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1 Introduction
Fractional differential calculus is a discipline to which many researchers are dedicating
their time, perhaps because of its demonstrated applications in various fields of science
and engineering []. Many researchers studied the existence of solutions to fractional
boundary value problems, for example, [–].
The q-difference calculus or quantum calculus is an old subject that was initially devel-

oped by Jackson [, ]; basic definitions and properties of q-difference calculus can be
found in [, ].
The fractional q-difference calculus had its origin in the works by Al-Salam [] and

Agarwal []. More recently, maybe due to the explosion in research within the fractional
differential calculus setting, new developments in this theory of fractional q-difference
calculus were made, for example, q-analogues of the integral and differential fractional
operators properties such as Mittage-Leffler function [], just to mention some.
El-Shahed and Hassan [] studied the existence of positive solutions of the q-difference

boundary value problem:
⎧⎨
⎩
–D

qu(t) = a(t)f (u(t)), t ∈ J := [, ],

αu() – βDqu() = , γu() + δDqu() = .

Ferreira [] considered the existence of positive solutions to nonlinear q-difference
boundary value problem:

⎧⎨
⎩
(RLDα

qu)(t) = –f (t,u(t)),  < t < ,  < α ≤ ,

u() = u() = .

© 2013 Zhou and Liu; licensee Springer. This is an Open Access article distributed under the terms of the Creative Commons
Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction
in any medium, provided the original work is properly cited.

http://www.advancesindifferenceequations.com/content/2013/1/113
mailto:wxzhou2006@126.com
http://creativecommons.org/licenses/by/2.0


Zhou and Liu Advances in Difference Equations 2013, 2013:113 Page 2 of 12
http://www.advancesindifferenceequations.com/content/2013/1/113

Ferreira [] studied the existence of positive solutions to nonlinear q-difference bound-
ary value problem:

⎧⎨
⎩
(RLDα

qu)(t) = –f (t,u(t)),  < t < ,  < α ≤ ,

u() = (Dqu)() = , (Dqu)() = β ≥ .

El-Shahed and Al-Askar [] studied the existence of positive solutions to nonlinear
q-difference equation:

⎧⎨
⎩

CDα
qu + a(t)f (u(t)) = ,  < t < ,  < α ≤ ,

u() = (D
qu)() = , γ (Dqu)() + βD

qu() = ,

where γ ,β ≥  and CDq is the fractional q-derivative of the Caputo type.
Ahmad, Alsaedi and Ntouyas [] discussed the existence of solutions for the second-

order q-difference equation with nonseparated boundary conditions

⎧⎨
⎩
D

qu(t) = f (t,u(t)), t ∈ I,

u() = ηu(T), Dqu() = ηDqu(T),

where f ∈ C(I×R,R), I = [,T]∩qN, qN := {qn : n ∈N}∪{}, andT ∈ qN is a fixed constant,
and η �=  is a fixed real number.
Ahmad and Nieto [] discussed a nonlocal nonlinear boundary value problem (BVP)

of third-order q-difference equations given by

⎧⎨
⎩
D

qu(t) = f (t,u(t)), t ∈ Iq,

u() = , Dqu() = , u() = αu(η),

where f ∈ C(Iq ×R,R), Iq = {, } ∪ {qn : n ∈ N}, and q ∈ (, ) is a fixed constant, η ∈ {qn :
n ∈N} and α �= /η is a real number.
This paper is mainly concerned with the existence results for the following fractional

q-difference equations:

⎧⎨
⎩

CDα
qu + f (t,u) = , t ∈ J = [, ],  < α ≤ ,

u() = (D
qu)() = , γ (Dqu)() + βD

qu() = ,
(.)

where γ ,β ≥  and CDq is the fractional q-derivative of the Caputo type. f : J ×E → E is a
given function satisfying some assumptions that will be specified later, and E is a Banach
space with norm ‖u‖.
To investigate the existence of solutions of the problem above, we use Mönch’s fixed-

point theorem combined with the technique of measures of weak noncompactness, which
is an important method for seeking solutions of differential equations. This technique was
mainly initiated in the monograph of Banaś and Goebel [], and subsequently developed
and used in many papers; see, for example, Banaś et al. [], Guo et al. [], Krzyska and
Kubiaczyk [], Lakshmikantham and Leela [], Mönch [], O’Regan [, ], Szufla
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[, ] and the references therein. As far as we know, there are very few results devoted
to weak solutions of nonlinear fractional differential equations [–]. Motivated by the
above mentioned papers, the purpose of this paper is to establish the existence results for
the boundary value problem (.) by virtue of the Mönch’s fixed-point theorem combined
with the technique of measures of weak noncompactness.
The remainder of this article is organized as follows. In Section , we provide some basic

definitions, preliminaries facts and various lemmas, which are needed later. In Section ,
we give main results of the problem (.). In the end, we also give an example for the
illustration of the theories established in this paper.

2 Preliminaries and lemmas
In this section, we present some basic notations, definitions and preliminary results, which
will be used throughout this paper.
Let q ∈ (, ) and define []

[a]q =
qa – 
q – 

= aa– + · · · + , a ∈R.

The q-analogue of the power (a – b)n is

(a – b)() = , (a – b)(n) =
n–∏
k=

(
a – bqk

)
, a,b ∈R,n ∈ N.

If α is not a positive integer, then

(a – b)(α) = aα

∞∏
i=

( – (b/a)qi)
( – (b/a)qα+i)

.

Note that if b = , then a(α) = aα . The q-gamma function is defined by

�q(x) =
( – q)(x–)

( – q)x–
, x ∈R\{,–,–, . . .},  < q < ,

and satisfies �q(x + ) = [x]q�q(x).
The q-derivative of a function f is here defined by

Dqf (x) =
dqf (x)
dqx

=
f (qx) – f (x)
(q – )x

and q-derivatives of higher order by

Dn
qf (x) =

⎧⎨
⎩
f (x), if n = ,

DqDn–
q f (x), if n ∈N.

The q-integral of a function f defined in the interval [,b] is given by

∫ x


f (t)dqt = x( – q)

∞∑
n=

f
(
xqn

)
qn,  ≤ |q| < ,x ∈ [,b].
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If a ∈ [,b] and f is defined in the interval [,b], its integral from a to b is defined by

∫ b

a
f (t)dqt =

∫ b


f (t)dqt –

∫ a


f (t)dqt.

Similarly, as done for derivatives, an operator Inq can be defined, namely,

(
Iq f

)
(x) = f (x),

(
Inq f

)
(x) = Iq

(
In–q f

)
(x), n ∈N.

The fundamental theorem of calculus applies to these operators Iq and Dq, that is,

(DqIqf )(x) = f (x),

and if f is continuous at x = , then

(IqDqf )(x) = f (x) – f ().

Basic properties of the two operators can be found in the book mentioned in []. We
now point out three formulas that will be used later (iDq denotes the derivative with re-
spect to variable i) []

[
a(t – s)

](α) = aα(t – s)(α),

tDq(t – s)(α) = [α]q(t – s)(α–),(
xDq

∫ x


f (x, t)dqt

)
(x) =

∫ x


xDqf (x, t)dqt + f (qx,x).

Remark . We note that if α >  and a≤ b ≤ t, then (t – a)(α) ≥ (t – b)(α) [].

Let J := [, ] and L(J ,E) denote the Banach space of real-valued Lebesgue integrable
functions on the interval J , L∞(J ,E) denote the Banach space of real-valued essentially
bounded and measurable functions defined over J with the norm ‖ · ‖L∞ .
Let E be a real reflexive Banach space with norm ‖ · ‖ and dual E*, and let (E,ω) =

(E,σ (E,E*)) denote the space E with its weak topology. Here, C(J ,E) is the Banach space of
continuous functions x : J → E with the usual supremum norm ‖x‖∞ := sup{‖x(t)‖ : t ∈ J}.
Moreover, for a given set V of functions v : J �→ R, let us denote by V (t) = {v(t) : v ∈

V }, t ∈ J , and V (J) = {v(t) : v ∈ V , t ∈ J}.

Definition . A function h : E → E is said to be weakly sequentially continuous if h takes
each weakly convergent sequence in E to a weakly convergent sequence in E (i.e. for any
(xn)n in E with xn(t) → x(t) in (E,ω) then h(xn(t))→ h(x(t)) in (E,ω) for each t → J).

Definition . [] The function x : J → E is said to be Pettis integrable on J if and only
if there is an element xJ ∈ E corresponding to each I ⊂ J such that ϕ(xI) =

∫
I ϕ(x(s))ds for

all ϕ ∈ E*, where the integral on the right is supposed to exist in the sense of Lebesgue. By
definition, xI =

∫
I x(s)ds.

Let P(J ,E) be the space of all E-valued Pettis integrable functions in the interval J .

http://www.advancesindifferenceequations.com/content/2013/1/113
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Lemma . [] If x(·) is Pettis integrable and h(·) is a measurable and an essentially
bounded real-valued function, then x(·)h(·) is Pettis integrable.

Definition . [] Let E be a Banach space, �E the set of all bounded subsets of E, and
B the unit ball in E. The De Blasimeasure of weak noncompactness is the map β : �E →
[,∞) defined by

β(X) = inf{ε >  : there exists a weakly compact subset � of E

such that X ⊂ εB +�}.

Lemma . [] The De Blasi measure of noncompactness satisfies the following proper-
ties:

(a) S ⊂ T ⇒ β(S)≤ β(T);
(b) β(S) = ⇔ S is relatively weakly compact;
(c) β(S ∪ T) =max{β(S),β(T)};
(d) β(Sω) = β(S), where Sω denotes the weak closure of S;
(e) β(S + T)≤ β(S) + β(T);
(f ) β(aS) = |a|α(S);
(g) β(conv(S)) = β(S);
(h) β(

⋃
|λ|≤h λS) = hβ(S).

The following result follows directly from the Hahn-Banach theorem.

Lemma . Let E be a normed space with x �= . Then there exists ϕ ∈ E* with ‖ϕ‖ = 
and ϕ(x) = ‖x‖.

Definition . [] Let α ≥  and f be a function defined on [, ]. The fractional
q-integral of the Riemann-Liouville type is (RLIq f )(x) = f (x) and

(
RLIαq f

)
(x) =

∫ x

a

(x – qt)(α–)

�q(α)
f (t)dqt, α ∈R

+,x ∈ [, ].

Definition . [] The fractional q-derivative of the Riemann-Liouville type of order
α ≥  is defined by (RLD

qf )(x) = f (x) and

(
RLDα

q f
)
(x) =

(
D[α]

q I[α]–α
q f

)
(x), α > ,

where [α] is the smallest integer greater than or equal to α.

Definition . [] The fractional q-derivative of the Caputo type of order α ≥  is de-
fined by

(
CDα

q f
)
(x) =

(
I[α]–α
q D[α]

q f
)
(x), α > ,

where [α] is the smallest integer greater than or equal to α.

Lemma . [] Let α,β ≥  and let f be a function defined on [, ]. Then the next for-
mulas hold:

http://www.advancesindifferenceequations.com/content/2013/1/113
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() (Iβq Iαq f )(x) = (Iα+β
q f )(x),

() (Dβ
q Iαq f )(x) = f (x).

Lemma. [] Let D be a closed convex and equicontinuous subset of ametrizable locally
convex vector space C(J ,E) such that  ∈D. Assume that A :D →D is weakly sequentially
continuous. If the implication

V = conv
({} ∪A(V )

) ⇒ V is relatively weakly compact, (.)

holds for every subset V of D, then A has a fixed point.

3 Main results
Let us start by defining what we mean by a solution of the problem (.).

Definition . A function u ∈ C(J ,Eω) is said to be a solution of the problem (.) if u
satisfies the equation CDα

qu+ f (t,u) =  on J , and satisfy the conditions u() = (D
qu)() = ,

γ (Dqu)() + βD
qu() = .

For the existence results on the problem (.), we need the following auxiliary lemmas.

Lemma . [] Let α >  and n ∈N. Then, the following equality holds:

(
RLIαq RLDn

qf
)
(x) = RLDn

qRLI
α
q f (x) –

α–∑
k=

xα–n+k

�q(α + k – n + )
(
Dk

qf
)
().

Lemma . [] Let α >  and n ∈R+\N. Then the following equality holds:

(
Iαq CDα

q f
)
(x) = f (x) –

[α]–∑
k=

xk

�q(k + )
(
Dk

qf
)
().

We derive the corresponding Green’s function for boundary value problem (.), which
will play major role in our next analysis.

Lemma . Let ρ ∈ C[, ] be a given function, then the boundary-value problem
⎧⎨
⎩

CDα
qu + ρ(t) = , t ∈ [, ],  < α ≤ ,

u() = (D
qu)() = , γ (Dqu)() + βD

qu() = 
(.)

has a unique solution

u(t) =
∫ 


G(t,qs)ρ(s)dqs, (.)

where G(t, s) is defined by the formula

G(t, s) =

⎧⎨
⎩

t(–s)(α–)
�q(α–) + β

γ

t(–s)(α–)
�q(α–) , if ≤ t ≤ s ≤ ,

t(–s)(α–)
�q(α–) + β

γ

t(–s)(α–)
�q(α–) – (t–s)(α–)

�q(α) , if ≤ s ≤ t ≤ .
(.)

Here, G(t, s) is called the Green’s function of boundary value problem (.).

http://www.advancesindifferenceequations.com/content/2013/1/113
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Proof By Lemma . and Lemma ., we can reduce the equation of problem (.) to an
equivalent integral equation

u(t) = u() +
Dqu()
�q()

t +
D

qu()
�q()

t – Iαq ρ(t). (.)

Applying the boundary conditions u() = (D
qu)() = , we have

u(t) = At –
∫ t



(t – qs)(α–)

�q(α)
ρ(s)dqs. (.)

So, we have

(Dqu)(t) = A –
∫ t



[α – ]q(t – qs)(α–)

�q(α)
ρ(s)dqs, (.)

(
D

qu
)
(t) = –

∫ t



[α – ]q[α – ]q(t – qs)(α–)

�q(α)
ρ(s)dqs. (.)

Then, by the condition γ (Dqu)() + βD
qu() = , we have

A =
∫ 



( – qs)(α–)

�q(α – )
ρ(s)dqs +

β

γ

∫ 



( – qs)(α–)

�q(α – )
ρ(s)dqs. (.)

Therefore, the unique solution of problem (.) is

u(t) = At –
∫ t



(t – qs)(α–)

�q(α)
ρ(s)dqs

=
[∫ 



( – qs)(α–)

�q(α – )
ρ(s)dqs +

β

γ

∫ 



( – qs)(α–)

�q(α – )
ρ(s)dqs

]
t

–
∫ t



(t – qs)(α–)

�q(α)
ρ(s)dqs

=
∫ 


G(t,qs)ρ(s)dqs,

which completes the proof. �

Remark . From the expression ofG(t, s), it is obvious thatG(t, s) is continuous on J × J .
Denote by

G* = sup

{∫ T



∣∣G(t, s)∣∣dqs : t ∈ J
}
.

To prove the main results, we need the following assumptions:

(H) For each t ∈ J , the function f (t, ·) is weakly sequentially continuous;
(H) For each x ∈ C(J ,E), the function f (·,x(·)) is Pettis integrable on J ;
(H) There exists pf ∈ L∞(J ,R+) such that

∥∥f (t,u)∥∥ ≤ pf (t)‖u‖ for a.e. t ∈ J and each u ∈ E;

http://www.advancesindifferenceequations.com/content/2013/1/113
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(H)′ There exists pf ∈ L∞(J ,R+) and a continuous nondecreasing function ψ : [,∞) →
(,∞) such that

∥∥f (t,u)∥∥ ≤ pf (t)ψ
(‖u‖) for a.e. t ∈ J and each u ∈ E;

(H) For each bounded set D⊂ E, and each t ∈ J , the following inequality holds:

β
(
f (t,D)

) ≤ pf (t) · β(D);

(H) There exists a constant R >  such that

R
‖pf ‖L∞ψ(R)G* > ,

where ‖pf ‖L∞ = sup{pf (t) : t ∈ J}.

Theorem. Let E be a reflexive Banach space and assume that (H)-(H) are satisfied. If

‖pf ‖L∞G* < , (.)

then the problem (.) has at least one solution on J .

Proof Let the operator A : C(J ,E)→ C(J ,E) defined by the formula

(Au)(t) :=
∫ 


G(t,qs)f

(
s,u(s)

)
dqs, (.)

where G(·, ·) is the Green’s function defined by (.). It is well known the fixed points of
the operatorA are solutions of the problem (.).
First notice that, for x ∈ C(J ,E), we have f (·,x(·)) ∈ P(J ,E) (assumption (H)). Since, s �→

G(t, s) ∈ L∞(J), thenG(t, ·)f (·,x(·)) is Pettis integrable for all t ∈ J by Lemma ., and so the
operatorA is well defined.
Let R > , and consider the set

D =
{
x ∈ C(J ,E) : ‖x‖∞ ≤ R and

∥∥x(t) – x(t)
∥∥ ≤ R‖pf ‖L∞

∫ 



∣∣G(t,qs) –G(t,qs)
∣∣dqs for t, t ∈ J

}
.

Clearly, the subset D is closed, convex and equicontinuous. We shall show thatA satisfies
the assumptions of Lemma .. The proof will be given in three steps.
Step : We will show that the operator Amaps D into itself.
Take x ∈D, t ∈ J and assume thatAx(t) �= . Then there existsψ ∈ E* such that ‖Ax(t)‖ =

ψ(Ax(t)). Thus,

∥∥(Ax)(t)
∥∥ = ψ

(
(Ax)(t)

)
=

∫ 


G(t,qs)f

(
s, y(s)

)
dqs

≤
∫ 



∣∣G(t,qs)∣∣ · ψ(
f
(
s,x(s)

))
dqs

http://www.advancesindifferenceequations.com/content/2013/1/113
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≤
∫ 



∣∣G(t,qs)∣∣ · pf (s) ·
∥∥x(s)∥∥dqs

≤ ‖pf ‖L∞RG*

≤ R.

Let τ, τ ∈ J , τ < τ and ∀x ∈ D, so Ax(τ) –Ax(τ) �= . Then there exists ψ ∈ E*, such
that ‖Ax(τ) –Ax(τ)‖ = ψ(Ax(τ) –Ax(τ)). Hence,

∥∥Ax(τ) –Ax(τ)
∥∥ =

∫ 



[
G(τ,qs) –G(τ,qs)

] · f (s,x(s))dqs

≤
∫ 



∣∣G(τ,qs) –G(τ,qs)
∣∣ · ∥∥f (s,x(s))∥∥dqs

≤ R‖pf ‖L∞
∫ 



∣∣G(τ,qs) –G(τ,qs)
∣∣dqs,

this means that A(D)⊂D.
Step : We will show that the operator A is weakly sequentially continuous.
Let (xn) be a sequence in D and let (xn(t)) → x(t) in (E,w) for each t ∈ J . Fix t ∈ J . Since

f satisfies assumptions (H), we have f (t,xn(t)) converge weakly uniformly to f (t,x(t)).
Hence, the Lebesgue dominated convergence theorem for Pettis integrals implies Axn(t)
converges weakly uniformly toAx(t) in Eω . Repeating this for each t ∈ J showsAxn →Ax.
Then A :D →D is weakly sequentially continuous.
Step : The implication (.) holds. Now let V be a subset of D such that V ⊂

conv(A(V ) ∪ {}). Clearly, V (t) ⊂ conv(A(V ) ∪ {}) for all t ∈ J . Hence, AV (t) ⊂ AD(t),
t ∈ J , is bounded in E. Thus, AV (t) is weakly relatively compact since a subset of a re-
flexive Banach space is weakly relatively compact if and only if it is bounded in the norm
topology. Therefore,

v(t)≤ β
(
A(V )(t)∪ {})

≤ β
(
A(V )(t)

)
= ,

thus, V is relatively weakly compact in E. In view of Lemma ., we deduce that A has a
fixed point, which is obviously a solution of the problem (.). This completes the proof.

�

Remark . In Theorem ., we presented an existence result for weak solutions of the
problem (.) in the case where the Banach space E is reflexive. However, in the nonre-
flexive case, conditions (H)-(H) are not sufficient for the application of Lemma .; the
difficulty is with condition (.).

Theorem . Let E be a Banach space, and assume assumptions (H), (H), (H), (H)
are satisfied. If (.) holds, then the problem (.) has at least one solution on J .

Theorem . Let E be a Banach space, and assume assumptions (H), (H), (H)′, (H),
(H) are satisfied. If (.) holds, then the problem (.) has at least one solution on J .

http://www.advancesindifferenceequations.com/content/2013/1/113
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Proof Assume that the operatorA : C(J ,E) → C(J ,E) is defined by the formula (.). It is
well known the fixed points of the operator A are solutions of the problem (.).
First notice that, for x ∈ C(J ,E), we have f (·,x(·)) ∈ P(J ,E) (assumption (H)). Since, s �→

G(t, s) ∈ L∞(J), then G(t, ·)f (·,x(·)) for all t ∈ J is Pettis integrable (Lemma .), and thus,
the operatorAmakes sense.
Let R > , and consider the set

D =
{
x ∈ C(J ,E) : ‖x‖∞ ≤ R and

∥∥x(t) – x(t)
∥∥ ≤ ‖pf ‖L∞ψ(R)

∫ 



∣∣G(t,qs) –G(t,qs)
∣∣dqs for t, t ∈ J

}
, (.)

clearly, the subset D is closed, convex and equicontinuous. We shall show thatA satisfies
the assumptions of Lemma .. The proof will be given in three steps.
Step : We will show that the operator Amaps D into itself.
Take x ∈D, t ∈ J and assume thatAx(t) �= .Then there existsψ ∈ E* such that ‖Ax(t)‖ =

ψ(Ax(t)). Thus,

∥∥(Ax)(t)
∥∥ = ψ

(
(Ax)(t)

)
= ψ

(∫ 


G(t,qs)f

(
s, y(s)

)
dqs

)

≤
∫ T



∣∣G(t,qs)∣∣ · ψ(
f
(
s,x(s)

))
dqs

≤
∫ T



∣∣G(t,qs)∣∣ · pf (s) · ψ
(∥∥x(s)∥∥)

dqs

≤ ‖pf ‖L∞ψ(R)G*

≤ R.

Let τ, τ ∈ J , τ < τ and ∀x ∈ D, so Ax(τ) –Ax(τ) �= . Then there exist ψ ∈ E* such
that

∥∥Ax(τ) –Ax(τ)
∥∥ = ψ

(
Ax(τ) –Ax(τ)

)
.

Thus,

∥∥Ax(τ) –Ax(τ)
∥∥ = ψ

(∫ 



[
G(τ,qs) –G(τ,qs)

] · f (s,x(s))dqs
)

≤
∫ 



∣∣G(τ,qs) –G(τ,qs)
∣∣ · ∥∥f (s,x(s))∥∥dqs

≤ ψ(R)‖pf ‖L∞
∫ 



∣∣G(τ,qs) –G(τ,qs)
∣∣dqs,

this means that A(D) ⊂D.
Step : We will show that the operator A is weakly sequentially continuous.
Let (xn) be a sequence in D and let (xn(t))→ x(t) in (E,w) for each t ∈ J . Fix t ∈ J . Since

f satisfies assumptions (H), we have f (t,xn(t)), converging weakly uniformly to f (t,x(t)).
Hence, the Lebesgue dominated convergence theorem for Pettis integral implies Axn(t)
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converging weakly uniformly to Ax(t) in Eω . We do it for each t ∈ J so Axn → Ax. Then
A :D →D is weakly sequentially continuous.
Step : The implication (.) holds. Now let V be a subset of D such that V ⊂

conv(A(V ) ∪ {}). Clearly, V (t) ⊂ conv(A(V ) ∪ {}) for all t ∈ J . Hence, AV (t) ⊂ AD(t),
t ∈ J , is bounded in E. Using this fact, assumption (H), Lemma . and the properties of
the measure β , we have for each t ∈ J

v(t)≤ β
(
A(V )(t)∪ {})

≤ β
(
A(V )(t)

)

= β

{∫ 


G(t,qs)f

(
s,V (s)

)
dqs

}

≤
∫ 



∣∣G(t,qs)∣∣ · pf (s) · β
(
V (s)

)
dqs

≤ ‖pf ‖L∞ ·
∫ 



∣∣G(t,qs)∣∣ · v(s)dqs

≤ ‖pf ‖L∞ · ‖v‖∞ ·G*,

which gives

‖v‖∞ ≤ ‖pf ‖L∞ · ‖v‖∞ ·G*.

This means that

‖v‖∞ · [ – ‖pf ‖L∞ ·G*] ≤ .

By (.), it follows that ‖v‖∞ = , that is v(t) =  for each t ∈ J , and then V (t) is relatively
weakly compact in E. In view of Lemma ., we deduce that A has a fixed point which is
obviously a solution of the problem (.). This completes the proof. �
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24. Banaś, J, Goebel, K: Measures of Noncompactness in Banach Spaces. Dekker, New York (1980)
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