma}\left(\delta(t,\xi)\right), \quad t \ge t_4 \ge t_3, \xi \in [a,b].$$

$$\tag{8}$$

Multiplying (8) by q(t) and integrating both sides from *a* to *b*, we have

$$\int_{a}^{b} q(t) y^{\gamma} \left( \delta(t,\xi) \right) \Delta \xi \geq \int_{a}^{b} q(t) \left( 1 - p \left( \delta(t,\xi) \right) \right)^{\gamma} x^{\gamma} \left( \delta(t,\xi) \right) \Delta \xi.$$
(9)

Substituting (9) into (5), we obtain

$$x^{[2]}(t) + \int_{a}^{b} q(t) \left(1 - p(\delta(t,\xi))\right)^{\gamma} x^{\gamma} \left(\delta(t,\xi)\right) \Delta \xi \leq 0.$$
<sup>(10)</sup>

On the other hand, we can verify that  $x^{\triangle \triangle}(t) \leq 0$  for  $t \geq t_4$  and, therefore, we obtain

$$x(t)=x(t_4)+\int_{t_4}^tx^{\bigtriangleup}(s)\bigtriangleup s\ge (t-t_4)x^{\bigtriangleup}(t)\ge rac{t}{2}x^{\bigtriangleup}(t),\quad t\ge t_5\ge 2t_4.$$

From the last inequality, it can be easily seen that

$$xig(\delta(t,\xi)ig) \geq igg(rac{\delta(t,\xi)}{2}igg) x^{ riangle}igg(\delta(t,\xi)igg) \geq igg(rac{ heta_2(t)}{2}igg) x^{ riangle}igg(\delta(t,\xi)igg), \quad t\geq t_6\geq t_5, \xi\in [a,b].$$

Substituting the last inequality into (10), we have

$$x^{[2]}(t) + \int_{a}^{b} q(t) \big(1 - p\big(\delta(t,\xi)\big)\big)^{\gamma} \bigg(\frac{\theta_{2}(t)}{2}\bigg)^{\gamma} \big(x^{\bigtriangleup}\big(\delta(t,\xi)\big)\big)^{\gamma} \bigtriangleup \xi \leq 0$$

and it can be found

$$x^{[2]}(t)+(b-a)q(t)ig(1-pig( heta_1(t)ig)ig)^{\gamma}igg(rac{ heta_2(t)}{2}igg)^{\gamma}ig(x^{ riangle}ig( heta_1(t)ig)ig)^{\gamma}\leq 0,$$

or

$$x^{[2]}(t) + rac{(b-a)q(t)(1-p( heta_1(t)))^{\gamma}}{r( heta_1(t))} igg(rac{ heta_2(t)}{2}igg)^{\gamma} x^{[1]}ig( heta_1(t)ig) \le 0,$$

which is the inequality (4). As a consequence of this, we have a contradiction and therefore every solution of (1) oscillates.  $\hfill\square$ 

**Theorem 2.2** Assume that  $(H_1)$  and  $(H_2)$  hold. In addition, assume that  $r^{\triangle}(t) \ge 0$ ,  $\delta(t,\xi)$  is increasing with respect to t and that the inequality

$$\limsup_{t \to \infty} \int_{\theta_1(t)}^t A(s) \Delta s > 1 \tag{11}$$

holds. Then every solution of (1) oscillates.

*Proof* Let y(t) be a nonoscillatory solution of (1). We can proceed as in the proof of Theorem 2.1 to get (4). Integrating (4) from  $\theta_1(t)$  to *t* for sufficiently large *t*, we have

$$\begin{split} 0 &\geq \int_{\theta_{1}(t)}^{t} \left( x^{[2]}(s) + A(s) x^{[1]}(\theta_{1}(s)) \right) \Delta s \\ &= x^{[1]}(t) - x^{[1]}(\theta_{1}(t)) + \int_{\theta_{1}(t)}^{t} A(s) x^{[1]}(\theta_{1}(s)) \Delta s \\ &\geq x^{[1]}(t) - x^{[1]}(\theta_{1}(t)) + x^{[1]}(\theta_{1}(t)) \int_{\theta_{1}(t)}^{t} A(s) \Delta s \\ &= x^{[1]}(t) + x^{[1]}(\theta_{1}(t)) \left( \int_{\theta_{1}(t)}^{t} A(s) \Delta s - 1 \right) > 0. \end{split}$$

By making use of (11), we reach to a contradiction therefore the proof is complete.  $\hfill \Box$ 

**Theorem 2.3** Assume that  $(H_1)$  and  $(H_2)$  hold. In addition, assume that  $r^{\triangle}(t) \ge 0$ ,  $\delta(t, \xi)$  is increasing with respect to t and there exists a positive rd-continuous  $\triangle$ -differentiable function  $\alpha(t)$  such that

$$\limsup_{t \to \infty} \int_{t_0}^t \left( \alpha(s)Q(s) - \frac{((\alpha^{\triangle}(s))_+)^2 r(\theta_2(s))}{4\gamma(\frac{\theta_2(s)}{2})^{\gamma-1}\alpha(s)} \right) \Delta s = \infty,$$
(12)

where  $(\alpha^{\triangle}(s))_+ = \max\{0, \alpha^{\triangle}(s)\}$  and  $Q(s) = (b-a)q(s)(1-p(\theta_1(s)))^{\gamma}$ . Then every solution of (1) is oscillatory on  $[t_0, \infty)$ .

*Proof* Suppose to the contrary that y(t) is nonoscillatory solution of (1). We may assume without loss of generality that y(t) > 0 for  $t \ge t_0$ , then  $y(\tau(t)) > 0$  and  $y(\delta(t,\xi)) > 0$  for  $t \ge t_1 > t_0$  and  $b \ge \xi \ge a$ . Proceeding as in the proof of Theorem 2.1, we obtain (7) and the inequality (10). Using (7) and Pötzsche's chain rule [15, Theorem 1], we obtain

$$(x^{\gamma}(t))^{\triangle} = \gamma \int_0^1 [x(t) + h\mu(t)x^{\triangle}(t)]^{\gamma-1} dhx^{\triangle}(t)$$

$$\geq \gamma \int_0^1 (x(t))^{\gamma-1} dhx^{\triangle}(t) = \gamma (x(t))^{\gamma-1} x^{\triangle}(t) > 0.$$

$$(13)$$

From (10) and (13), we obtain

$$x^{[2]}(t) \le -(b-a)q(t)(1-p(\theta_1(t)))^{\gamma} x^{\gamma}(\theta_2(t)) = -Q(t)x^{\gamma}(\theta_2(t)), \quad t \ge t_4.$$
(14)

Define the function

$$z(t) = \alpha(t) \frac{x^{[1]}(t)}{x^{\gamma}(\theta_2(t))}, \quad t \ge t_4.$$
(15)

It is obvious that z(t) > 0. Taking the derivative of z(t), we see that

$$z^{\Delta}(t) = \left(x^{[1]}\right)^{\sigma}(t) \left(\frac{\alpha(t)}{x^{\gamma}(\theta_{2}(t))}\right)^{\Delta} + \frac{\alpha(t)}{x^{\gamma}(\theta_{2}(t))} x^{[2]}(t)$$
$$= \frac{\alpha(t)x^{[2]}(t)}{x^{\gamma}(\theta_{2}(t))} + \left(x^{[1]}\right)^{\sigma}(t) \left(\frac{x^{\gamma}(\theta_{2}(t))\alpha^{\Delta}(t) - \alpha(t)(x^{\gamma}(\theta_{2}(t)))^{\Delta}}{x^{\gamma}(\theta_{2}(t))(x^{\sigma}(\theta_{2}(t)))^{\gamma}}\right).$$
(16)

Now using (14) in (16), we obtain

$$z^{\triangle}(t) \leq -\alpha(t)Q(t) + \frac{\alpha^{\triangle}(t)z^{\sigma}(t)}{\alpha^{\sigma}(t)} - \frac{\alpha(t)(x^{[1]})^{\sigma}(t)(x^{\gamma}(\theta_{2}(t)))^{\triangle}}{x^{\gamma}(\theta_{2}(t))(x^{\sigma}(\theta_{2}(t)))^{\gamma}}.$$
(17)

On the other hand, as in the proof of Theorem 2.1, it can be shown that for sufficiently large  $t \geq t_5$ 

$$x(t) \geq igg(rac{t}{2}igg) x^{ riangle}(t), \quad t \geq t_5 \geq 2t_4$$

and then

$$\gamma x^{\gamma-1}(t) \ge \gamma \left(\frac{t}{2}\right)^{\gamma-1} \left(x^{\Delta}(t)\right)^{\gamma-1}$$

or

$$\gamma x^{\gamma-1} \big( \theta_2(t) \big) \ge \gamma \left( \frac{\theta_2(t)}{2} \right)^{\gamma-1} \big( x^{\triangle} \big( \theta_2(t) \big) \big)^{\gamma-1}, \quad t \ge t_6 \ge t_5.$$
(18)

Since  $x^{[2]}(t) < 0$ , we have

$$x^{[1]}(t) > x^{[1]}(\sigma(t)).$$
<sup>(19)</sup>

Multiplying (18) by  $x^{\Delta}(\theta_2(t))$  and using (19), it follows that

$$\gamma x^{\gamma-1}(\theta_{2}(t))x^{\Delta}(\theta_{2}(t)) \geq \gamma \left(\frac{\theta_{2}(t)}{2}\right)^{\gamma-1} \left(x^{\Delta}(\theta_{2}(t))\right)^{\gamma}$$
$$\geq \gamma \left(\frac{\theta_{2}(t)}{2}\right)^{\gamma-1} \frac{r(\theta_{2}(\sigma(t)))}{r(\theta_{2}(t))} \left(x^{\Delta}(\theta_{2}(\sigma(t)))\right)^{\gamma}$$
$$\geq \gamma \left(\frac{\theta_{2}(t)}{2}\right)^{\gamma-1} \frac{(x^{[1]})^{\sigma}(\theta_{2}(t))}{r(\theta_{2}(t))}.$$
(20)

From (13), for sufficiently large  $t \ge t_7 \ge t_6$ , we have

$$\left(x^{\gamma}\left(\theta_{2}(t)\right)\right)^{\Delta} \geq \gamma x^{\gamma-1}\left(\theta_{2}(t)\right) x^{\Delta}\left(\theta_{2}(t)\right).$$

$$(21)$$

From (20) and (21), it follows that

$$\left(x^{\gamma}\left(\theta_{2}(t)\right)\right)^{\bigtriangleup} \geq \gamma\left(\frac{\theta_{2}(t)}{2}\right)^{\gamma-1} \frac{\left(x^{[1]}\right)^{\sigma}\left(\theta_{2}(t)\right)}{r(\theta_{2}(t))}.$$
(22)

Substituting (22) into (17), we obtain

$$z^{ riangle}(t) \leq -lpha(t)Q(t) + rac{lpha^{ riangle}(t)z^{\sigma}(t)}{lpha^{\sigma}(t)} - rac{\gamma(rac{ heta_2(t)}{2})^{\gamma-1}lpha(t)}{(lpha^{\sigma}(t))^2r( heta_2(t))}ig(z^{\sigma}(t)ig)^2.$$

Using the fact  $u - mu^2 \le \frac{1}{4m}$ , m > 0, we have

$$\begin{split} z^{\triangle}(t) &\leq -\alpha(t)Q(t) + \frac{(\alpha^{\triangle}(t))_{+}}{\alpha^{\sigma}(t)} \bigg( z^{\sigma}(t) - \frac{\gamma(\frac{\theta_{2}(t)}{2})^{\gamma-1}\alpha(t)}{((\alpha^{\triangle}(t))_{+})\alpha^{\sigma}(t)r(\theta_{2}(t))} \big( z^{\sigma}(t) \big)^{2} \bigg) \\ &\leq - \bigg( \alpha(t)Q(t) - \frac{((\alpha^{\triangle}(t))_{+})^{2}r(\theta_{2}(t))}{4\gamma(\frac{\theta_{2}(t)}{2})^{\gamma-1}\alpha(t)} \bigg). \end{split}$$

Integrating the last inequality from  $t_7$  to t, we obtain

$$-z(t_7) < z(t) - z(t_7) \leq -\int_{t_7}^t \left(\alpha(s)Q(s) - \frac{((\alpha^{\bigtriangleup}(s))_+)^2 r(\theta_2(s))}{4\gamma(\frac{\theta_2(s)}{2})^{\gamma-1}\alpha(s)}\right) \bigtriangleup s$$

or

$$z(t_7) > \int_{t_7}^t \left( \alpha(s)Q(s) - \frac{((\alpha^{\triangle}(s))_+)^2 r(\theta_2(s))}{4\gamma(\frac{\theta_2(s)}{2})^{\gamma-1}\alpha(s)} \right) \Delta s$$

which contradicts (12). Therefore, the proof is complete.

**Theorem 2.4** Assume that (H<sub>1</sub>) and (H<sub>2</sub>) hold and  $\sigma(t) \neq t$  for each  $t \in \mathbb{T}$ . Let  $\alpha(t)$ ,  $\delta(t, \xi)$ , and Q(s) be as defined in Theorem 2.3. If

$$\limsup_{t\to\infty}\int_{t_0}^t \left(\alpha(s)Q(s) - \frac{((\alpha^{\triangle}(s))_+)^2 r(\theta_2(s))}{2^{3-\gamma}(\mu(\theta_2(s)))^{\gamma-1}\alpha(s)}\right) \Delta s = \infty,$$

then every solution of (1) is oscillatory on  $[t_0, \infty)$ .

*Proof* Following the same lines as in the proof of Theorem 2.1, we get (7) and (10). Using the inequality,

$$x^{\gamma}-y^{\gamma}\geq 2^{1-\gamma}(x-y)^{\gamma}, \quad \gamma\geq 1,$$

we have

$$(x^{\gamma}(t))^{\triangle} = \frac{x^{\gamma}(\sigma(t)) - x^{\gamma}(t)}{\mu(t)} \ge 2^{1-\gamma} \frac{(x(\sigma(t)) - x(t))^{\gamma}}{\mu(t)}$$
  
=  $2^{1-\gamma} (\mu(t))^{\gamma-1} \left(\frac{x(\sigma(t)) - x(t)}{\mu(t)}\right)^{\gamma} = 2^{1-\gamma} (\mu(t))^{\gamma-1} (x^{\triangle}(t))^{\gamma}.$  (23)

Now setting z(t) by (15), using (17) and (23) we see that

$$z^{\bigtriangleup}(t) \leq -\alpha(t)Q(t) + \frac{(\alpha^{\bigtriangleup}(t))_{+}z^{\sigma}(t)}{\alpha^{\sigma}(t)} - \frac{2^{1-\gamma}(\mu(\theta_{2}(t)))^{\gamma-1}\alpha(t)}{(\alpha^{\sigma}(t))^{2}r(\theta_{2}(t))} (z^{\sigma}(t))^{2}.$$

The remaining part of the proof is similar to that of Theorem 2.3, hence it is omitted.  $\Box$ 

Example 2.5 Consider the following second-order neutral nonlinear dynamic equation

$$\left(\left(\left(y(t)+\left(\frac{t+a-1}{t+a}\right)y(\tau(t)\right)^{\Delta}\right)^{5/3}\right)^{\Delta}+\int_{a}^{b}t^{-1/3}y(t-\xi)\Delta\xi=0,\quad t\in\mathbb{T}$$

where  $\gamma = \frac{5}{3}$ , r(t) = 1,  $p(t) = (\frac{t+a-1}{t+a})$ ,  $q(t) = t^{-1/3}$ . One can verify that the conditions of Theorem 2.3 are satisfied. Note that taking  $\alpha(s) = s$ , we see that

$$\limsup_{t \to \infty} \int_{t_0}^t \left( \alpha(s)Q(s) - \frac{((\alpha^{\triangle}(s))_+)^2 r(\theta_2(s))}{4\gamma(\frac{\theta_2(s)}{2})^{\gamma-1}\alpha(s)} \right) \Delta s$$
$$= \limsup_{t \to \infty} \int_{t_0}^t \left( (b-a)s^{-1} - \frac{1}{\frac{20}{3}(\frac{s-b}{2})^{2/3}s} \right) \Delta s = \infty.$$

Therefore, (1) is oscillatory.

#### **Competing interests**

The author declares that they have no competing interests.

#### Received: 26 April 2012 Accepted: 3 April 2013 Published: 18 April 2013

#### References

- 1. Grace, SR, Lalli, BS: Oscillations of nonlinear second order neutral delay differential equations. Rad. Mat. 3, 77-84 (1987)
- Graef, JR, Grammatikopoulos, MK, Spikes, PW: Asymptotic properties of solutions of nonlinear neutral delay differential equations of the second order. Rad. Mat. 4(1), 133-149 (1988)
- 3. Agarwal, RP, O'Regan, D, Saker, SH: Oscillation criteria for second-order nonlinear neutral delay dynamic equations. J. Math. Anal. Appl. **300**, 203-217 (2004)
- Saker, SH: Oscillation of second-order nonlinear neutral delay dynamic equations on time scales. J. Comput. Appl. Math. 187, 123-141 (2006)
- Saker, SH: Oscillation criteria for a second-order quasilinear neutral functional dynamic equation on time scales. Nonlinear Oscil. 13, 407-428 (2011)
- Saker, SH, O'Regan, D: New oscillation criteria for second-order neutral functional dynamic equations via the generalized Riccati substitution. Commun. Nonlinear Sci. Numer. Simul. 16(1), 423-434 (2011)
- Šaker, SH: Oscillation of superlinear and sublinear neutral delay dynamic equations. Commun. Appl. Anal. 12(2), 173-187 (2008)
- Saker, SH, Agarwal, RP, O'Regan, D: Oscillation results for second-order nonlinear neutral delay dynamic equations on time scales. Appl. Anal. 86, 1-17 (2007)
- Saker, SH, O'Regan, D, Agarwal, RP: Oscillation theorems for second-order nonlinear neutral delay dynamic equations on time scales. Acta Math. Sin. Engl. Ser. 24, 1409-1432 (2008)
- Saker, SH: Hille and Nehari types oscillation criteria for second-order neutral delay dynamic equations. Dyn. Contin. Discrete Impuls. Syst., Ser. B, Appl. Algorithms 16(3), 349-360 (2009)
- 11. Candan, T, Dahiya, RS: On the oscillation of certain mixed neutral equations. Appl. Math. Lett. 21(3), 222-226 (2008)
- Candan, T: Oscillation of second-order nonlinear neutral dynamic equations on time scales with distributed deviating arguments. Comput. Math. Appl. 62(11), 4118-4125 (2011)
- 13. Bohner, M, Peterson, A: Dynamic Equations on Time Scales: An Introduction with Applications. Birkhäuser, Boston (2001)
- 14. Bohner, M, Peterson, A: Advances in Dynamic Equations on Time Scales. Birkhäuser, Boston (2003)
- 15. Pötzsche, C: Chain rule and invariance principle on measure chains. J. Comput. Appl. Math. 141, 249-254 (2002)

#### doi:10.1186/1687-1847-2013-112

**Cite this article as:** Candan: **Oscillation criteria for second-order nonlinear neutral dynamic equations with distributed deviating arguments on time scales**. *Advances in Difference Equations* 2013 **2013**:112.

# Submit your manuscript to a SpringerOpen<sup>®</sup> journal and benefit from:

- ► Convenient online submission
- ► Rigorous peer review
- Immediate publication on acceptance
- ► Open access: articles freely available online
- ► High visibility within the field
- ▶ Retaining the copyright to your article

Submit your next manuscript at > springeropen.com